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Abstract 
Two more statistical software packages, MPLUS and WinBUGS, were tested as a 
continuation of a previous study of analysis method/software robustness in the analysis of 
clustered data. We want to evaluate robustness in the context of a randomized complete 
block design, where each “plot” is a small group of children at the same nursery school 
and a series of measurements of each child are made. We constructed a series of super 
populations in which the standard assumptions of hierarchical (mixed effects) linear 
models were violated. The results were compared with HLM, SUDAAN, PROC MIXED 
and a semi-parametrical analysis of variance procedure we tested before.  
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1. Introduction and Background 

 
This work is a continuation of our 2006 study (Fan and Judkins, 2006) in which we 
undertook a simulation to study the robustness of some standard software options for 
covariate control in the context of cluster-randomized trials. We also developed and 
tested a new semi-parametric method which we called semi-parametric ANOVA. 
 
In this study, we continue the line of research by including two more software systems, 
MPLUS and WINBUGS, in the simulation study. We also found that there is a problem 
of potential serial correlation in the program we used before to generate simulated data 
because the new seeds were generated by calling SAS random number generation 
functions. To fix this problem, we changed to a new and improved SAS function for 
random number generation and a method of drawing new seeds from a pre-determined 
sequence of numbers. Another change we made in the current study is to increase the 
variance for treatment effects when researching power.    
 
The application of interest was a randomized experiment with alternate preschool 
instructional paradigms, loosely referred to as curricula. There were four alternate 
curricula and one control curriculum. All five arms were assigned to a recruited sample 
of 120 Even Start schools. The schools were deeply stratified into 24 blocks, each 
containing five schools. Within a block, the five schools were then randomly assigned to 
the five arms. The curricula involved instructional materials, instructional strategies, 
teacher training, teacher observation, and teacher consultation. Within the schools, 
parents of age-eligible children were recruited into the study. Measurements were 
conducted in the spring of 2004, prior to the introduction of the new curricula, and 
repeated at one-year intervals in 2005 and 2006. Measurements involved formal 
assessments of pre-literacy, social competency (teacher observation), parent interviews, 
and video-taping and behaviour-coding of staged parent-child interactive reading and toy-
play sessions to gauge parenting skills. There was considerable turnover in the student-
body each year, but there is some overlap of sample across years, and of course, there is 
considerable organizational and staffing stability. So one set of important covariates 
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involved school-level past performance and child-teacher ratios. Another important set of 
covariates involved parent socio-economic status, native language, and child 
demographics (age, race, sex, and disability status). Native language, in particular, has a 
huge effect on English pre-literacy.  
 
For analysis, we wanted something that was robust to unequal student sample sizes per 
school, school-level nonresponse, deep stratification, heteroscedasticity, non-Gaussian 
errors and interactions. We therefore developed superpopulations that had the features of 
interest, generated samples from them, and tested several alternative analysis procedures 
on them, using type I error rates and statistical power as evaluation criteria.  
 
In section 2, we discuss the superpopulations that we simulated. In section 3, we provide 
more detail on the analysis methods studied. In section 4, we present results. In section 5, 
we give some ideas for further research.  
 

2. Simulated Superpopulations 
 

Given the application, we built a series of superpopulations with an increasing number of 
violations of standard models. All shared a common form of having two child-level 
covariates, one school-level covariate, a random effect at the school level, and student 
level random error. The project-level covariate was built with a structure similar to the 
outcome of interest because the way it will be generated in the application is to take the 
average of students at the school the prior year. All of the superpopulations share a 
common model structure:  
 

ijk i i ijk ij ij ijky X Z u eµ β α θ γ= + + + + + + , 
.ij i ij ij ijZ u X vβ θ= + + +  

 
where:  
 
The indices stand respectively for block (i), treatment (j), child (k);  

ijky  is the outcome variable; 
µ  is the overall mean; 

iβ  is the (fixed) block effect; 
iα  is the treatment effect; 
ijkX is a vector of two child level covariates ( 1X = FamilyIncome, 2X  = 

MothersEducation); 
ijZ is the baseline school-level average of the outcome variable measured on a different 

set of students prior to the intervention; 
iju  is the school level-random effect;  
ijke  is a child level random error; 

.ijX  is a vector of school-level averages of child level covariates;  
ijv  is a normally distributed random error term reflecting the error caused by basing the 

project-level fixed covariate on a small sample from the prior year rather than a long-run 
average; 

iju , ijv  and ijke  are mutually independent.  
 
