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1. Introduction 

This paper describes a solution to survey sampling estimation problems that result 

from common sample design practices and from inadequate sample design control. 

These problems tend to magnify the variance of probability expansion estimators 

based on those designs – in particular, the Combined Ratio Estimator. Examples occur 

in flow sampling where a sampling frame and its design parameters are usually not 

available until after the universe has been sampled. Even when sample design 

parameters are available in timely fashion, generally accepted sample design practices 

can also cause unnecessarily large sampling error in the design based Combined Ratio 

Estimator.  For these reasons, efficient design based strategies are a serious concern.   

For some populations, the population members (or units) are composed of smaller 

entities called atoms and for many of these populations, Pre-sampling inference flows 

from the randomized assignment of atoms to the sample/population units. This 

randomized selection of a unit`s atoms is called Pre-sampling and regression 

population models follow from this randomized selection.  The models imposed by 

Pre-sampling provide Best Linear Unbiased Estimators (BLUE) for the study variable 

population totals.  Following common survey sampling terminology, `sampling`, is 

the random selection of sample units from the population of units (each constructed by 

Pre-sampling). 

The foundation for the model and the BLUE is a deductive consequence of the Pre-

sampling design rather than an inductive consequence of potentially fickle, anomalous 

or dated historical sample data that is generally used to hypothesize models and derive 

BLUEs.  Estimators based on models imposed on sample units by Pre-sampling, 

combine the comforting impartiality of randomization with the inferential power of 

model based BLUEs that possess attributes detailed in the Gauss-Markov Theorem as 

summarized in Graybill (1961) – Consistent, Efficient, Unbiased, Sufficient, 

Complete, and Minimum Variance Unbiased under Normality.  

The Pre-sampling BLUE was developed to provide an alternative to the Combined 

Ratio Estimator (CRE) when design control is difficult due to physical, financial, and 

administrative constraints.  Pre-sampling is a useful addition to probability sampling 

theory. An addition that combines the advantages of design based inference and those 

of model based inference while eliminating their major shortcomings. 

An application of this methodology is found in two other papers, Woodruff (2007, 

2008). In these papers, the sample and population units consist of random samples of 

atoms where the atoms within a unit can be described as simple random samples 

without replacement (SRSWOR) from all the atoms in the population or from a 

stratum of that population. Each of these atoms have data for all population study 

variables for which population totals are to be estimated and a unit’s values for these 

study variables is the sum over the unit’s atoms of these same study variables. The 

2009 paper extends the theory in those two papers from univariate data to vector 

valued data but is restricted in application to situations where the number of atom 
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types is equal to the number of auxiliary variables.  This paper extends the 2009 paper 

to situations where the number of atom types differs from the number of auxiliary 

variables.  This extension permits general applicability to most survey sampling 

inference problems where population units can be described as random samples of 

atoms which make up the population. 

Numerous examples of such populations are encountered in practice: business surveys 

where business establishments are the units and an establishment`s employees are the 

atoms, mail surveys where mail containers are the units and the mail pieces within a 

container are its atoms, pollution studies where containers of water drawn from rivers 

and streams are the units and the particulate within a container are its atoms.  Other 

examples are: households of people, agricultural fields of plants, factory production of 

widgets, and so on.   

The study variables attached to each population and sample unit are the sums over 

each unit`s atoms of the same study variables attached to each atom. Let the atoms in 

the population be of m distinct types labeled with i=1,2, ……m.  Let      denote the 

vector of study variables attached to the     atom of the     atom type in the     unit 

(population or sample) then the vector of study variables attached to unit k is    

       
   
   

 
    where     is the number of type i atoms in unit k.     

An example for m=1 is found in Woodruff (2006, 2007,2008) where containers (of 

mail pieces) are sampled and used to measure mail volumes (total kilograms and 

pieces). A mail container is a sample unit and the mail pieces it contains are its atoms. 

The container (unit) study variables are its piece count and the total of its piece 

weights. Within tightly defined categories of mail, it is entirely appropriate to describe 

the pieces within a container as a simple random sample without replacement 

(SRSWOR) from all the mail pieces within the mail category being sampled.   

In Section 2, a population model is deduced from Pre-sampling random selection.  

This structure models several auxiliary variables (study variables for which 

population/strata totals are known), several target variables (study variables for which 

estimates of their population/strata totals are needed), and several atom types.  Section 

3 describes simulation studies that compare the Combined Ratio Estimator (CRE), 

Cochran (1977) with the Pre-sampling BLUE under repeated sampling from stratified 

cluster sampling designs.  

