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Simulation of Incorporating the Variance from Missing Data 
in Census Coverage Measurement Variance Estimates 
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Abstract 
 
For the Census 2000 Accuracy and Coverage Evaluation (A.C.E.), variance due to missing data 
imputation was incorporated into the jackknife variance estimates by the re-calculation of the 
missing data adjustments for missing P-sample match status, E-sample correctness of 
enumeration, and residence probability for each jackknife replicate. These missing data 
adjustments were done by simple cell methodology whereby, for example, for each cell the 
weighted proportion of P-sample matches for resolved cases was used as the imputed probability 
of a match for unresolved cases in that cell. For the 2010 Census  
Coverage Measurement (CCM) Survey, imputation will be done using logistic regression. A 
possibility for variance estimation is re-computing the estimated logistic regression coefficients 
for each jackknife replicate to account for missing data variance. This paper documents a 
simplified empirical study using simulated data and the R programming language to evaluate the 
bias and variance properties of a jackknife variance estimate that attempts to include variance due 
to a missing data imputation using logistic regression. 
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For the Census 2000 Accuracy and Coverage Evaluation (A.C.E.), variance due to missing data 
imputation was incorporated into the jackknife variance estimates by the re-calculation of the 
missing data adjustments for missing P-sample match status, E-sample correctness of 
enumeration, and residence probability for each jackknife replicate. These missing data 
adjustments were done by simple cell adjustment whereby, for example, for each cell the 
weighted proportion of P-sample matches for resolved cases was used as the imputed probability 
of a match for unresolved cases in that cell. Lee (2002) discusses the theory for this approach and 
provides details and results from an empirical study implemented on two artificial populations. 
The imputation methods discussed are ratio imputation (cell imputation is a special case) and 
nearest neighbor hot deck. For the 2010 Census Coverage Measurement (CCM) Survey, 
imputation will be done using logistic regression. While it makes intuitive sense that re-
computing the estimated logistic regression coefficients for each jackknife replicate may properly 
account for missing data variance, we were not able to find documentation of theory or an 
empirical study specifically dealing with missing data variance estimation for the case of logistic 

                                                 
1 This report is released to inform interested parties of research and to encourage 
discussion.  Any views expressed on statistical, methodological, technical, or 
operational issues are those of the author and not necessarily those of the U.S. 
Census Bureau. 
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regression based imputation. This paper documents a simplified empirical study using simulated 
data and the R programming language to evaluate the bias and variance properties of a jackknife 
variance estimate that attempts to include variance due to missing data imputation. 
 
Section 2 gives details of the simulation and section 3 provides results. Section 4 is a summary 
and section 5 provides references. The R programs along with discussion of the reason for 
sections of code used for this empirical study are available from the author. 
 

2. Empirical Study Using Simulated Data 
 
Consider a population of 1000 persons each with an independent probability of capture in the 
Census. Define this probability as follows: 
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where X~N(0,1). This is one of the models used to generate capture probabilities in Alho (1990). 
 
N = 1000 independent observations of X from N (0,1) are generated. Using an independent 
random draw from the Uniform (0,1) distribution and pj, each person is classified as either 1 
(captured in the Census) or 0 (not captured in the Census). The P-sample is then defined as an 
independent simple random sample without replacement of size 100 from N. 
 
The logistic regression model used for estimation is as follows: 
 
Let yj be a random dependent variable defined as 1 if P-sample person j is enumerated in the 
Census (i.e., matches) and 0 otherwise. 
 

jπ  = the probability that yj = 1.  Note that jπ is not the same as jp , which is only used in setting 
up the simulation population classifying each person as either 1 (captured in the Census) or 0 (not 
captured in the Census) as well as determining response or no response (see section 2.2) for 
census capture.   jp is not available for estimation.  
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and once the model is fit, 
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The dual system estimator used is as follows: 
 

∑=
Censusj j

N
ε π̂

1ˆ      (3) 

