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Abstract 
In nonrandomized studies, selection bias may confound the relationship between 

treatment and outcome. Imputation is one method for addressing selection bias, though it 

is not widely used. With this approach, a potential outcome is imputed for each treatment 

level not received and the association between treatment and outcome is estimated using 

both reported and imputed outcomes. Multiple imputations may be used to account for 

the impact of the imputation process on variances. This paper analyzes data from a four-

arm comparison study (Shadish, Clark, and Steiner, 2008) where students were first 

randomly assigned to a randomized experiment or an observational study. Using the 

randomized experiment as a benchmark, we examine treatment effects estimated by 

applying semi-parametric multiple imputation to the observational study and compare 

them to effects estimated using other analytic approaches. Issues with variance estimation 

are discussed. 

 

Key Words: Causal inference, potential outcomes, counterfactual, hot deck, multiple 

imputation, bootstrap 

 

 

1. Introduction 
 

A randomized experiment is a study design in which subjects are randomly assigned to 

treatment groups. Apart from chance imbalance, the distributions of all covariates 

(measured and unmeasured) are expected to be the same across the treatment groups. For 

this reason, statistically significant differences in outcomes between the groups are likely 

due to treatment and the randomized experiment is considered the gold standard for 

causal inference.  

 

However, there may be practical or ethical issues that prevent the use of random 

treatment assignment for a given study. In these situations, we have a quasi-experimental 

design (sometimes referred to as an observational study or nonrandomized experiment). 

Often treatment is self-selected by the study subjects and as a result, there is no guarantee 

that covariate distributions will be the same across the treatment groups. Relationships 

between treatment and outcomes may be confounded by selection bias and there is a need 

for some form of adjustment when estimating causal effects. 

 

1.1 Potential Outcomes Framework and Notation 
Causal effects are comparisons among the outcomes that a study subject would have 

under different treatment conditions. In other words, the notion of causality pertains to 

how some form of treatment, exposure, or intervention would change a subject’s 
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outcomes. To characterize a treatment effect in a randomized experiment, Neyman 

(1923) introduced multiple outcomes for each experimental unit. Rubin (1974, 1978a) 

proposed a similar notation in the context of observational studies, producing a 

framework that is often referred to as Rubin’s causal model. Let T denote treatment 

status, where for simplicity we assume that T = 0 or 1, and let Y denote an outcome of 

interest. Using the potential outcome framework, let Y(0) denote the outcome if T = 0 and 

Y(1) the outcome if T = 1. Suppose that we want to estimate the average causal effect of T 

on Y, 

 

   1 0E Y Y     . 

 

Because no study subject can receive multiple treatments at the same time, one of the two 

potential outcomes is missing for each subject. The missing (i.e., unobserved) potential 

outcomes are sometimes called counterfactual outcomes. Therefore, the fundamental 

problem of causal inference (Holland, 1986) is that for no subject do we observe the 

causal effect of treatment.  

 

2. Analytic Methods for Observational Studies 

 

2.1 A Missing Data Problem 
The potential outcome framework makes it clear that causal inference may be regarded as 

a missing-data problem, as illustrated below. 

 

Treatment status  Y(0)  Y(1)  

T = 0  Observed  Not observed  

T = 1  Not observed  Observed  

 

Figure 1: Illustration of missing-data status among potential outcomes with two 

treatment levels 

 
Two standard methods of dealing with missing data are weighting and imputation. Using 

the weighting approach, quantities involving Y(0) are estimated by weighting up the 

study subjects with T = 0 to also represent the subjects with T = 1. Similarly, estimates 

involving Y(1) are obtained by weighting up the subjects with T = 1 to also represent the 

subjects with T = 0. The weighting adjustments are typically performed within groups of 

subjects having similar estimated treatment propensities. The average treatment effect is 

then estimated by 

 

   
 where 1  where 0

 where 1  where 0

1 0
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where iw  is the adjusted weight for study subject i. This approach is sometimes referred 

to as inverse-probability weighting based on estimated propensity scores or 

counterfactual projection weighting. 

 

Section on Survey Research Methods – JSM 2010

1086



Using the imputation approach, missing values for the counterfactual or unobserved 

potential outcomes are replaced by imputed values. Here, the imputation process is 

typically performed within groups of subjects having similar characteristics and/or 

predicted outcomes. The average treatment effect in then estimated by 

 

       
 where 1  where 0  where 1  where 0

1 1 0 0
ˆ

imp imp
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where  imp

iY t  is the imputed potential outcome under T = t, and iw  is the regular 

survey weight for study subject i. 