When the number of atom types is equal to the number of auxiliary variables, Pre-

sampling usually imposes a unique model on sample data and does so by deliberate 

designed randomization eliminating concerns over model fit or failure. The BLUE 

derived from this model avoids sample design inefficiencies that can be a 

consequence of common operational and administrative constraints.  This BLUE 

combines advantages of design based inference (randomization and impartiality) and 

those of model based inference (Gauss-Markov properties) while eliminating their 

main shortcomings (inefficient sample design and potential model failure).   

Woodruff  (2009) required that the number of atoms types be equal to the number of 

auxiliary variables. This paper finds that little efficiency is lost when they are unequal 

and a generalized inverse is required.  Use of a generalized inverse forces a loss of 

complete model specificity and a bias that is estimable and that can be substantially 

reduced.  The result is an inference strategy that depends on both the sampling 

Section on Survey Research Methods – JSM 2010

792



distribution and the Pre-sampling distribution.  This strategy produces Pre-sampling 

BLUEs adjusted for incomplete model bias that possess MSEs which are much 

smaller than the MSE of design based alternatives, in particular the CRE. These MSEs 

for estimators in this paper are all evaluated with respect to repeated sampling under a 

stratified cluster sample design. 

2. Derivation of Estimators 

Sample selection and pre-sample selection in each stratum is independent of sample 

selection and pre-sample selection in all other strata. The BLUE for the population 

target totals is the sum of the independent strata target BLUEs. To minimize notation, 

the following derivation is for the BLUE of target totals in a single stratum and a 

stratum subscript is unnecessary.  Population estimates are the sum of the strata 

estimates. 

2.1 Models Imposed by Simple Random Pre-Sampling and the BLUE Derivation 

The atoms in a sample unit are a random selection from all the atoms in the population 

or stratum thereof and are sampled without regard to atom type.     (a random 

variable) is the number of type i atoms in sample unit k. The population size in atoms 

is large enough to be modeled as infinite and thus finite population considerations 

have negligible impact and are ignored in what follows.      

     is the column vector of study variables (auxiliary and target variables) attached to 

the     atom of type i in unit k for k=1,2,……r  where r is the sample size in units for 

the SRSWOR of units in the stratum under consideration. Let         =    for all k 

and j and let the covariance matrix of the components of      be    for all k and j or 

               for i=1,2,…,m.  [Define:                 to mean         =    and its 

covariance matrix is   .] The unit k study variable vector is           
   
   

 
     and 

for all ordered triples such that (k,i,j)              ,             .  This is a 

consequence of the assumption that the population size in atoms is large enough to be 

approximated as infinite and the sample of atoms in a unit is an SRSWOR. 

If U denotes the universe of population units, the structure described above may be 

easier to understand and follow if you think of a sample unit as a container of water 

drawn from a stream and its atoms as particulate or bacteria of which there are m 

distinct types, each type with the same study variables which for different types may 

be distributed differently. Given that these atoms enter the stream some distance up-

flow, they will be well mixed and it is appropriate to think of the atoms within a 

sampled container as an SRSWOR from all the atoms in the stream. Generally, the 

atom content in the stream will vary over time so time may be a stratification variable.  

For example, a population stratum of atoms may be all atoms in the stream flowing 

past a point during a specific time interval. 

By the definitions above,             
 
     and the covariance matrix of    is    = 

    
 
     .   

Now let the vector of study variables for unit k be partitioned into two sub-vectors, the 

first is a vector of v auxiliary variables and the second is a vector of l target variables 
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so that      = 
    
 

    
      where     

  is the v-vector of auxiliary variables and     
 is the 

l-vector of target variables.  Then 

         
   
   

 
    =    

    
 

    
  

   
   

 
    =  

      
    

   
 
   

      
    

   
 
   

  
    
 

 
  
  
   and  

      =     
 
    

  
 

  
    where   

  =       
      k and j and similarly for   

 .  Letting  

    
       
       

  , where     is the     covariance matrix of each     
  for all k 

and j           is the     matrix of covariances between the components of     
  and 

    
   etc. and an upper prime denotes transpose,           

 .   Then 

                
 
    

       
       

   
    
 

  
       
       

      (2.1.1) 

Let         
      

    , the matrix whose columns are the    
             

and similarly        
      

      then 

       
  
  
  

   
 

   
  or       

  
  
  

   
 

   
        where          .  Letting 

    

   
 

   
     ,     be the first v components of    , and     be the last l 

components of    then: 

    
  
  
       where     

   
   

         for k=1,2, …… r          (2.1.3) 

   is     and    is    . 

The model given by (2.1.3) above can be transformed into one in which the target 

variables are matrix-proportional to the auxiliary variables as follows. 

