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Abstract

The Agricultural Resource Management Survey (ARMS) is a high dimensional, complex
economic survey which suffers from item non-response. Here, we introduce methods of
varying complexity for imputation in this survey. The methods include stratified mean
imputation, the approximate Bayesian bootstrap, and non-iterative and iterative sequen-
tial regression. The iterative sequential regression is a form of Markov chain Monte Carlo
(MCMC) that is unique in that it allows for flexible selection of conditional distributions
while utilizing joint modeling. Each of the regression procedures require data-driven trans-
formations that allow for the implementation of a conditional multivariate normal model.
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1. Introduction

In this paper we consider imputation methods which are applicable to the US
Department of Agriculture’s (USDA) Agricultural Resource Management Survey
(ARMS). The ARMS is a multi-phase survey which contains 35,000 records of 1,000-
2,000 variables that is administered annually by NASS and the Economic Research
Service (ERS), which are both subsidiaries of the US Department of Agriculture
(USDA). The current imputation method which NASS uses on the ARMS is an
out-dated form of mean imputation which distorting several data attributes. Our
goal is to develop a procedure that will maintain all distributional characteristics of
the complete data, had there been no missing values.

The ARMS is the USDA’s primary source of information on the financial con-
dition, production practices, and resource use of farms, as well as the economic
well-being of the nation’s farm households. The scope of the information collected
in the ARMS is too large to be further paraphrased here — to quote National Re-
search Council (2008), “No other source affords such a comprehensive view of the
American farm.” The ARMS data are indispensable to federal and private sec-
tor decision makers when considering policies and programs or business strategies
relating to the farm sector.

The complete survey is administered in three phases, and here we concentrate
on imputation in the third phase (ARMS III). ARMS III typically has 3-5 versions
which are administered in total to about 35,000 farm operations over the contiguous
United States.

The Panel to Review the USDA’s Agricultural Resource Management Survey
was established in 2006 and was chaired by Bruce Gardner; its findings are out-
lined in National Research Council (2008). This reference also provides a detailed
overview of the ARMS, as well as the survey design and processing. The research
discussed in this paper is the result of the Panel’s recommendations.
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Miller et al. (2010) provide a good outline of the ARMS and its data character-
istics as well as a discussion on particular survey aspects that make imputation in
ARMS a particularly challenging problem. Here, we paraphrase these challenges.
Due to the large number of ARMS data users, it is essential that no data character-
istics (i.e., means, variances, covariances) be distorted by the imputation processes.
The large number of variables within the survey make it particularly difficult to
preserve all variable relationships throughout the imputation process. Likewise,
it is difficult to preserve the confounding marginal structure of ARMS variables
throughout the imputation process. For instance Miller et al. (2010) notes that
most ARMS variables are mixed discrete/continuous in distribution. That is, these
variables contain a portion of zeros and the remaining portion has a positive con-
tinuous density. A skew normal density (Azzalini, 1985) often fits the log of the
positive portions. All values which require imputation are known to be positive.

We continue by introducing imputation methods which are applicable to ARMS.
In Section 2 we outline methods that utilize stratification, including the current
NASS method. In Section 3 we outline transformation techniques which will be
required in order utilize regression methods. In Section 4 we outline a non-iterative
regression technique which we call sequential regression. In Section 5 we intro-
duce iterative sequential regression, which is a type of Markov chain Monte Carlo
(MCMC). Section 6 offers some concluding thoughts.

2. Imputation via Stratification

The current NASS imputation procedure involves stratification. Hence, the impu-
tation model used may be described as a 3-factor ANOVA table with interaction
effects, where the three factors are: 1) Farm Type, 2) Region, and 3) Sales Class.
The data are grouped into cells (or strata), where each cell contains all observations
that have each the same value for each of the three factors. If a specific observa-
tion has a missing value for a specific variable, all observations of that variable in
the corresponding cell with a positive and observed value make up the donor pool.
NASS requires that a donor pool has 10 or more values, and if that requirement
is not met, fallback groupings are used in order to broaden/merge the cells and to
thereby expand the donor pool. See Banker (2007) for an ordered list of the fallback
groups, as well as a more detailed description of the NASS and ERS imputation
processes. Observed values that are determined to be outliers are excluded from
the process.

2.1 Conditional Mean Imputation

The current NASS method employs conditional mean imputation. For this method,
the impute for each missing value is taken as the mean of the values within the
donor pool corresponding to that specific observation and variable.