 

2.2 Motivation for Imputation Approach 
Numerous other analytic techniques exist and have been used to estimate causal effects. 

One of the most common is ANCOVA whereby outcomes are regressed on treatment 

group indicators, eligible covariates, and relevant interactions. Inference about treatment 

effects is based on the regression coefficients of the treatment indicator variables (and of 

any interaction terms involving treatment). Other methods attempt to match study 

subjects from different treatment groups, using available covariates or a summary 

measure such as the estimated propensity score in an effort to match subjects that are 

―similar‖ apart from the treatment received. Estimation of treatment effects is then based 

on the differences between outcomes within the matched pairs. Stratifying the sample by 

propensity score and conducting a stratified analysis of outcome differences attempts 

something similar, except that the matching is at a coarser level. In addition, it is possible 

to combine aspects of these different analytic techniques in an attempt to make the results 

more closely resemble those of a randomized experiment. 

 

Aside from general interest in the performance of imputation for causal inference relative 

to some of the more common approaches we have just mentioned, there may be reasons 

to prefer the imputation approach. One is that imputed potential outcomes can simplify 

the communication of findings to stakeholders. For example, proper interpretation of a 

logistic regression coefficient may be more difficult for a client than simply comparing 

estimates of the percentage of the target population that would exhibit a certain trait in 

the complete absence of treatment versus treatment saturation. A second reason to 

consider the imputation approach is that the impact of missing data on survey estimates 

can be reflected using multiple imputation. 

 

First proposed by Rubin (1978b), multiple imputation can be used to capture the added 

uncertainty in treatment effect estimates that is due to missing data. The method involves 

performing 2M   independent imputations to create M complete data sets. The multiple 

imputation estimator of the treatment effect,  , is the average of the estimators obtained 

from each completed data set, 

 

1

1ˆ ˆ
M

MI m

mM 

   . 

 

Discussion of the multiple imputation variance estimator can be found in Section 3. 
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If one decides to adopt the imputation approach to causal inference, a choice of 

imputation method must be made. In general, a wide variety of imputation procedures 

exists: random or deterministic; cyclic or not; weighted or unweighted; single or multiple; 

nearest neighbour or random within cell; Bayesian or semi-parametric, etc. In the limited 

applications of imputation for causal inference, it would appear that Bayesian imputation 

methods are most frequently used. However, we preferred to investigate the performance 

of a semi-parametric approach for two main reasons.  

 

Westat has already developed a highly-automated, semi-parametric imputation software 

product known as AutoImpute (see, for example, Krenzke and Judkins, 2008), which has 

been found to perform well when dealing with item nonresponse and in comparison to 

other software packages (Judkins et al., 2007). AutoImpute is based on iterative cycling 

through p-partition hot decks, starting with a simple hot deck to fill in values for all 

missing items. Subsequent passes through the data set re-impute each item sequentially, 

with donors chosen via model-based estimates of the item being imputed, until specified 

convergence criteria are reached. This approach is a semi-parametric analogue of the 

parametric conditional imputation methods in the software packages IVEWare 

(Raghunathan et al., 2001) and MICE (Van Buuren and Oudshoorn, 1999). Therefore, 

AutoImpute is clearly less dependent on parametric assumptions than Bayesian 

imputation methods and is easy to implement. Because AutoImpute was originally 

developed to handle regular item nonresponse, its extension to the imputation of potential 

outcomes also provides a way to fully integrate uncertainty due to missing data in 

outcomes and covariates, into the estimation of causal effects.  

 

3. Variance Estimation 

 
It is well known that treating imputed values as if they were reported values leads to 

variance estimates that understate the true variances of survey estimates. This ―naïve‖ 

approach underestimates the degree of uncertainty because it ignores the variability due 

to nonresponse. When imputation is applied to potential outcomes this is of particular 

relevance due to the large amount of missing data.  