Because the theory is better developed for balanced designs, we introduced imbalance 
both at the school and the child level. Note that standard multi-level software assumes 
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that all the random errors are normal and homoscedastic. So we developed 
superpopulations that violated those assumptions. Finally, we allowed interactions. We 
simulated a series of superpopulations that violated various combinations of these 
standard assumptions to various degrees while generally keeping the violations within the 
range that we thought might reasonably occur in our application.  
 
Seven different superpopulations with no treatment effect ( 0iα = ) were generated to test 
robustness of type 1 error rates. Superpopulation 1 satisfies most of the standard 
assumptions. The numbering of superpopulations 2 through 7 generally reflects 
increasing severe violations of standard assumptions: 
 
Superpopulation 1: There are 24 blocks with five schools per block and each school 
contains exactly 12 children. There is no school-level nonresponse and the school- and 
child-level random errors are normally distributed. Residual variances are constant with 

( ) 12.81ijvar u =  and ( ) 55.26ijkvar e = . The block effect is very large with. 2i iβ = . ijv is 
normal in all superpopulations with ( ) 6ijvar v = .  
 
Superpopulation 2: Same as superpopulation 1 except that the number of children per 
school is allowed to vary. The number of children per school follows a Poisson 
distribution with mean 12.  
 
Superpopulation 3: Same as Superpopulation 2 except that there are two schools missing 
at random (for a total of 118 schools). The missing schools are from different blocks.  
 
Superpopulation 4: Same as Superpopulation 3 except that the school- and child-level 
random errors have different variances in different blocks: 
 
Block 1 – 6 has iju  and ijke  with variances 3 and 56,  
Block 7 – 12 has iju  and ijke  with variances 6 and 42,  
Block 13 – 18 has iju  and ijke  with variances 9 and 28,  
Block 19 – 24 has iju  and ijke  with variances 12 and 14.  
 
Superpopulation 5: Same as Superpopulation 3 except that the school- and child-level 
random errors have different variances in different treatment groups: 
 
Treatment 1 has iju  and ijke  with variances 3 and 70,  
Treatment 2 has iju  and ijke  with variances 6 and 56,  
Treatment 3 has iju  and ijke  with variances 9 and 42,  
Treatment 4 has iju  and ijke  with variances 12 and 28. 
Control has iju  and ijke  with variances 15 and 14. 
 
Superpopulation 6: Same as Superpopulation 3 except that school- and child-level 
random errors have Gamma distributions. iju  has shape parameter 2α =  and scale 
parameter 0.395β = and ijke  has 3α =  and 0.233β = . Note that in this population, the 
school-level errors are more seriously non-normal than the student-level errors. Both 
skew and kurtosis are stronger for the school-level errors.   
 
Superpopulation 7: Same as Superpopulation 4 except that there are treatment group 
effects for individual blocks but no effect on average. That is, within each single block 

Section on Survey Research Methods – JSM 2010

953



there are significant differences between the treatment groups, but when schools are 
aggregated to the treatment level, these differences average out. 
 
Another three superpopulations with treatment effect were generated to compare type II 
error rates. For each of these superpopulations, all four experimental arms are assumed to 
be equally effective with 2.5iα = . This number was picked to give power in a range 
where we thought we might see the largest differences in power among the techniques. 
 
Superpopulation 8: Model is the same as Superpopulations 4 except that treatment effect 
is added.  
 
Superpopulation 9: Same as Superpopulations 5 except that treatment effect is added.  
 
Superpopulation 10: Same as Superpopulation 6 except that treatment effect is added.  
 
The components of variance in the model for the superpopulations are shown in Table 1. 
Naturally, there positive variance between treatment arms only for superpopulations 8, 9 
and 10. All other variance components are constant across superpopulations. Also note 
that the between-block variance is very large. This was done with the aim of making it 
large enough to matter.  
 

Table 1: Components of Variances 
 

Component Magnitude 
Between block (fixed) 192 
Between arm (fixed) 0 or 1 
Child-level covariates (fixed) 3.4 
School-level covariates (fixed) 18 
School-level random effect (random) 13 
Child level error (random) 55 

 
3. Analysis Methods 

 
The analysis methods/software we studied included HLM (Raudenbush, et al, 2004), SAS 
PROC MIXED (SAS Institute Inc., 2006), SUDAAN (Research Triangle Institute, 2001), 
semi-parametric ANOVA (Fan and Judkins, 2006), WinBUGS and MPLUS as listed in 
Table 2. 
 