The drawbacks of this method are numerous. Most noticeably, conditional mean
imputation is well known to distort marginal variable characteristics, primarily by
causing a downward bias in classical estimates of variance (see Little and Rubin,
2002; Schafer and Graham, 2002; Fichman and Cummings, 2003; Newman, 2003,
among others).
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2.2 Approximate Bayesian Bootstrap Imputation

The most obvious improvement over conditional mean imputation is a method that
imputes with a random draw from a conditional distribution, as opposed to the
mean of that distribution. Doing so should alleviate the downward bias in variance
estimation. However, proper simulation from the true posterior distribution within
each cell is infeasible, since the small number of observations within cells makes
it difficult to determine appropriate distributional assumptions. It may be more
feasible to impute using a draw from the observed values within that cell.

Approximate Bayesian bootstrap (ABB) imputation (Rubin and Schenker, 1986;
Kim, 2002) accomplishes just that. For this method, donor pools are determined
in the same fashion as in the current NASS method. Assume that the kth cell
corresponding to the jth variable contains nj,k positive observed values and mj,k

missing values. The set of positive values (the donor pool) is denoted Aj,k. ABB
imputations are generated in two steps:

1. Draw a bootstrapped donor pool, A∗
j,k, by selecting nj,k values with replace-

ment from Aj,k,

2. Draw imputations for the kth cell of the jth variable by selecting mj,k values
with replacement from A∗

j,k.

ABB imputation is not thought to be proper in the Bayesian sense. Kim (2002)
notes that this method induces bias into variances estimates found using MI. How-
ever, it does provide a simple method that should show certain improvements over
the current mean imputation procedure.

3. Transformation Techniques

In order to integrate sophisticated multivariate models into the imputation scheme,
we abandon the stratified approach and consider linear modeling. For our pur-
poses, this will require normality assumptions, so we now consider transformation
techniques that will achieve approximate joint normality.

3.1 Adjusting for the Mixed Variables

We adjust for the mixed nature of certain variables by using the following. Assume
that Yj , the jth variable, represents a mixed-continuous variable. We break down
Yj into two variables, Bj and Y ∗

j , where

Bj =

{

1 if Yj > 0 or Yj = ?,

0 if Yj = 0,
and Y ∗

j =

{

Yj if Yj > 0,

? if Yj = 0 or Yj = ?,
(1)

where a “?” represents a missing value. As noted before, any missing value of Xj

is known to be positive, thereby Bj is fully observed. In terms of the joint model,
if Yj is 0 then it is treated as being missing. An example of the creation of Bj and
Y ∗
j from Yj is given in Table 1.
If Yj is mixed and fully observed, we can still break the variable down in this

fashion. Therefore, Y ∗
j will have missing values whereas Yj has none.

This technique for addressing the mixed nature of ARMS data results in a
dataset where all variables with missing values have continuous distributions. Also,
all information provided by observed zeros is still contained within the data (in the
form of the Bj ’s).
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Yj

0
9876
0
?
0
?

12345

Bj Y ∗
j

0 ?
1 9876
0 ?
1 ?
0 ?
1 ?
1 12345

Table 1: The process of breaking down a mixed variable (Yj) into a fully-observed
binary variable (Bj) and a positive continuous variable (Y ∗

j ).

3.2 Transformation of Positive Portions of Variables

We now consider the marginal distributions of the Y ∗
j ’s. As mentioned previously,

the skew normal density often fits the log of the positive portions. A skew nor-
mal density contains three parameters: a location parameter (ξ), a scale parameter
(ω) and a shape parameter (α). The jth variable will have its own skew nor-
mal parameter set, which we denote {ξj , ωj , αj}. If these parameters are known,
then skew normal data may easily be transformed into standard normal data. Let
F (y|ξj , ωj , αj), y ∈ ℜ represent the cumulative density function (cdf) of the skew
normal variate log Yj . If we define

Tj(y) = Φ−1(F (y|ξj , ωj , αj)) (2)

then
Tj(log Yj) ∼ N(0, 1).

where Φ(·) represents the standard normal cdf. Since the values of ξj , ωj , and αj are
unknown for each relevant j, we use MLEs found using available data. An inverse
of this transformation may also be easily applied. We refer to the transformation
in (2) as a “SN transformation”.

For the jth variable (which may or may not have missing values) we will consider
one of three possible transformations to create the transformed variables Xj :

1. Xj = Y ∗
j (no transformation),

2. Xj = log Y ∗
j (log transformation), (3)

3. Xj = Tj(log Y
∗
j ) (density transformation), (4)

where Tj(·) is defined in (2).
In the remaining procedures, we will impute for the missing values throughout

the set of Xj ’s. Next, the resulting imputed vectors, which are denoted with X̂j ,
are untransformed, and values originally observed as zero are reset to zero.