 

There are three main approaches to valid variance estimation using imputed data: explicit 

formulae that incorporate nonresponse; resampling methods designed to take account of 

the imputation procedure; and multiple imputation. Explicit formulae may be derived by 

making assumptions about the missing data mechanism or the model for the distribution 

of Y in the population (e.g., Särndal, 1992; Chen and Shao, 2000; Brick et al., 2004; Kim 

and Rao, 2010). Because of the vulnerability of such approaches to model violations, 

resampling methods are another alternative. These include the adjusted jackknife of Rao 

and Shao (1992), the fractionally weighted hot deck of Kim and Fuller (2004), and the 

bootstrap approach of Shao and Sitter (1996). Most of these proposed methods discuss 

only univariate variance estimation and may rely on imputation cell information such as 

the mean of the respondent values in each cell. However, this approach breaks down in 

the causal inference setting because treatment effects are necessarily multivariate in 

nature, being the difference (or some other function) of two or more potential outcomes. 

As a consequence, no imputation cell has a respondent! 

 

Whilst its use may come at the expense of being computationally more expensive, the 

Shao-Sitter bootstrap appears to be one method that will lead to valid variance estimation 

in the context of imputed potential outcomes. The approach involves drawing B 
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independent bootstrap samples with replacement from the original sample, carrying out 

the same imputation procedure on each of the bootstrap samples, and applying the usual 

bootstrap mean and imputation formulae. The bootstrap estimator of the treatment effect, 

 , is the average of the estimators obtained from each completed bootstrap data set, 

 

1

1ˆ ˆ
B

BT b

bB 

   , 

 

and the variance of ˆ
BT  is given by 

 

 
 

2

1

1ˆ ˆ ˆ
1

B

BT b BT

b

V
B 

  

 . 

 

Multiple imputation (see Section 2.1) is another potentially viable approach to variance 

estimation for imputed potential outcomes. The variance of ˆ
MI  (the multiple imputation 

estimator of the treatment effect) is the sum of the average within-imputation variance 

and the between-imputation variance, with a bias correction for the finite number of 

multiply imputed data sets,  

 

 
 

2

1 1

1 1 1ˆ ˆ ˆ ˆ1
1

M M

MI m m MI

m m

V V
M M M 

 
     

 
  . 

 

The multiple imputation method has risen in popularity due to the relative ease with 

which it can be applied, however there are situations in which it does not produce valid 

variance estimates. For example, if hot-deck imputation is used and the donor pool for a 

respondent is the same for all M data sets, the method is not a ―proper‖ multiple 

imputation procedure (Rubin, 1978b). In this case, the true variance is underestimated 

even with an infinite number of imputed data sets, and the degree of underestimation may 

be considerable if a large amount of data are being imputed.  

 

4. Application Using Real Data 

 
To assess the performance of semi-parametric multiple imputation for causal inference, 

we used real data from a study of volunteer undergraduate students taking introductory 

psychology classes at a large mid-southern public university. In the first example of a 

four-arm within-study comparison design, Shadish, Clark, and Steiner (2008) pre-tested 

these students in different domains before randomly assigning them either to a 

randomized experiment with two treatment arms (learning about vocabulary or 

mathematics) or to a quasi-experiment with self-selection into these same two arms. After 

training, the mathematics and vocabulary scores of all participants were assessed. 

 

Data from this study afford researchers the opportunity to test how well the results of 

nonrandomized experiments, with proper adjustments, can approximate the results of 

randomized experiments. While the study design has its own limitations in terms of 

generalizability, its strength lies in the absence of conditions that might otherwise 

confound such comparisons. Aside from the assignment to type of experiment 

(randomized/nonrandomized) and the type of training (mathematics/vocabulary) assigned 
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or self-selected, all other features of the study were held constant. For example, students 

in the randomly and non-randomly formed groups received their vocabulary or 

mathematics training at the same sessions and were always tested in the same way at the 

same time. 

 

 
Figure 2: Overall design of the four-arm within-study comparison 

 
It is important to stress that we used data only from the nonrandomized arms of the study 

(210 students) to estimate the effects of mathematics training on mathematics scores and 

vocabulary training on vocabulary scores. The same treatment effects estimated from the 

randomized experiment (235 students) data were treated as a gold standard against which 

to compare the results of the semi-parametric imputation but otherwise played no role in 

our analyses.  

 

Careful attention was given to the collection of baseline variables that might predict a 

student’s choice of training and/or post-treatment mathematics and vocabulary scores. 