For PROC MIXED, we used school as subject, block as fixed effects and the restricted 
maximum likelihood option. An example of the code used is shown below: 
 
proc mixed data=population  method=REML;  
class block schoolid treatment;  
model y=treatment block FamilyIncome MothersEducation Z/ solution ; 
random int/ type = un subject = schoolid;  
run; 
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Table 2: Analysis Methods Tested 
 

Method Analysis Type Software Package 
SUDAAN setup1 GEE SUDAAN 
SUDAAN setup 2 GEE SUDAAN 
SUDAAN setup 3 GEE SUDAAN 
HLM2  Frequentist likelihood HLM 
HLM2 with robust standard error Frequentist likelihood HLM 
MPLUS Frequentist likelihood MPLUS 
PROC MIXED Frequentist likelihood SAS 
Semi-parametric ANOVA Semi-parametric SAS 
WinBUGS Bayesian MCMC WinBUGS  

 
For HLM, we used a 2 level HLM model with student as the first level and school as the 
second level. Indicator variables for four of the five treatments and 23 of the 24 blocks 
were entered as fixed effects in addition to FamilyIncome, MothersEducation, and Z. The 
estimation method was also restricted maximum likelihood. In this study we included 
results for HLM with regular standard error calculation as well as with the robust 
standard error option. More details on the HLM code are given in the appendix in Fan, 
Judkins, 2006. 
 
For SUDAAN, the three options are 
Setup 1: single strata, school as PSU, dummy variables for blocks entered as model 
variables; 
Setup 2: single strata, block as PSU;  
Setup 3: block as strata, school as PSU. 
 
The semi-parametric ANOVA was inspired by Rosenbaum (2002) but has much in 
common with a line of papers mostly by Gary Koch and coauthors (Koch, et al, 1982 and 
1998; Stokes, Davis, and Koch, 2000; Lavange, Durham, and Koch, 2005) that was 
launched by Quade (1967). For details, see section 2 in Fan, Judkins, 2006. 
 
For MPLUS, we use version 5.21 with multi-level add-on. An example of the code used 
is shown below: 
 
TITLE: 2-level fixed effects model to test treatment effect 
 
DATA: FILE IS C:\Project\2010JSM\mplus\LKpop3.dat; 
VARIABLE:  
NAMES ARE y   schoolid   treat1-treat4 block2- block24 
                       faminc mothedu Z; 
USEVARIABLES ARE y school treat1-treat4 block2-block24  
                                    faminc mothedu Z; 
WITHIN     = faminc mothedu block2-block24; 
BETWEEN = treat1-treat4 Z; 
CLUSTER   = schoolid; 
 
ANALYSIS: TYPE = TWOLEVEL; 
MODEL: %WITHIN%          y ON x1 - x3 b2 - b24; 
  %BETWEEN%      y ON r1 (p1) r2 (p2) r3 (p3) r4 (p4) ; 
 
Mplus limit variables name to 8 characters, so family income and mother education were 
coded as faminc and mothedu in the program. The within and between parts of the model 
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correspond to level 1 and level 2 of a conventional multilevel regression model with a 
random intercept, where level1 is the student level and level 2 is the school level. We use 
the default estimator which is maximum likelihood with robust standard errors (p. 229, 
Muthén and Muthén, 1998-2007). The testing is done with a MODEL TEST statement 
using Wald test.  
 
WINBUGS is a freely distributed Bayesian MCMC package developed by a team at the 
Medical research Council Biostatistics Research Unit in Cambridge. For simulation, we 
used WinBUG version 1.4.3. Normal distributions are assumed for both child level 
random error and the school level random effect. To specify the priors for these two 
random terms, we give Gamma (0.001, 0.001) to their precisions, which are the inverse 
of the variances of the normal distributions. For the fixed effects of treatment, block, and 
child and school level covariates, we use a ‘flat’ i.e. uniform prior across the whole real 
line, for each regression (fixed effect) coefficient. For the simulation, we choose a 400 
burn in and 400 following iterations. These numbers were kept small because of the 
limited computing resource and the length of the time needed to run WinBUGS for 1000 
simulations for each of the 10 superpopulations. More details on the code are given in the 
appendix in which there are two programs. The first program is the WinBUGS code for 
setting up the model, and the other program is a R program that perform these tasks: 
reading in the SAS generated simulation data; running the WinBUGS inside of R; 
reading the parameter estimates from WinBUGS back into R; and conducting tests of 
treatment effects. For the contrasts between treatment effects we use Z-tests and for the 
overall treatment effects we use a Wald Chi-square test. 
 