By definition,   =    +      and can be rewritten as:      
          =   

    

-   
     where   

  is a generalized inverse of   .  When    is nonsingular (v=m), 

then   
 =  

  .   There are many different choices of   
  that satisfy    

  
          .  In Section 2.2 below, a particular version (the s-inverse) is defined 

and used throughout the simulation studies and applications that follow.   

   =   
    +    

    where    
  = -   

       and  

   
        

       
             (2.1.4)   

Thus from (2.1.3) and substituting for   ,           
       

       = 

    
          

      .   

Let B     
          (2.1.5)   
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then               for k=1,2,……..,r.   (2.1.6) 

Where             
         ,      =0,  and from 2.1.1, 2.1.4, 2.1.5, and 2.1.6 

the covariance matrix of      is  

     =       
              

                         (2.1.7) 

Let B        , an     matrix  and let the transpose of its     row be     

 

   
   
 

   

                 .  Then (2.1.6) can be written as: 

     
  
 

 
  
 

         for k=1,2,……..,r      (2.1.8) 

            
   

  
 
  

             
         where     

 

 
 

  
  
 

    
   

 
 

 (2.1.9) 

for k=1,2,……..,r  where   is the     identity matrix and   denotes Kronecker 

product. The Kronecker product of two matrices is defined as the matrix result of 

multiplying each component of the first matrix by the second matrix.  

     

Stacking the        
  from (2.1.9) into a column vector, the linear relationship 

summarizing all the sample data for k=1, 2, …,r is:  

 

 
 

  
  
 

    
   

 
 
  

 

  
 

    
 

    
 

 
      

 

    
  

  
 
        where   is the     identity matrix,  and   is the rl 

random column vector  
  
 
  

  with expectation of 0 and its covariance matrix is the 

block diagonal matrix of the         
 , all off diagonal blocks are zero matrices.    The 

BLUE (Rao 1973) for   is:  

    = 

 

  
 

   
   
 

     
    

  
 

               
       

   
    

  
          

    
 
    ,         (2.1.10) 

Substituting estimates for    ,   ,     ,      and      , into    ,    can be 

approximated directly from the atom level sample data. Then the BLUE for the vector 

of target variable population totals and its model covariance matrix are: 
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  =        

               (2.1.11) 

and  Var(     )=       
             

       
   

    
  
       

                       

where            
 
    , is the known vector of population (or stratum) auxiliary 

variable totals, N is the number of population (or stratum) units, and   is the     

identity matrix. Note that            is not the repeated sampling variance which is 

the measure for evaluating sampling and estimation strategies in this paper. The 

repeated sampling variance is generally a relatively small component of             , 
Woodruff (2009). 

2.2 Bias Correction to the Pre-Sampling BLUE under an Incomplete Model 

The sampling distribution can be used to estimate the bias due to incomplete model 

specificity      and singular   ),   This alleviates some of the affects of 

incomplete model fit due to fewer auxiliary variables than data types. The following 

theorem, the proof of which is immediate, makes it easier to analyze bias in      
  due 

to lessened model specificity in the general case (singular    ).   

Theorem 2.2:  If   is a nonsingular matrix and is partitioned vertically as follows, 

   
  
  
  where    is has n rows and             where and    has n columns 

then    is a generalized inverse of    .  

Call this    an s-inverse of   .  The s-inverse is dependent on   .  The mean matrix 

   can easily be expanded to include non-auxiliary target variables until it is non-

singular, its inverse available, and Theorem 2.2 applied to find an s-inverse for the 

mean matrix of actual auxiliary variables.  

In case of a singular     there will generally be some bias in      
 .  Let this bias of  

     
  for estimating the target variable totals be H.  Then H =        

       = 

         
            from (2.1.11). 

Substituting the Horwitz-Thompson estimates for      and      into this expression, 

define    as:           
  
 

  

 
        

  

  

 
    =  

      
        

  

 
    .   

Then        = H where this expectation is with respect to both sampling and Pre-

sampling distributions.    

Let       
   =      

  -    ,       (2.2.1) 

then        
          .      

     
   is the bias corrected Pre-sampling BLUE (under the incomplete model with s-

inverse). 

     
   is the estimator to be studied in the simulation studies in the next section that 

relies on both sampling and Pre-sampling distributions.  It avoids pitfalls in stratified 

cluster designs that enlarge sampling error. It relies on only the local sample design 

within each stratum (a simple random cluster sample that avoids variance magnifying  

Section on Survey Research Methods – JSM 2010

796



design complexities encountered when stratum estimates are combined across strata as 

done in the CRE).  