The full set of measured covariates includes: Pre-treatment mathematics and vocabulary 

scores, sex, age, race (black/white/other), marital status, father’s and mother’s degree of 

education, parents’ annual income, high school GPA, ACT, college GPA, college credit 

hours, major field of study, number of prior mathematics courses, mathematics anxiety 

rating scale, liking of mathematics, liking of literature, preference for literature over 

mathematics, Beck depression inventory, agreeableness, conscientiousness, emotional 

stability, extroversion, and openness to experience. 

 

To estimate the treatment effects using data from the nonrandomized experiment, we 

used AutoImpute to impute the following four potential outcomes: 

 

 The post-treatment mathematics score for the 79 students who received 

mathematics training if instead they had received vocabulary training; 

 The post-treatment vocabulary score for the 79 students who received 

mathematics training if instead they had received vocabulary training; 
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 The post-treatment mathematics score for the 131 students who received 

vocabulary training if instead they had received mathematics training; and 

 The post-treatment vocabulary score for the 131 students who received 

vocabulary training if instead they had received mathematics training. 

 

The AutoImpute runs were set up to impute all four potential outcomes at once, allowing 

the potential mathematics score to enter the imputation model for the potential 

vocabulary score (and vice versa). However, we did not allow the potential outcomes 

given mathematics training to be eligible predictors in the imputation models for the 

potential outcomes given vocabulary training (nor vice versa). This decision was made on 

the basis that there are no students with observed data both under mathematics training 

and under vocabulary training. Furthermore, the hope was that any associations between 

these potential outcomes (e.g., due to innate ability) would be captured through the other 

covariates in the imputation models. Following Shadish, Clark, and Steiner (2008), two 

sets of baseline measures were considered as eligible covariates in different AutoImpute 

runs. One set of covariates included all the baseline measures described above, with the 

exception of parents’ income which was deemed unreliable due to students’ lack of exact 

knowledge about their parents’ incomes and a high missing rate. The other covariate set 

included only ―predictors of convenience‖: Sex, age, marital status, and race. 

 

The first set of AutoImpute runs used Shadish, Clark, and Steiner’s pre-imputed
1
 version 

of the study data to facilitate comparison with results presented in their paper. A second 

set of AutoImpute runs was conducted using the unimputed study data set to examine the 

ability of our method to account simultaneously for item nonresponse and unobserved 

potential outcomes. 

 

A ―doubly robust‖ approach was built into our semi-parametric imputation method in the 

following manner. Each student’s propensity to choose mathematics (instead of 

vocabulary) training was estimated using a logistic regression model. Based on the 

estimated propensity scores, students were grouped into propensity quintiles. Propensity 

quintile was then included as an eligible covariate in the imputation models. For the set of 

AutoImpute runs conducted using the pre-imputed study data, propensity quintile was 

also used as the soft boundary variable in the procedure’s initial hot deck. This was done 

in the hope of producing a better set of starting values from which the iterative 

imputation proceeds. It was not possible to use propensity quintile when forming the 

initial hot-deck cells for the unimputed study data set due to missing values. For these 

runs, we used age as the soft boundary variable in AutoImpute’s initial hot deck because 

there was complete response to this item. 

 

Treatment effects  ̂ and standard errors (S.E.) were estimated in two different ways: 

one using Rubin’s multiple imputation approach and the other using the Shao-Sitter 

approach with 500 bootstrap samples
2
 drawn from the 210 students in the nonrandomized 

experiment (see Section 3). 

 

In addition to varying the set of eligible imputation predictors and presence/absence of 

missing values in the input data set, we explored the effects of several imputation 

parameters on the treatment effect estimates. The first of these was the maximum number 

                                                 
1
 Here ―pre-imputed‖ refers to the observed survey items, not potential outcomes. 

2
 The bootstrap samples were stratified by the choice of mathematics or vocabulary training. 
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of times a student could be used as a donor, donMax. The second was the maximum 

number of internal AutoImpute iterations, numIter, and the third was the number of 

multiple imputations, nMI. A point to note is that the value of donMax required for 

imputation of potential outcomes will typically be higher than would be used in other 

settings. For a sample of size n, amongst which the smallest treatment group size is minn , 

the minimum value of donMax must be at least 
 min

min

n n
n


. 