4. Simulation Results 
 
The simulation results are shown in Figures 1 through 4. In each of these, the horizontal 
axis reflects the various superpopulations. Type 1 error rates for the overall treatment 
effect are shown in Figure 1 (for the seven populations with no treatment effect). There is 
a separate curve for each of the nine analysis methods. Figure 2 shows the type-1 error 
simulation results for contrasts. Since the four contrasts do not differ much, the four tests 
were pooled together to be represented by a single line for each analysis method. Power 
for detecting overall treatment effect is shown in Figure 3 for the three populations with 
treatment effects. Similarly, power levels for the contrasts are shown in Figure 4, which 
shows only the average of the four contracts for each method.  
 
For Sudaan, Mixed, HLM (with regular standard error), and Semi-ANOVA, the results 
are similar to the 2006 study. Adding MPLUS, WinBUGS, and HLM with robust 
standard error option, the lines in the figures show interesting groupings that are 
consistent in all four figures.  
 
MPLUS, HLM with standard error option, and SUDAAN 1 are at the top with very large 
type 1 error for overall treatment effect and average treatment contrast effect. They are 
also high on the two plots of power simulations.   
 
The lines for WinBUGS lie lower than the above group and are generally higher than the 
lines of remaining methods in both type I error plots and power simulation plots.  
 
The remaining methods can be loosely grouped as three groups. The higher one is 
SUDAAN 2 and SUDAAN 3, the middle one has MIXED and HLM with regular 
standard error. As we observed before, MIXED and HLM have very similar results. And 
the lowest line is semi-ANOVA.  
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In conclusion, semi-parametric procedure is the most robust in preserving type I error 
rates for every superpopulation but it also has the lowest power among the 9 methods. 
MIXED and HLM with model-based standard errors perform fairly well in robustness, as 
well as having reasonable power performance.  
 
The SUDAAN variants, WinBUGS, MPLUS, and HLM with robust standard error option 
all performed poorly for type I error rates. This makes their sometimes very higher power 
level irrelevant. Overall this result confirms the validity of our recommendation in 2006 
to use either MIXED or HLM for robust covariate control.  
 
One of the most interesting finding is that even when all the standard assumptions are 
met, most of the methods behave very poorly. Only the semi-parametric approach 
provided valid inference although the REML methods with model-based standard errors 
are not much inferior. We do not know the reasons why most of the methods perform so 
poorly but suspect that it has to do with the deep stratification and small sample sizes. 
 

 
 

Figure 1: Type I error simulation: test for overall treatment effect 
 

 
 

Figure 2: Type I error simulation: average of the tests for contrasts 
 

Section on Survey Research Methods – JSM 2010

957



 
 

Figure 3: Power simulation: test for overall treatment effect 
 

 
 

Figure 4: Power simulation: average of the tests for contrasts 
 

5. Further Study 
 

Due to the limitation of time and resources the simulations leaves much to be desired. For 
example, the WinBUGS simulations could have longer burn in and following iterations. 
For MPLUS, we used the default maximum likelihood estimator which proves to perform 
poorly. We actually find a similar problem with full maximum likelihood estimator in 
PROC MIXED in some trial runs. So it will be of interest to try other estimator options 
provided by MPLUS. For the semi-parametric procedure, there are possibilities to 
improve its power by using stratified randomization test on the school-averaged residuals 
which we can explore in future research. 
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Appendix. Program Code for WinBUGS simulation 
 

1. WinBugs Model Code  
 
model { 
#level 1 defintion 
for (i in 1:N){ 
y[i]~dnorm(mu[i],tau) 
 
mu[i]<-mua[i]+mub[i] 
+beta[9]*b2[i]+beta[10]*b3[i]+beta[11]*b4[i]+ 
beta[12]*b5[i]+beta[13]*b6[i]+beta[14]*b7[i]+ 
beta[15]*b8[i]+beta[16]*b9[i]+beta[17]*b10[i] 
 
mua[i]<-beta[1]*cons[i]+beta[2]*x1[i]+beta[3]*x2[i]+ 
                beta[4]*x3[i]+beta[5]*r1[i]+beta[6]*r2[i]+ 
                beta[7]*r3[i]+beta[8]*r4[i]+u2[clus[i]]*cons[i] 
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mub[i]<-beta[18]*b11[i]+beta[19]*b12[i]+ 
                beta[20]*b13[i]+beta[21]*b14[i]+beta[22]*b15[i]+ 
                beta[23]*b16[i]+beta[24]*b17[i]+beta[25]*b18[i]+ 
                beta[26]*b19[i]+beta[27]*b20[i]+beta[28]*b21[i]+ 
                beta[29]*b22[i]+beta[30]*b23[i]+beta[31]*b24[i] 
} 
#school level 
for (j in 1:Nsch){ 
u2[j]~dnorm(0,tau.u2)} 
#Priors for fixed effects 
 
 
for (k in 1:31){beta[k]~dflat()} 
#prior for random terms 
tau~dgamma(0.001,0.001) 
sigma2<-1/tau 
tau.u2~dgamma(0.001,0.001) 
sigma2.u2<-1/tau.u2 
} 
 