 
Note that for this study we are assuming all census enumerations are data-defined and correct 
enumerations. Also, all results are conditional on the population of size N created as described. 
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2.1  Simulation 1 – Complete Response 

 
The first simulation is for jackknife variance estimation if all P-sample persons are resolved as 
either captured (i.e., matched) or not captured in the Census. One thousand simulations of a P-
sample of 100 persons from the universe of 1000 persons are done. For each sample, logistic 
regression model (2) is fit and N̂  is computed as in equation (3) and stored. Then for each of 100 
jackknife replicates, c = 1,…,100, a P-sample person is sequentially removed leaving 99 persons 
for whom logistic regression model (2) is again fit. The estimated coefficients from this fitting are 
stored for each replicate. Using these estimated coefficients )(

ˆ
cN  is computed leaving out P-

sample person c. The jackknife variance estimate is computed as follows; 
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2.2 Simulation 2 – Some Nonresponse, Impute Enumerated or not 

Enumerated in the Census 
 
For each of the N population records, a response probability, equal to )1)(8(.)96(. jj pp −+  
(see equation (1)), is calculated and using the independent random draw from the Uniform (0,1) 
distribution and this response probability, each person is classified as either 1 (a respondent) or 0 
(a nonrespondent). This provides approximately the amount of nonresponse to match status 
observed in Census 2000 A.C.E.  
 
The CCM Survey includes a listing of housing units in sample blocks and matching the housing 
units to the Census list of housing units.  Define a new variable Z defined as 1 if the housing unit 
a person lives in matched to the Census and 0 otherwise.  Z is known to be highly correlated with 
a P-sample person matching or not to the Census.  Z is only available for persons in the P-sample 
so that it can only be used for imputation (not available for all census enumerated persons so 
cannot be used in equation (3) for estimation). For our simulation population, this variable is set 
to 0 for persons with census capture probability, pj, less than or equal to 0.5 (about 25% of the 
simulated universe) and set to 1 otherwise.  
 
The second simulation allows for missing data and uses logistic regression for missing data 
imputation as well as for estimation after imputation.  
 
The logistic regression model used for imputation is as follows: 
 
Let yj be a random dependent variable defined as 1 if P-sample person j is enumerated in the 
Census (i.e., matches) and 0 otherwise. 
 

jπ  = the probability that yj = 1. 
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and once the model is fit, 
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One thousand simulations of a P-sample of 100 persons are done.  
For each sample, logistic regression model (5) is fit using the respondents in that sample.  Then 
equation (6) is used to estimate the match probability for each nonrespondent person. Using the 
independent random draw from the Uniform (0,1) distribution and this match probability, each 
nonrespondent person is classified as either 1 (a match) or 0 (a nonmatch).  
 
Using these imputed values for the nonrespondents and the observed values for the respondents, 
logistic regression model (2) is fit and N̂  is computed as in equation (3) and stored.  
 
Next for each of 100 jackknife replicates, c = 1,…,100, a P-sample person is sequentially 
removed leaving 99 persons. If the removed person was a respondent, logistic regression model 
(5) is fit using the remaining respondents and used for imputation for the nonrespondents. 
Logistic regression model (2) is then fit using these imputed values for the nonrespondents (or the 
imputed values already obtained for estimation if the removed person was a nonrespondnet) and 
the observed values for the respondents for the 99 persons in that jackknife replicate. It is not 
necessary to impute again if the removed person was a nonrespondent since in that case, the 
remaining respondents are the same as for estimation.  The estimated coefficients from this fitting 
are stored for each replicate. Using these estimated coefficients )(

ˆ
cN  is computed.  The jackknife 

variance estimate is computed using equation (4). 
 
For comparison purposes this simulation is run again using a jackknife variance estimator that 
treats imputed values the same as observed values (no re-imputation for each jackknife replicate).  
Once the imputation is done for a sample, treat the imputed values as observed and then apply 
equation (4) as in simulation 1. 
 