 
5. Results 

 
Tables 1–4 each show the results of applying AutoImpute to the pre-imputed study data 

set. Tables 1 and 2 present summaries for the effect of mathematics training on 

mathematics scores – Table 1 is based on results using the full covariate predictor set and 

Table 2 is based on results using only convenient predictors. The information in Tables 3 

and 4 is similarly arranged but relates to the effect of vocabulary training on vocabulary 

scores. Note that in each table, the statistics in the first row represent the gold standard 

treatment effect estimated from the randomized experiment data (using covariate 

adjustment to address chance imbalance between the treatment groups). All other 

estimates are based on the nonrandomized experiment. 

 
Table 1: Effect of Mathematics Training on Mathematics Scores – estimated using full 

covariate set and pre-imputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

Randomized with covariate adjustment 4.01 (0.35)  

5  5 5 4.10 (0.29) 4.03 (0.51) 

20  5 5 4.11 (0.29) 4.02 (0.45) 

5  10 5 4.11 (0.29) 3.99 (0.48) 

5  5 10 4.08 (0.30)  

 
Table 2: Effect of Mathematics Training on Mathematics Scores – estimated using 

convenient predictors and pre-imputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

Randomized with covariate adjustment 4.01 (0.35)  

5  5 5 4.96 (0.42) 5.02 (0.53) 

20  5 5 4.95 (0.37) 5.01 (0.51) 

5  10 5 4.98 (0.37) 5.02 (0.52) 

5  5 10 5.00 (0.38)  

 
A comparison between Tables 1 and 2, and between Tables 3 and 4, makes it clear that 

using the full set of covariates as eligible predictors in the imputation models produces 

treatment effects that are closer to the gold standard treatment effects estimated from the 

randomized experiment. Within-table comparisons show that variation in the imputation 

parameters (donor maximum, number of AutoImpute iterations, and number of multiple 

imputations) leads to differences in treatment effects that are of much smaller order than 

the differences induced by the choice of eligible covariates in the imputation models, and 

that are insignificant in magnitude given the size of the standard errors.  
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Table 3: Effect of Vocabulary Training on Vocabulary Scores – estimated using full 

covariate set and pre-imputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

Randomized with covariate adjustment 8.25 (0.37)  

5  5 5 8.28 (0.29) 8.30 (0.49) 

20  5 5 8.16 (0.30) 8.24 (0.50) 

5  10 5 8.24 (0.31) 8.27 (0.47) 

5  5 10 8.19 (0.29)  

 
Table 4: Effect of Vocabulary Training on Vocabulary Scores – estimated using 

convenient predictors and pre-imputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

Randomized with covariate adjustment 8.25 (0.37)  

5  5 5 8.77 (0.37) 8.71 (0.50) 

20  5 5 8.79 (0.34) 8.68 (0.48) 

5  10 5 8.72 (0.36) 8.69 (0.48) 

5  5 10 8.74 (0.38)  

 
In all cases, there is a noticeable difference between the standard errors of the effect 

estimates produced using the multiple imputation approach and the bootstrap method. 

While gains in precision due to the averaging over multiple imputations might lead us to 

expect smaller standard errors using this rather than the bootstrap approach, inspection of 

the within- and between-imputation variance components revealed that the ―improper‖ 

nature of the hot-deck imputation routine internal to AutoImpute was the main reason for 

underestimated variances using the multiple imputation approach. The hot-deck 

procedure selected donors without replacement and in a manner designed to equalize the 

number of times each donor was used (to the extent possible). When using semi-

parametric imputation for causal inference and multiple imputation for variance 

estimation, it would be preferable to select donors with replacement and without 

attempting to ensure that each donor is used approximately the same number of times; 

this should lead to better estimates of the between-imputation variance. Alternatively, one 

could adopt an adjustment to the basic hot-deck procedure that makes it ―proper‖ for use 

with multiple imputation, such as the approximate Bayesian bootstrap (Rubin and 

Schenker, 1986). 

 

Tables 5 and 6 are similar to Tables 1 and 3 but show the results of applying AutoImpute 

to the unimputed study data set. No gold standard analogs of the treatment effects were 

estimated based on the unimputed study data set, however the within-table conclusions to 

be drawn from these imputation runs mimic those noted above. In comparing the 

performance of the semi-parametric procedure to impute potential outcomes only versus 

potential outcomes and missing covariate data, there are some differences. It would 

appear that simultaneous imputation of missing covariates and potential outcomes leads 

to slightly larger treatment effect estimates for the mathematics outcome, and multiple 

imputation standard errors that are larger and closer to their bootstrap counterparts. A 

possible explanation for the latter observation may be that the additional number of items 

with missing values combined with the sequential and iterative nature of the imputation 

procedure, led to an increased likelihood of different donor pools for a given student’s 

missing data item across multiple imputations. In other words, the imputation procedure 
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may be closer to a ―proper‖ imputation method as required for the validity of the multiple 

imputation variance estimator.  

