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Abstract 
This research presents a framework for the meta-analysis of complex survey data using the 
sample design and a superpopulation model to quantitatively summarize different surveys that 
represent the same underlying population. Additionally, it will compare the classical design based 
methods using a superpopulation model approach.   
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1. Introduction 
 
The recent increase in straightforward access to data has lead to a proliferation of analysis that 
groups or pools multiple study results. This ready access, combined with user-friendly computer 
software, has lead researchers to try to borrow strength from the many different observational and 
non-randomized studies in an attempt to either improve precision or address research questions 
for which the original studies were not designed. Researchers have started to employ many 
different techniques including meta-analysis; however, the analysis is often done without 
reference to a generalized framework or a systematic review and often without an understanding 
of the methodological differences between surveys and experiments.   
 
Although meta-analysis was first used in 1976 for the combination of educational studies, it is 
now common in the medical literature (Glass). This integration of studies has expanded from 
combining randomized control trials and other experimental studies to blending information from 
epidemiological quasi-experimental studies (cohort and case-control), and diagnostic tests and 
bioassays and now survey data.   
 
This paper begins with an overview of the differences in the randomization processes in 
experiments and surveys. Next, we describe model and design based inference and estimation in 
surveys, followed by an overview of fixed and random effect models in meta-analysis.  We then 
describe the simulations used to illustrate meta-analysis in the survey context, highlighting issues 
with convergence, inference and small sample properties.   
 
2. Randomization: Allocation compared to Selection 
 
It is important to address the differences of the randomization frameworks in experimental 
design, and that of survey design. What is random in experimental data is the assignment of 
individuals.  With experimental data, we assign a treatment(s) and a control to individuals in a 
random fashion to create two (or more) probabilistically equivalent groups. Altman (1985) points 
out, however, that randomization does not guarantee that the treatment groups are comparable 
with respect to their baseline characteristics, and suggests that comparability should be assessed 
prior to analysis. We are thus using randomization to reduce confounding and to ensure that the 
results of the experiment are internally valid. 
 
When we combine experiments we make several assumptions about the treatment effect in the 
different experiments, based on the fact that we are combing estimates that have been generated 
from a process with random allocation.  We assume that the treatment effect follows a 
distribution and we either assume that the effects we are combining are identical and independent 
from this distribution or that the differences between the treatment effects from the different 
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experiments can be modeled in an analogous fashion to random effect ANOVA models.  We 
make no assumptions on the population of individuals.   
 
On the other hand, in the case of classical design-based survey methods, what is random is the 
selection of individuals. The purpose of random selection is to generalize to the entire finite 
population from which we are drawing our sample.  Finite population parameters describe the 
finite population U, from which we draw our sample.  Estimation is then about characteristics of 
this population. These quantities always portray the population at a given time point (the time of 
sampling), and are purely descriptive in nature.  A finite population parameter has the property 
that in a census (with no non-response and no measurement error) its value can be established 
exactly. If the researcher was able to collect information from the entire population he would do 
so. However, since the researcher rarely can take a census of his population of interest and 
probability sampling is done to produce estimates of the finite population parameter of a 
sufficient precision at a minimum cost.   
 
In probability sampling we select samples that satisfy the following conditions (Sarndal 2003):  

 
1. We can define a distinct set of samples, S1, S2, …, Sv, which the sampling procedure is 

capable of selecting if applied to a specific population.  This means we can say precisely 
which units belong to S1, to S2, and so on.  

2. Each possible sample Si has assigned to it a known probability of selection P(Si), and the 
probabilities of the possible samples sums to 1.   

3. This procedure gives every unit a known non-zero probability of selection.  
4. We select one of the Si by a random process in which each sample has its appropriate 

probability of selection P(Si).   
 
3. The Model and the Design 
 
Though classical sampling theory is concerned with inference for finite population parameters we 
can extend inference to a superpopulation.  Superpopulation modeling occurs when the researcher 
specifies or assumes a random mechanism that generated the finite population (Hartley and 
Sielken, 1975). We now have what is called model-based as opposed to design-based inference, 
where the model is the statistical conceptualization of a superpopulation.    
 
For example if we assume that the vector y of responses in a survey are a realization of a random 

variable ),...,,( 21 NYYYY  , then the finite population vector y is itself a sample from a 
hypothetical superpopulation model, ξ.  Here then the model-builder is not interested in the finite 
population U at particular time, but the causal system described in the model.   So in the case 
where we have a census we still would not be estimating these model parameters exactly.  
 
Figure 1 illustrates the relationship of the superpopulation with the finite population with the 

sample.  If we let  be the parameter from a superpopulation model, then we can let N be the 

estimator from the entire finite population and then 
)(ˆ FF is the estimator for the finite population 

based on the sample.   
Figure 1 
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We now note that we can approach estimation in either a finite sampling or a superpopulation 
framework.  If we cross the estimation approach used with the level of inference we have the 
following table (Hartley and Sielken, 1975): 

Estimation Framework 
 Sampling from a fixed or 

finite population 
Two-stage sampling from a 

superpopulation 
Parameter of interest   

Finite population 
parameters or descriptive 

parameters 

Classical finite population 
sampling 

)(ˆ FF  

Superpopulation theory for the finite 
population 

)(ˆ SF  
Infinite superpopulation 

parameters or model 
parameters 

Infeasible Inference about superpopulation 
parameters from two-stage sampling 

)(ˆ SS  
 
For clarity the following notation will be used to represent the level of inference and the 

methodology used to estimate a particular parameter.  
)(ˆ SS denotes an estimator of the parameter 

of the superpopulation where the first superscript S denotes that the parameter of interest is from 
the superpopulation the second enclosed in parenthesis (S) denotes the two-stage superpopulation 
framework used to estimate the parameter.  Hartely and Seilken and later Sarndal refer to this as 

case 3.  Likewise 
)(ˆ SF is the finite population parameter estimate under a two-stage 

superpopulation framework (case 2 Hartley Seilken) and 
)(ˆ FF is the finite population parameter 

estimate under classical finite population sampling (case 1 Hartley Sielken).   As the estimation of 
a superpopulation parameter under finite population sampling is not possible the superscript S(F) 
is not used.   
 