2.3 Simulation 3 – Some Nonresponse, Impute by Creating Two Records with 
Weights 

 
The third simulation also allows for missing data and uses logistic regression for missing data 
imputation as well as for estimation after imputation. One thousand simulations of a P-sample of 
100 persons are done.  
 
For each sample, logistic regression model (5) is fit using the respondents in that sample. Then 
equation (6) is used to estimate the match probability for each nonrespondent person. Instead of 
imputing either 1 (a match) or 0 (a nonmatch) using the random draw from the Uniform (0,1) 
distribution as in simulation 2, two records are created for each nonrespondent. Given an imputed 
match probability of jπ̂ , one record has a dependent response variable of 1 (matched) and a 

weight of jπ̂ and the second record has a dependent response variable of 0 (nonmatch) and a 

weight of  jπ̂1− . Logistic regression model (2) is fit using these weights for the records 

representing the nonrespondents and a weight of 1 for the records representing respondents. N̂  is 
computed as in equation (2) using weighted logistic regression and stored.  
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Next for each of 100 jackknife replicates, c = 1,…,100, a P-sample person is sequentially 
removed leaving 99 persons. For each jackknife replicate of 99 persons, the entire process of 
fitting logistic regression model (5) using the respondents, using the fitted model to create two 
records for nonrespondents and then fitting logistic regression model (2) to compute )(

ˆ
cN   is 

repeated for each jackknife replicate.   Note that if the removed person was a nonrespondent it 
was not necessary to repeat the entire process since the remaining respondents were the same as 
from the full sample. Here the process was repeated even if the removed person was a 
nonrespondent for programming ease.  This made the run time longer which was not a concern.  
The jackknife variance estimate is computed using equation (4). 
 
For comparison purposes this simulation is run again using a jackknife variance estimator that 
treats imputed values the same as observed values (no re-imputation for each jackknife replicate).  
Once the imputation is done for a sample, treat the imputed values as observed and then apply 
equation (4) as in simulation 1. 
 

3. Results 
 

Table 1 gives the results for the estimator N̂  of the population size of 1000. Column (1) is the 
average estimate over the 1000 simulated samples. Column (2) is the empirical variance of N̂ . 
This is treated as the target value for jackknife variance estimation. Column (3) is the empirical 
standard error (square root of column (2)). Column (4) is the relative empirical standard error 
(column (3) divided by column (1)). Note that columns (2), (3), and (4) are the same for re-
imputation and no re-imputation since the population estimate does not depend on variance 
estimation. Column (5) is the average of the 1000 jackknife variance estimates and column (6) is 
the ratio of this value to the target empirical variance. Column (7) is the square root of column 
(6). 

 
Table 1   Average and Empirical Variance of N̂  
 

 
Mean 
 N̂  

Variance 
   N̂  

SE 
N̂  NMean

NSE
ˆ

ˆ
 

Mean  
VARjk 

Ratio  
Jack/Target 

SQRT 
Ratio  

 (1) (2) (3) (4)                      (5) (6) (7) 
Simulation 1 1017 9735 99 0.097 11421 1.173 1.083 
Simulation 2  
      re-impute 1049 17368 132 0.126 30368 1.748 1.322 
no re-impute 1049 17368 132 0.126 17115 0.986 0.993 
Simulation 3  
      re-impute 1012 13394 116 0.115 14958 1.117 1.057 
no re-impute 1012 13394 116 0.115 14632 1.094 1.046 

 
    
 
For Simulation 1, which assumes no missing data the mean population estimate is about 1017 for 
the population of 1000 (overestimate of 1.7%). The jackknife standard error estimate overstated 
the empirical standard error by 8.3% (one tailed P value < .001). 
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Simulation 2 was run twice, once with re-imputation for each jackknife replicate and once 
treating the imputed value as observed with no re-imputation for each jackknife estimate. The 
population is overestimated by about 5%. Simulation 2 imputes for missing data by using the 
fitted imputation logistic regression from the respondents and a uniform random (1,0) draw to 
impute either match or nonmatch for each nonrespondent. The bias in population estimation is 
about 3 times larger than Simulation 1 which assumed no missing data. When re-imputation is 
done for each jackknife replicate, the jackknife standard error estimate overstates the empirical 
standard error by 32.2% (one tailed P-value < .001). When the imputed values are treated as 
observed, the jackknife variance estimate has practically no bias (0.7% underestimate; not 
significant at 10% level). 
 