 
Table 5: Effect of Mathematics Training on Mathematics Scores – estimated using full 

covariate set and unimputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

5  5 5 4.26 (0.43) 4.13 (0.49) 

20  5 5 4.36 (0.35) 4.13 (0.47) 

5  10 5 4.22 (0.43) 4.16 (0.48) 

5  5 10 4.37 (0.38)  

 
Table 6: Effect of Vocabulary Training on Vocabulary Scores – estimated using full 

covariate set and unimputed study data set 
 

donMax  numIter  nMI  MI ̂  (S.E.) BT ̂  (S.E.) 

5  5 5 8.22 (0.35) 8.20 (0.49) 

20  5 5 8.27 (0.29) 8.18 (0.52) 

5  10 5 8.33 (0.32) 8.21 (0.52) 

5  5 10 8.23 (0.31)  

 
Finally, Table 7 shows a comparison of treatment effects estimated using AutoImpute 

and a selection of different analytic methods (see Section 2.2). A comparison between the 

selection presented here as well as other analytic approaches can be found in Table 1 of 

Shadish, Clark, and Steiner (2008). Excluding the gold standard estimates in the first row, 

all methods were applied to the nonrandomized pre-imputed study data set and the full set 

of baseline covariates. To simplify the presentation, we included effect estimates from the 

imputation approach for only one of the imputation parameter combinations (donMax = 

5, numIter = 5, and nMI = 5). The standard errors shown for the AutoImpute approach are 

those produced using the Shao-Sitter bootstrap method. 

 
Table 7: Comparison of Treatment Effects by Analytic Method – estimated using full 

covariate set and pre-imputed study data set 
 

Design and Analytic 

Method 

Effect of Mathematics Training on 

Mathematics Scores 

Effect of Vocabulary Training on 

Vocabulary Scores 

̂  
% Bias 

Reduction 

S.E. ̂  
% Bias 

Reduction 

S.E. 

Randomized with 

covariate adjustment 

4.01 — .35 8.25 — .37 

Nonrandomized with no 

adjustment 

5.01 0% .55 9.00 0% .51 

Nonrandomized with PS 

stratification  

3.72 71% .57 8.15 86% .60 

Nonrandomized with PS 

weighting  

3.67 66% .71 8.22 96% .66 

Nonrandomized with 

ANCOVA  

3.85 84% .44 8.21 94% .43 

Nonrandomized with 

AutoImpute*  

4.10 91% .51 8.28 96% .49 

 

*donMax = 5, numIter = 5, nMI = 5 
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One measure used to compare the analytic methods is the percentage reduction in the bias 

of the treatment effect estimate, relative to the of bias of the unadjusted estimate obtained 

from the nonrandomized experiment. With respect to this measure, the semi-parametric 

imputation estimator performs as well as (for the vocabulary outcome) and better than 

(for the mathematics outcome) any of the other alternatives shown in Table 7. In terms of 

standard errors, the imputation estimator comes second only to the ANCOVA approach, 

and the same is true when the comparison is based on the root mean-square errors (not 

shown here). These results suggest that further investigation into the use of AutoImpute 

for causal inference may be worthwhile. 

 

Overall, our results are consistent with the findings of Shadish, Clark, and Steiner (2008). 

Namely, that the choice of variables to be used in adjusting the estimate of the effect of 

training on outcomes is more important than the analytic method of adjustment. We also 

conclude that semi-parametric imputation of potential outcomes produces acceptable 

point estimates of treatment effects, at least for the data analyzed in this study. Estimation 

of valid variances using this approach is more of a challenge. It would appear that a 

bootstrap method such as that proposed by Shao and Sitter (1996) may be required to 

compensate for the use of hot-deck imputation. However, AutoImpute offers a highly 

automated, relatively fast and convenient method for causal inference using survey data, 

especially when imputation also is required for regular item nonresponse. 