4. Sequential Regression

One notable drawback of the stratified approach is that covariates must be categor-
ical. Inclusion of additional covariates would likely result in having far too many
empty cells. In order to incorporate more covariates (in particular, those which are
continuous) into the imputation model, we must abandon the stratified approach
and utilize regression techniques.
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We continue with our specific notation which is in accordance with notation
introduced in Section 3. Our imputation methods are run jointly on a block of
variables. Of the variables in this block, we assume that r are mixed variables
and have missing values. These are denoted Y1, . . . , Yr. We also have q fully-
observed mixed variables, denoted Yr+1, . . . , Yr+q, and a set of fully observed discrete
or continuous variables which are denoted Z. We let p = r + q represent the
total number of mixed variables. Of course, as indicated at the end of Section 3,
our methods will be applied to the corresponding X1, . . . , Xp. For our purposes,
each of these X’s has missing values, and thereby, in hopes of achieving a near-
monotone missingness structure, they are indexed so that they are increasing in
missingness (i.e., X1 is the variable with the fewest missing values). We let B =
{B1; . . . ;Bp} and χ = {Z;B;X1; . . . ;Xp}, and for completeness, we write Xj =
{x1j , . . . , xnj}

t and Yj = {y1j , . . . , ynj}
t for each j, where n represents the total

number of observations.
We now introduce a class of regression procedures that will create imputations

for the missing values in the p variables. These procedures are akin to the predic-
tive mean matching technique analyzed in Horton and Lipsitz (2001) and the SRMI
technique of Raghunathan et al. (2001) (the initialization step, to be specific). We
will refer to these methods as sequential regression (SR). SR techniques are moti-
vated by the fact that the joint distribution of X1, X2, . . . , Xp given Z and B can
be factored into a sequence of conditional distributions as follows

P (X1, X2, . . . , Xp|Z,B) =
P (X1|Z) · P (X2|Z,B, X1) · · ·

P (Xp|Z,B, X1, X2, . . . , Xp−1),
(5)

where we use P ( · ) to denote a distribution function.
Letting X̂j = {x̂1j , . . . , x̂nj}

t represent the imputed version of Xj , sequential
regression techniques will attempt to use P (Xj |Z,B, X̂1, X̂2, . . . , X̂j−1) to create
X̂j .

4.1 SR2∗ and SR3∗

We let B−j = {B1; . . . ;Bj−1;Bj+1; . . . ;Bp}, where the Bj ’s are defined in (1). We
assume that, for j = 1, . . . , p,

Xj = βj0 +Zαj +B−jγj + βj1X1 + . . .+ βj,j−1Xj−1 + σjǫj , (6)

where αj and γj are vectors of coefficients and ǫj is a length-n vector of IID standard
normal variates. We let

θj = {βj0,αj ,γj , βj1, . . . , βj,j−1, σj}, and Θ = {θ1, . . . ,θp}.

We will find the imputed vector, X̂j , sequentially for j = 1, . . . , p. The first step
in imputing for Xj is to draw values of regression parameters that will be used to
create the imputations. Assuming the model in (6), we let θ̃j represent a draw
from the posterior distribution of θj found using formulas of the form in Little and
Rubin (2002), p. 114. The covariate matrix contains X1, . . . , Xj−1 (each of which
have missing values), but the sequential nature of this procedure allows us to use
the imputed versions of these variables instead. Since the response variable, Xj ,
also contains missing values, we include only observations which have an observed
value of Xj when calculating the posterior distribution.
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Sequentially for j = 1, . . . , p, we create X̂j by drawing from

x̂ij ∼ P (xij |Zi,Bi,−j , x̂i1, . . . , x̂i,j−1, θ̃j),

whenever xij is missing. This is done by adding a randomly sampled error to the
predicted mean found using (6) while assuming θj = θ̃j . In the above, Zi and
Bi,−j represent the ith row of Z and B−j respectively. This process can be done
while using the transformation in (3) or in (4), which yield the “SR2∗” and “SR3∗”
methods respectively.