2. R code for Reading SAS Generated Data and Run WinBUGS. 
 
library("BRugs") 
library("arm") 
# ztest fuction 
ztest<-function(x) { 
x1<-pnorm(mean(x)/sqrt(var(x)))*2 
if (x1 >1) {x2<-2-x1 
return (x2)} 
if (x1<1) return (x1) 
} 
 
 
#Create BUGSSIM function 
BUGSIM<-function (iter){ 
write.table (iter,"C:/Project/2010JSM/bugs/iter.dat",  
row.names=FALSE, col.names=FALSE)  
#run sas program to create data 
system ('"c:\\program files\\SAS92\\SASFoundation\\9.2\\sas.exe" 
C:\\project\\2010JSM\\BUGS\\pop3_1') 
pop3 <- read.table ("C:/Project/2010JSM/bugs/pop3.dat", header=TRUE) 
 
#number of students 
N <- nrow(pop3) 
#number of schools 
Nsch<-nlevels(factor(pop3$clus)); 
 
#constant intercep 
cons<-rep(1,N) 
x1<-pop3$x1 
x2<-pop3$x2 
x3<-pop3$x3 
r1<-pop3$r1 
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r2<-pop3$r2 
r3<-pop3$r3 
r4<-pop3$r4 
b1<-pop3$b1 
b2<-pop3$b2 
b3<-pop3$b3 
b4<-pop3$b4 
b5<-pop3$b5 
b6<-pop3$b6 
b7<-pop3$b7 
b8<-pop3$b8 
b9<-pop3$b9 
b10<-pop3$b10 
b11<-pop3$b11 
b12<-pop3$b12 
b13<-pop3$b13 
b14<-pop3$b14 
b15<-pop3$b15 
b16<-pop3$b16 
b17<-pop3$b17 
b18<-pop3$b18 
b19<-pop3$b19 
b20<-pop3$b20 
b21<-pop3$b21 
b22<-pop3$b22 
b23<-pop3$b23 
b24<-pop3$b24 
 
y<-pop3$y 
clus<-pop3$clus 
data <- list ("N", "Nsch","y", 
"cons","x1","x2","x3","clus","r1","r2","r3","r4","b2","b3","b4","b5","b6","b7","b8","b9",
"b10" 
,"b11","b12","b13","b14","b15","b16","b17","b18","b19","b20","b21","b22","b23","b24"
) 
inits <- function() {list(beta=rep(0.1,31), tau=1, tau.u2=1, u2=rep(0.1, Nsch))} 
parameters <- c("beta") 
pop3.sim <- bugs (data, inits=inits, parameters, "C:/Project/2010JSM/bugs/pop3.bug",  
n.chains=2, n.iter=800, DIC=FALSE) 
attach.bugs (pop3.sim) 
} 
 
#run simulation N times, save in p and write out to pv.dat 
N<-1000 
p<-matrix(0,N,6) 
for (iter in 1:N){ 
BUGSIM(iter) 
 
#p-value for X1 using Z-test 
T4vsC<-beta[,5]+beta[,6]+beta[,7]+beta[,8] 
T2vs2<-beta[,5]+beta[,6]-beta[,7]-beta[,8] 
T2vsC<-beta[,5]+beta[,6] 
T1vsC<-beta[,5] 
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#Wald chisq test for overall trt effect df=4 
#S=(L'beta)'(L'sigmaL)^(-1)(L'beta),  M%*%t(M) 
par<-cbind(mean(beta[,5]),mean(beta[,6]),mean(beta[,7]),mean(beta[,8]))  
V1<-cov(cbind(beta[,5],beta[,6],beta[,7],beta[,8]) ) 
chi<-par%*%solve(V1)%*%t(par) 
 
p[iter,1]<-iter 
p[iter,2]<-ztest(T4vsC) 
p[iter,3]<-ztest(T2vs2) 
p[iter,4]<-ztest(T2vsC) 
p[iter,5]<-ztest(T1vsC) 
p[iter,6]<-1-pchisq(chi,4) 
 
write.table(p,"C:/Project/2010JSM/output/BUGpv_1.dat",row.names=FALSE, 
col.names=FALSE)  
} 
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