The analysis in Section 3 compares the generalized Pre-sampling BLUE from (2.1.11) 

under a singular    (and requiring a generalized inverse of   ) to the Pre-sampling 

BLUE with additional information (an additional auxiliary variable, and row in    

that makes it nonsingular and the model unique and totally specified given this 

additional information).   

Theorem 2.2 facilitates comparison of these two Pre-sampling estimators.  In 

particular, it expresses the bias of the Pre-sampling BLUE under a non-singular    as 

the expected value of an expression that can be approximated and its expected value 

estimated.  The s-inverse from this theorem is used in all that follows in this paper.  

This s-inverse gives Pre-sampling BLUEs with expectations and variances that are 

very similar to the BLUEs derived with the Moore-Penrose generalized inverse.  

The covariance matrices needed in (2.2.1) are linear combinations of the atom 

covariance matrices,                  
 .  These can be estimated from the many atoms 

in relatively few sample units using the standard variance estimate, the MLE under 

Normal Theory, based on hundreds to thousands of atoms. This is described in the 

next section for a stratified cluster sample design and 5 study variables (two auxiliary 

variables and three target variables).  

Recall that in case of more than one stratum the derivations in Sections: 2.1 and 2.2 

for       
    are for a single stratum. Summing these      

   over the strata is the estimator 

for the population total of the target variables in a population with multiple strata. 

2.3 Special Cases  

In case the stratum totals for the components of    in (2.1.3) are known for all k, the 

derivation for a BLUE is immediately available following the above procedure except 

that   
  from (2.1.2) is no longer needed, and the transformation given by (2.1.7) is 

unnecessary.  The equation used in place of (2.1.8) is:              where the 

BLUE for    is used to derive the BLUE for all target variables totals paralleling the 

procedure used above to find the BLUE for B and the BLUE for the target variable 

totals. This BLUE uses sample and population unit counts only, paralleling the 

Horvitz-Thompson Estimator and will be evaluated in a later paper.   

3. Pre-sampling BLUE Compared to the Combined Ratio Estimator - A 

Simulation Study 

Section 2 derives the versions of the Pre-sampling model based BLUEs for a single 

stratum.  The population total estimates from these three stratum estimators is the sum 

over the strata of the individual stratum total estimates.  The notation for this sum in 

this section is the same as the stratum level notation.  Hopefully this notational 

simplification will cause little confusion.    

The following study compares the Combined Ratio Estimator (CRE) for a stratified 

population to the three Pre-sampling model based estimators: 

1) The bias adjusted BLUE under incomplete model,      
   from (2.2.1) summed over 

the strata,  
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2) The BLUE under incomplete model,       
  from (2.1.11), without bias adjustment, 

summed over the strata, and using a single auxiliary variable with two atom types,  

3) The BLUE under complete model,      
   from (2.1.11), summed over the strata and 

using two auxiliary variables and two atom types where    is nonsingular.  

The Pre-sampling BLUE in 3) is included for comparison with      
   &      

  and helps 

quantify the effect of incomplete auxiliary data (one auxiliary variable) compared to 

complete auxiliary data (same number of auxiliary variables as atom types).    

There are five study variables consisting of two auxiliary variables and three target 

variables. Analysis of the estimators is done with respect to repeated sampling under a 

stratified cluster sample design using 1000 replications of sampling and estimation to 

produce 1000 independent estimates for the three target variable population totals. 

These 1000 replicate estimates are used to estimate mean, variance, and mean squared 

error (MSE) for      
  ,       

   ,       
 , and CRE. The results are similar to those in 

Woodruff (2007, 2008, 2009) , demonstrate the effects inefficient sample design on 

the probability based Combined Ratio Estimator, and indicate that the general 

application (fewer auxiliary variables than atom types) of Pre-sampling inference 

suffers relatively little additional sampling error in face of this data deficiency (   

singular and the attendant lack of total model specificity).  

The populations studied below have F strata (F 50) where    denotes the set of 

universe units in stratum f and     for f=1, 2, 3, …….F denotes the number of 

universe units in   . Each unit in    is itself a simple random pre-sample of atoms 

from all the atoms making up units in   . The units in each stratum are partitioned 

into first stage clusters. Let    be the set of clusters in    and      40 be the number 

of clusters in   . Let    be an SRSWOR of size    from    . Let     be the set of 

second stage universe units in cluster d of stratum f for d=1,2,3,….,   . Let     be the 

number of universe units in          
  
        .  Let      be an SRSWOR of size 

    selected from the universe units in    .  Both    and     are roughly 4 for all f 

and d in the simulations below.   