 

6. Discussion and Further Research 

 
We are encouraged by the results of this investigation into the use of semi-parametric 

imputation for causal inference and anticipate directions for further research. Here we 

used a real-life example but the observational data set did not include survey weights. A 

more realistic approach would be to study the performance of the semi-parametric 

imputation method assuming a complex sample design. To investigate the extent to 

which the findings reported herein generalize to other data sets, we need to study the 

performance of AutoImpute for causal inference using simulated data for which the true 

effects are known. There is also important work to be done in determining the best hot-

deck procedure and variance estimator to use in the causal inference setting. 

 

Acknowledgements 

 
The authors thank Graham Kalton, David Morganstein, and Mike Brick of Westat for 

their support and valuable discussions during the early phases of the research.  

 

References 
 

Brick, J.M., Kalton, G., and Kim, J.K. (2004). Variance estimation with hot deck 

imputation using a model. Survey Methodology, 30, 57–66. 

Chen, J. and Shao, J. (2000). Nearest neighbor imputation for survey data. Journal of 

Official Statistics, 16, 113–141. 

Holland, P.W. (1996). Statistics and causal inference. Journal of the American Statistical 

Association, 81, 945–970. 

Judkins, D., Krenzke, T., Piesse, A., Fan, Z., and Haung, W.C. (2007). Preservation of 

skip patterns and covariate structure through semi-parametric whole questionnaire 

imputation. Proceedings of the Section on Survey Research Methods of the American 

Statistical Association, 3211–3218. 

Section on Survey Research Methods – JSM 2010

1095



Judkins, D., Piesse, A., and Krenzke, T. (2008). Multiple semi-parametric imputation. 

Proceedings of the Section on Survey Research Methods of the American Statistical 

Association, 48–58. 

Krenzke, T. and Judkins, D. (2008). Filling in the blanks: Some guesses are better than 

others: Illustrating the impact of covariate selection when imputing complex survey 

items. CHANCE, Vol. 21, No. 3, 7–13. 

Kim, J.K. and Fuller, W.A. (2004). Inference procedures for hot deck imputation. 

Biometrika, 91, 559–578. 

Kim, J.K. and Rao, J.K.N. (2009). A unified approach to linearization variance estimation 

from survey data after imputation for item nonresponse. Biometrika, 96, 917–932. 

Neyman, J. (1923). On the application of probability theory to agricultural experiments: 

Essays on Principles, Section 9. Translated in Statistical Science, 5, 465–480, 1990. 

Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., and Solenberger, P. (2001). A 

multivariate technique for multiply imputing missing values using a sequence of 

regression models. Survey Methodology, 21, 85–95. 

Rao, J.N.K. and Shao, J. (1992). Jackknife variance estimation with survey data under hot 

deck imputation. Biometrika, 79, 811–822. 

Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and 

nonrandomized studies. Journal of Educational Psychology, 66, 688–701. 

Rubin, D.B. (1978a). Bayesian inference for causal effects: the role of randomization. 

Annals of Statistics, 6, 34–58. 

Rubin, D.B. (1978b). Multiple imputation in sample surveys – a phenomenological 

Bayesian approach to nonresponse. Proceedings of the Section on Survey Research 

Methods of the American Statistical Association, 20–34. 

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley. 

Rubin, D.B. and Schenker, N. (1986). Multiple imputation for interval estimation from 

simple random samples with ignorable non-response. Journal of the American 

Statistical Association, 81, 366–374. 

Särndal, C.E. (1992). Methods for estimating the precision of survey estimates when 

imputation has been used. Survey Methodology, 18, 241–252. 

Shadish, W.R., Clark, M.H., and Steiner, P.M. (2008). Can nonrandom experiments yield 

accurate answers? A randomized experiment comparing random and nonrandom 

assignments. Journal of the American Statistical Association, Vol. 103, No. 484, 

Applications and Case Studies, 1334–1343. 

Shao, J. and Sitter, R. (1996). Bootstrap for imputed survey data. Journal of the American 

Statistical Association, Vol. 91, No. 435, Theory and Methods, 1278–1288. 

Van Buuren, S. and Oudshoorn, C.G.M. (1999). Flexible Multivariate Imputation by 

MICE. Technical report, TNO Prevention and Health, Leiden. 

Section on Survey Research Methods – JSM 2010

1096