Simulation 3 was run twice, once with re-imputation for each jackknife replicate and once 
treating the imputed value as observed with no re-imputation for each jackknife estimate. The 
population is overestimated by about 1.2%. Simulation 3 imputes for missing data by using the 
fitted imputation logistic regression from the respondents to create two records, one for a match 
and one for a nonmatch for each nonrespondent and uses weighted logistic regression. The bias in 
population estimation is slightly less than for Simulation 1 which assumed no missing data. When 
re-imputation is done for each jackknife replicate, the jackknife standard error estimate overstates 
the empirical standard error by 5.7% (one tailed P-value = .03). When the imputed values are 
treated as observed, the jackknife variance estimate overstates the empirical standard error by 
4.6% (not significant at 10% level). 
 
The major difference between Simulation 2 and Simulation 3 is that Simulation 2 imputes a value 
(match or nonmatch) using the imputation logistic regression model and a draw from the Uniform 
(0,1) distribution, while Simulation 3 creates 2 records for each nonrespondent to represent both a 
match and nonmatch and creates appropriate weights. The population estimate empirical variance 
is about 30% higher (standard error about 14%) for Simulation 2 due to using a random draw 
from the Uniform(0,1) distribution. For jackknife variance estimation when a value is imputed 
(Simulation 2), it appears to be much better to treat the imputed values as observed for jackknife 
variance estimation. For jackknife variance estimation when two records are created for 
nonrespondents (Simulation 3), it is slightly better to treat the imputed values as observed for 
jackknife variance estimation. The jackknife variance estimator that has a re-imputation produces 
an acceptable error with an overestimate of standard error slightly less than 6%. 
 
 4.  Summary 
 
For this population with simple random sampling, jackknife variance estimation when there is no 
missing data overstated the standard error by about 8%. If a random draw was used with logistic 
regression to impute a status of match or nonmatch for simulated nonrespondents, a simple 
jackknife treating the imputed values as fixed produced very accurate variance estimation while 
re-imputing resulted in about a 30% overestimate of standard error. If two records were created to 
represent both a match and nonmatch with appropriate weights based on an imputation logistic 
regression model, simple jackknife variance estimation treating the imputed results as observed 
and including a re-imputation for each jackknife replicate produced similar results(about a 5% 
overestimate of standard error). 
 
The conclusion from this analysis would clearly be to create two records for nonrespondents to 
reduce true variance and to treat the imputed values as observed for jackknife variance 
estimation. However, re-imputing for each jackknife replicate produces similar jackknife variance 
estimation results. 
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For the 2010 Census Coverage Measurement (CCM) Survey we are planning to create two 
records for nonrespondents. An empirical study using real Census 2000 data and the sample 
design actually used for CCM compared the simple jackknife variance estimate of logistic 
regression parameters with “true” measures of variance based on Monte Carlo variances. These 
jackknife variance estimates were reasonable so that the plan will be to treat the imputed values 
as fixed for jackknife variance estimation for the 2010 CCM. 
 
 5.  References 
 
Alho J.M. (1990), “Logistic Regression in Capture-Recapture Models”, “Biometrics 46, 623-635. 
 
Lee H., Rancourt E., and Sarndal, C. (2002), “Variance Estimation from survey Data under 
Single Imputation,” Survey Nonresponse, John Wiley and Sons, 315-328.  

Section on Survey Research Methods – JSM 2010

1787