Let       
    
    

  be the vector of study variables attached to the      unit in     

(Note that Y with 3 subscripts in this section is a cluster-unit breakout of the single 

subscript, k, used in Section 2 without the stratum f notation).  Let      be the 

probability of selection of the     unit in    . Then      
  

  

   

   
 for a k in    . Let 

    
  be the vector of study variables for the     sample unit from    .  The Horwitz-

Thompson Estimator (probability expansion) for the stratum total of the vectors 

                     in    is      
   

   
     

 

    
    
 

         .  The 

auxiliary variable totals in stratum f are known and denoted,          
   
   

  
   , 

then           (expectation under repeated sampling). Let      
 
    and 

similarly for Y and T. The first auxiliary variable in      is used for ratio adjustment 

in the CRE,     
  

   
 where     is the first component of    and      is the first 
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component of     .    is an     vector of ratios of target variable totals to the first 

auxiliary variable total. Four estimators for each of the three target variable totals are 

compared in the tables and graphs below.      is the CRE for the vector of target 

variable totals,       is the first component of A, and 

        
 

     
 
   

    
 
           (3.1) 

the Combined Ratio Estimator (CRE) for the population total of the vector of target 

variables.   

For many populations, the variance of the CRE is substantially governed by (an 

increasing function of) population parameters, Q and        
   (i denotes target 

variable here, rather than atom type) defined next.   

Q =  
 

 
 

 

      

 
             

   
    and       

 

  
    
  
   .   

The      are defined as     
 

 
          

  
    for each target variable i where     is 

the    component of    and      
 

 
    
 
   .   

As was shown in Woodruff  (2007, 2008,2010), the sampling error of a combined 

ratio Horwitz-Thompson estimator (CRE) for the     target total increases with Q and 

   for populations where study variable totals are roughly proportional to unit counts.   

Each of the populations has different Q and    for i=1,2,3, and each population has 

several hundred thousand units spread over 50 strata. Each unit is generated with two 

types of atoms until a randomly determined size threshold is reached (as measured by 

the unit’s total for the first auxiliary variable,    ). All study variables are greater than 

or equal to zero. This process yields units that are roughly similar in size as measured 

by its    total (the calibration variable used by the CRE). This process models the way 

mail containers are filled or water quality tested where the size of a unit is determined 

by the limits (weight) of what can easily be carried or handled by an individual. The 

distribution of atom types per unit is also random, modeling the occurrence of 

particulate type that would be contained in a water sample taken from a bucket dipped 

into a stream. For each stratum, the same model for constructing the units is applied 

with different models in different strata.  Cluster sizes (in numbers of units) are 

randomly determined for each stratum and the clusters within a stratum can be 

described as SRSWORs from all the stratum`s units.   

The covariance matrix used in the BLUE is estimated from sample data collected at 

the atom level from 5 sample units in each stratum. Although there are a total of about 

16 sample units per stratum, only a subset of 5 is used for parameter estimation. This 

follows proposed applications where only atom totals for each sample unit are 

necessary for most sample members, avoiding the expense of enumerating atom level 

data from all sample units.   

The covariance matrix for the vector of study variables,     
 ,  (auxiliary variables and 

target variables) for the     sample unit in     is                 
 
    

         
         

   

=      
  
       . Note that this is similar to notation in part 2 except that a stratum 
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subscript is necessarily added.  Let the set of type i atoms in these 5 sample units in 

stratum f be    .      is estimated with: 

           
 
         where      = MLE under normality from the atom vectors 

           
 =   

    
 

    
   

     

. Let      be the number of atoms in     .      = 

 

     
      

 

   
       

    where     =     
   
       

  and     =      
   
    and both 

these sums are over elements of    .  

The matrices     and     are stratum f versions of    and   , consisting of study 

variable means by atom type and are estimated from the atoms in     
 
   . If      is 

the         element of     (mean of     target variable for type i atoms in stratum f) 

then       is estimated with       = 
 

   
      
   
    where        is the value of the     

target variable of type i for the     atom in    .  The     are estimated similarly. This 

provides the estimates,      and     , for     and     in (2.1.5).              
   

where     
  is the s-inverse defined in Theorem 2.2.  This     is substituted for B in 

(2.1.7) to estimate     . This estimate is denoted         and used in ( 2.1.10 ) to 

compute the BLUE when there are two atom types and one auxiliary variable.  