5. Iterative Sequential Regression

Most robust procedures (Spiess and Keller, 1999; Little and An, 2004; Von Hippel,
2007) follow the SR scheme we have outlined; however, in order to draw proper
imputations using a SR technique, the missingness structure must be monotone.
If the missingness is not monotone, it is possible, for example, that certain unit
has a missing value for X1 whereas X2, . . . , Xp−1 are observed. In this case, the
imputed value of X1 would be sampled from P (X1|Z,B) when the SR technique is
used. Doing so may disrupt the relationships (as gauged using the imputed dataset)
between X1 and Xj for j = 2, . . . , p. In order to avoid such a disruption, we must
sample X1 from P (X1|Z,B, X2, . . . , Xp). Also, under non-monotone missingness it
is difficult to obtain unbiased draws of regression parameters using the SR technique
since the covariate matrix used to obtain such draws often contains imputed values
(and as we just mentioned, these imputed values may be improperly sampled).

5.1 ISR2 and ISR3

We assume that the sequence of models seen in (6) holds true for j = 1, . . . , p.
We iteratively draw imputes and parameter estimates. Given starting values, we

produce a sequence of completed datasets, χ(t) = {Z;B;X
(t)
1 ; . . . ;X

(t)
p }, and a

sequence of model parameters, Θ(t) = {θ
(t)
1 , . . . ,θ

(t)
p } for t ≥ 0. For each j, X

(t)
j

represents the value of Xj and θ
(t)
j represents the value of θj (at the tth iteration).

Like most MCMC techniques used for imputation, imputes and parameters are
updated at each iteration via an imputation step (I step) and a parameter step (P
step).

The I step samples χ(t+1) from:

χ(t+1) ∼ P
(

χ

∣

∣

∣
Θ(t),χobs

)

,

where χobs represents the observed values in χ. The P step samples Θ(t+1) from:

Θ(t+1) ∼ P
(

Θ

∣

∣

∣
χ(t+1)

)

.

The sequence of conditional models seen in (6) ensures that

P
(

xi1, . . . , xip

∣

∣

∣
Z,B,Θ(t)

)

(7)

is multivariate normal for 1 ≤ i ≤ n and for each t ≥ 0. During the I step of

the (t + 1)th iteration, we calculate X
(t+1)
j = {x

(t+1)
1j , . . . , x

(t+1)
nj } sequentially for

j = 1, . . . , p by sampling from the following density whenever xij is missing:

x
(t+1)
ij ∼ P

(

xij

∣

∣

∣
x
(t+1)
i1 , . . . , x

(t+1)
i,j−1 , x

(t)
i,j+1, . . . , x

(t)
ip ,Z,B,Θ(t)

)

.
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This is done by first calculating the mean vector and covariance matrix of the
expression in (7), and then using known equations for the conditional distributions
of a multivariate normal density.

The P step of this procedure will closely resemble the parameter simulation

process seen in the SR techniques above. For j = 1, . . . , p, we calculate θ
(t+1)
j by

sampling from its posterior distribution via formulas of the form in Little and Rubin

(2002), p. 114. We use all units of X
(t+1)
j as the response variable, and the covariate

matrix, in accordance with (6), includes Z,B−j , X
(t+1)
1 , . . . , X

(t+1)
j−1 .

We determine χ(0) and Θ(0) via the SR procedure outlined in Section 4. After
a burn-in period (b) we return χ(b). We refer to this MCMC procedure as Iterative
Sequential Regression (ISR). It may be implemented in conjunction with the trans-
formations in (3) or (4) which yield the “ISR2” and “ISR3” methods respectively.

6. Conclusion

Both the current NASS method and the ABB method lack the multivariate sophis-
tication required for a high dimensional dataset. These methods only utilize three
covariates, and there are several highly informative covariates that go unused. Also,
the methods do not allow the imputer to model variables with missing values on
other variables with missing values, thereby implying that relationships between
these variables will likely be distorted by the imputation process.

The SR methods should enable the imputer to capture the marginal charac-
teristics of the data. Likewise, it will offer improvement over the NASS and ABB
methods in terms of preserving variable relationships since it allows variables with
missing values to be modeled on any of the fully observed covariates as well as other
variables with missing values. However, its non-iterative nature implies that impu-
tations found using this technique will still induce bias into variable relationships
as long as those relationships are not sufficiently explained using the fully observed
covariates.

The ISR technique allows for flexible selection of conditional distributions, which
is an attribute of other popular MCMC techniques, such as MICE (Van Buuren
and Oudshoorn, 1999), SRMI (Raghunathan et al., 2001), and mi (Su et al., 2010).
ISR utilizes joint modeling, since conditional models of the form in (6) are used
as opposed to the respective full conditional models. Joint modeling (which is an
attribute of the data augmentation class of imputation procedures — see Little and
Rubin 2002 and Schafer 1997 for an outline of such methodology) ensures that after
a sufficient number of iterations, the imputes represent a draw from the posterior
distribution of the complete data given the observed data.
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