There are 4 simulation studies summarized in the tables below for a variety of values 

for root Q and regression coefficient variability measures,           .    These 4 

were selected from about 60 other simulated populations and generally illustrate the 

relative magnitudes of the MSEs of the four estimators for the 60 populations.  The 

four estimators studied in the tables are: 

BLUE, Complete 

Model, two 

auxiliary variables 

& two atom types 

(2.1.11) 

BLUE, Generalized 

Inverse with HT 

bias correction, one 

auxiliary variable & 

two atom types 

(2.2.1) 

BLUE, Generalized 

Inverse w/o HT 

bias correction, one 

auxiliary variable & 

two atom types 

(2.1.11) 

Combined Ratio 

Estimator (3.1) 

 

     
   

 

     
   

 

     
  

 

    

 

The Squared Bias, Variance, and Mean Squared Error of these estimators are 

tabulated below for each of the three target variable estimates.  Below each table title 

(Simulation Results 1 through 4) are found the population parameters (Q,    ,   ,     
for the study population.  As these four parameters increase in size, the differences 

between the MSE of the CRE and the MSEs of the three Pre-sampling BLUEs 

increase.  

It appears that incomplete auxiliary variable data (fewer auxiliary variables than atom 

types) is not a serious obstacle to Pre-sampling inference when the HT bias 

adjustment is subtracted from      
  to yield      

  .       
   achieves nearly as much MSE 

reduction compared to the Combined Ratio Estimator as achieved with complete 
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auxiliary data through      
   , included as a benchmark to measure the penalty for 

incomplete auxiliary data model. 

Across stratum calibration, a defining feature of  the Combined Ratio Estimator, 

magnifies its variance when the stratum ratios of target to auxiliary variable vary 

widely (large values of the (    ,   ,    ).  If the separate ratio estimator were used in 

these simulations, the differences between the MSEs of this estimator and the Pre-

sampling estimators would be greatly reduced.   The Combined Ratio Estimator is the 

basis for comparison because it seems to be the standard across many sample survey 

applications.    

     
  tends to be biased due to incomplete model specificity. The bias adjustment,   , 

through Horwitz-Thompson estimation of the residual is included in      
   and largely 

corrects for this bias.        
   achieves an MSE that is nearly as small as the complete 

model BLUE,      
  .  All three of these estimators have much smaller MSE than the 

Combined Ratio Estimator,    .   

The bias corrected incomplete data BLUE,      
  , is the sum of the incomplete data 

BLUE,      
 , and -   .  Since these two terms are nearly uncorrelated, this implies that 

the variance of      
    is roughly the sum of the variances of these two terms and 

therefore generally greater than the variance of      
 . This is exhibited in all the tables 

above, Simulation Results 1 through Simulation Results 4.  The squared bias 

reduction resulting from the HT bias correction term is greater than this increase in 

variance with a net result that      
   has an MSE smaller than the MSE of      

 .   Thus 

a singular    and lack of complete model specificity results in relatively little 

additional MSE compared to a complete model BLUE.   

Simulation Results 1  (Data in Trilions for Universe 'apr11') 

   = 194      = .36       =.57       = .47  

                                  

Estimator                        Bias squared         Variance             MSE  

 

---------------------------------- variable=t1 useable=988 -------------------- 

BLUE Complete Model      
              25                   421               446  

BLUE Gen Inverse with HT      
          5                   933               938 

BLUE Gen Inverse w/o HT      
        391                   767             1,158  

Combined Ratio Est  CRE             1                15,039            15,040  

                                                                                                               

---------------------------------- variable=t2 useable=988 -------------------- 

BLUE Complete Model      
              34                    564               598  

BLUE Gen Inverse with HT      
          3                  1,100             1,103  

BLUE Gen Inverse w/o HT      
        487                    907             1,394 

Combined Ratio Est  CRE            19                 20,709            20,728  

                                                                                                             

---------------------------------- variable=t3 useable=988 -------------------- 

BLUE Complete Model      
              48                    611               659  

BLUE Gen Inverse with HT      
          3                  1,278             1,281  

BLUE Gen Inverse w/o HT      
        610                  1,052             1,662  

Combined Ratio Est   CRE           23                 20,425            20,448  
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Simulation Results 2 (Data in Trilions for Universe 'apr4') 

   = 202      = 3.9       =3.46       = 8.87 

Estimator                       Bias squared          Variance            MSE  

 

------------------------------- variable=t1 useable=998 ---------------------- 

BLUE Complete Model      
              810                11,170           11,980 

BLUE Gen Inverse with HT      
          10                15,885           15,895 

BLUE Gen Inverse w/o HT      
       2,595                16,771           19,366  

Combined Ratio Est  CRE              57             1,004,821        1,004,878  

                                                                                                               

------------------------------ variable=t2 useable=998 ------------------------ 

BLUE Complete Model      
            1,405                16,278           17,683  

BLUE Gen Inverse with HT      
           7                24,990           24,997  

BLUE Gen Inverse w/o HT      
       3,848                41,115           44,963  

Combined Ratio Est  CRE             129             1,365,217        1,365,346  

                                                                                                               

------------------------------ variable=t3 useable=998 ------------------------ 

BLUE Complete Model      
            1,642                28,771           30,413  

BLUE Gen Inverse with HT      
           8                36,249           36,257  

BLUE Gen Inverse w/o HT      
       4,774                35,938           40,712  

Combined Ratio Est  CRE             291             1,636,229        1,636,520 

 

Simulation Results 3 (Data in Billions for Universe 'mar23') 

   = 69      = .11       = .15       =.20 
 

                                                                                 

Estimator                     Bias squared            Variance              MSE  

                                                                                                               

------------------------------- variable=t1 useable=995 -----------------------

- 

BLUE Complete Model      
              27                  382                409  

BLUE Gen Inverse with HT      
          2                  910                912  

BLUE Gen Inverse w/o HT      
        300                  844              1,144  

Combined Ratio Est  CRE             17                6,137              6,154  

                                                                                                               

------------------------------ variable=t2 useable=995 ------------------------ 

BLUE Complete Model      
             128                  809                936  

BLUE Gen Inverse with HT       
         0                1,496              1,496  

BLUE Gen Inverse w/o HT      
        623                1,454              2,077  

Combined Ratio Est CRE              25                7,900              7,917  

                                                                                                               

------------------------------ variable=t3 useable=995 ------------------------ 

BLUE Complete Model      
           1,011                2,026              3,037  

BLUE Gen Inverse with HT      
          0                2,165              2,165  

BLUE Gen Inverse w/o HT      
      1,179                2,107              3,286  

Combined Ratio Est  CRE             36               10,666             10,702  
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Simulation Results 6 (Data in Billions for Universe 'mar3') 

   = 71      = .23       = .40       =.47 
 

 Estimator               Bias squared        Variance          MSE 

                                                                                

----------------------------- variable=t1 useable=996 -------------------------

-- 

BLUE Complete Model      
            73                3,210            3,283  

BLUE Gen Inverse with HT      
        1                7,286            7,287  

BLUE Gen Inverse w/o HT      
      608                6,816            7,425  

Combined Ratio Est  CRE          189              183,106          183,112  

                                                                                                             

---------------------------- variable=t2 useable=996 --------------------------

- 

BLUE Complete Model      
           217                7,308             7,526  

BLUE Gen Inverse with HT      
       14               12,811            12,825  

BLUE Gen Inverse w/o HT      
    1,092               12,001            13,093  

Combined Ratio Est  CRE          246              375,222           375,091  

                                                                                                               

 --------------------------- variable=t3 useable=996 -------------------------- 

BLUE Complete Model      
           406                9,944            10,350  

BLUE Gen Inverse with HT      
        3               15,292            15,295  

BLUE Gen Inverse w/o HT      
    1,441               14,622            16,063  

Combined Ratio Est  CRE           10              465,033           464,576  

 

4. Conclusions 

This continues the development of a probability based methodology called Pre-

sampling that imposes a model on sample data and that avoids onerous design effects 

often encountered in design based inference. Pre-sampling is based on randomized 

construction of sample units (as opposed to their randomized selection in design based 

inference). This methodology provides a Best Linear Unbiased Estimator from a 

model deduced from the Pre-sampling design.  Pre-sampling inference largely 

eliminates questions of model fit or failure.  Comparisons in Section 3 between Pre-

sampling estimates and the Combined Ratio Estimator under a stratified cluster design 

highlight the potential for extreme design effects that can occur with the Combined 

Ratio Estimator.  These design effects result from inadequate sample control, common 

sample design practice, and can be quite large.   

When the Auxiliary Mean Matrix (   in Section 2) is nonsingular, the model is 

complete and totally specified by the Pre-sampling design.  This case was examined in 

detail in Woodruff (2009).  This paper generalizes these 2009 results to the case where 

   is singular and the model is consequently incomplete (not uniquely specified).  In 

this general case, stratum residual adjustments using probabilities of selection, 

alleviate the worst effects of an incomplete model and BLUEs based on the 

incomplete model. The residual adjustment,   ,  included in      
  , provides reductions 

in mean squared error (MSE) similar to those expected in case of a completely 

specified model. This can be observed in the tables in Section 3 where the first three 

rows of MSE estimates for each target variable total (one for the three versions of the 

BLUE under complete and incomplete data) are similar and all three are much smaller 

than the fourth row (the MSE of the Combined Ratio Estimator).   
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It appears that the generalized methodology developed here using generalized inverse 

matrices can be usefully applied to a wide variety of problems where sample control is 

problematic or where stratum and/or cluster parameters will generate unnecessarily 

large sampling error regardless of sample control.  There seems to be relatively few 

applied sampling problems where some type of atom structure within sample and 

population units does not obtain.  Some examples of these Sampling/Pre-sampling 

problems for estimating population totals with a unit/atom structure are listed in the 

following table.  Within carefully designed strata, a unit’s atom sample can be 

appropriately modeled as a simple random sampling without replacement from all the 

atoms in the stratum or population. 

Some Examples of Populations with Atom Structure 

Populations/Programs Units Atoms and Atom 

Types (by) 

Household Surveys Households Household Occupants 

(by age )  

Business Establishment 

Surveys 

Business Establishments Employees (by 

occupation) 

Mail Surveys Bags, Trays, or Tubs of 

mail pieces 

Mail pieces (by shape or 

category) 

Bioassay of a Species  Salmon (any other 

species) 

Parasites (by type) 

Agricultural Inspection Containers of fruit Pieces of fruit (by type) 

Factory Production/Quality 

Control 

Establishments Widgets (by type) 

produced each day, 

week, or month. 

Agricultural Production Fields or farms Plants (by Type) 

 

Pre-sampling inference changes the focus of finite population sampling from 

randomized sample unit selection to randomized sample unit construction.  In Pre-

sampling inference, randomized unit selection plays a relatively minor role where it is 

applied as a refinement Pre-Sampling estimates where there is bias due to an 

incomplete Pre-Sampling model.  The extraordinary magnitude of sampling error 

reduction in the Pre-sampling BLUE,      
 , compared to the Combined Ratio 

Estimator that were observed in Woodruff (2009) still hold in the generalized 

methodology described in Section 3 where      
   is derived, the BLUE corrected for an 

incomplete model.   

The variance estimator described in Woodruff (2009) can be readily applied to the 

generalized Pre-sampling BLUE developed in Section 2 above.  The s-inverse of a 

matrix defined in Section 2 provided Pre-sampling BLUEs that were little different 

(virtually same mean and variance) from the Moore-Penrose Inverse.  The s-inverse 

was used here for purely analytic  reasons – The s-inverse makes a components of 

variance analysis somewhat easier, an analysis that may be published next year so that 

estimator comparisons that don’t depend solely on simulation studies can be made.  

Simple random Pre-sampling was studied here but clearly other Pre-sampling designs 

would better describe Pre-sampling for some of the populations in the table of 

populations above.   
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In summary, this paper describes a technique for using both sampling and Pre-

sampling distributions to produce estimates of population totals.  This technique 

requires far fewer restrictions on sampled populations than needed in Woodruff 

(2009) where Pre-Sampling inference was introduced.  The emphasis is on Pre-

Sampling model based inference where design based inference is applied to make 

minor bias adjustments to the Pre-Sampling model based estimates in general 

applications where incomplete models describe the sample data. As in the applications 

presented in Woodruff (2009), the MSEs of Pre-sampling model based BLUEs are 

orders of magnitude smaller than those of the standard design based estimator, the 

Combined Ratio Estimator.   

It would be informative to complete a purely analytic study that explains the 

simulation results in Section 3 with formulae that better clarify the reasons for large 

differences between the sampling errors of the Pre-sampling model based estimators 

and those of the Combined Ratio Estimator.  This analysis seems to be contingent 

upon theorems that permit a representation of the inverse for the sum of several 

matrices as a linear combination (or some similar structure) of the inverses of each of 

these matrices – possibly an interesting problem or more likely, a problem with no 

general solution.     

References 

Cochran, W.G., (1977), Sampling Techniques, 3
rd

 ed., New York: Wiley, PP 167. 

Graybill, F. A. (1961). An Introduction to Linear Statistical Models, Volume 1, 

McGraw Hill Inc., PP 114. 

Rao, C.R. (1973), Linear Statistical Inference and its Applications, New York: Wiley. 

Woodruff, S. M. (2006), “Probability Sample Designs that Impose Models on Survey 

Data”, Proceedings of the American Statistical Association, Survey Research Methods 

Woodruff, S. M. (2007), “Properties of the Combined Ratio Estimator and a Best 

Linear Unbiased Estimator When Design Control is Problematic”, Proceedings of the 

American Statistical Association, Survey Research Methods 

Woodruff, S. M. (2008), “Inference in Sampling Problems Using Regression Models 

Imposed by Randomization in the Sample Design - Called Pre-Sampling”, 

Proceedings of the American Statistical Association, Survey Research Methods 

Woodruff, S. M. (2009), “An Introduction to Pre-Sampling Inference” Proceedings 

of the American Statistical Association, Survey Research Methods 

 

 

  

Section on Survey Research Methods – JSM 2010

805