As it is not logical to combine the estimates from different studies that are inferentially different 
or calculated under different estimation methods (without accounting for the differences) we only 
consider cases where we are combining like estimators.   
 
3.1 Combining estimates of the finite population parameter using sampling from a fixed 

population - 
)(ˆ FF  

 
With this first type of inference the simplest approach is to use design-based estimation such as a 

Horvitz-Thompson estimator
)(ˆ FF .  Here inference is based on repeated sampling of the 

population of the same design. We may have an analytical model, but we do not use it in any 
way.  Survey methodologists most frequently encounter this case.   
 

When we consider combining estimates of 
)(ˆ FF from different surveys we can see that several 

cases commonly discussed in the literature fall under this category.  Pooling or cumulating cases 
as suggested by Kish (1999) is a method of taking different estimates of a finite population 
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characteristic and combining them. Kish uses the term combining when he estimates what he 
describes as multipopulation or mulitdomains, and cumulating or pooling for periodic or rolling 
samples.  In both these cases we need not invoke a superpopulation and inference is for the 
‘finite’ population of interest.  Repeated sampling and panel samples of the same population are 

also a method to combine 
)(ˆ FF (Cochran 1977).  Wu (2004) suggests a method to combine 

information from different surveys using an empirical likelihood method similar to the approach 
of Zieschang (1990) and Rensessn and Nieuwenbroek (1997), the purpose of which is to improve 
estimates of the census parameter.  Merkouis (2004) suggests a regression approach to calculate 
design-based direct estimators using multiple surveys and contrasts it with the typical small-area 
estimation indirect approach which generally uses one sample.  We can also consider combing 
samples from non-overlapping surveys and overlapping frames as special cases of combining 

estimates of
)(ˆ FF . In all these cases inference is about the census parameter N and not the 

superpopulation parameter.   
 
3.2 Combining estimates of the finite population parameter using superpopulation theory 

for a finite population parameter -
)(ˆ SF  

 

When we invoke a superpopulation model we would want the estimator of N to take into 
account both the model and the sampling design.  Therefore, with inference of the finite 
population parameter under a superpopulation model we would select an estimator where 

  
 

2)(ˆ
N

SF
SpEE  is minimized.  Here, the subscript  implies expectation taken over the 

model and the subscript p indicates expectation taken over the sampling plan.   
 
Fuller (1973) presents theory and estimation for the case where we assume that the finite 
population is a simple random sample with finite fourth moments from the superpopulation and 
the sample is drawn from this finite population.  Hartley and Seilken provide more on the 
inference of the finite population parameter for regression parameters.  Isaki and Fuller (1982) 
expand these ideas to construct model-unbiased and design-consistent regression predictors.  
 

Here under the approach of Isaki and Fuller 
)(ˆ SF is called a predictor.  A predictor is 

conditionally model unbiased for the finite population parameter N if given the sample S if we 

have    0)(  SE N
SF  .  It is important to note that the conditioning is not on a 

characteristic of the population.  The predictor is unbiased with respect to the design P(S) if  
  N

SF
pE  )(ˆ

.  They then define the best model-unbiased predictor of N as the one with 
minimum model variance.   
 
Although a simple random sample of a simple random sample is also a simple random sample, 
most surveys have a more complex design. If inclusion probabilities depend on y through more 
than the covariates then we will make erroneous conclusions if we do not consider the design 
(Pffeferman 1993).  So we approach this estimation problem by assuming that the sampling 
design P(S) plays no role (Royall 1973), we are stating that the relationship in the model holds for 
every unit in the population U and the sample design should have no effect on estimation.  As 
noted above, this can be the case as long as the probability of selection depends on y only through 
the x’s.  If the design and inclusion probabilities play no role in estimation then design 
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unbiasedness is unimportant.  This is often referred to as a frequentist approach and or a pure 
model-based inference.    
 
This frequentist approach is related to the idea of ignorability.  We consider a design to be non-
informative if the sampling mechanism does not depend on Y and informative if it does.  More 

formally, let the sampling distribution related to a design be )( Uif .  This distribution is a 
function of the indicator variable IU and the finite population U.  Where I denotes the (N x 1) 
sample indicator variable such that Ij =1 if the unit Uj is selected to the sample 0 otherwise.  In 

the case of probability sampling Pr(Ij =1) >0 for all Uj .  Let   NZZZZ ,...,, 21 define a (N x 
q) matrix of population values of q design variables Z(1),…, Z(q) (different from Y).  For 
informative sampling plans we have the case that the sampling plan is dependent on Y, that 

is )( UUU yYif  .  Then the joint distribution of the realized variable y and the design 

is );()( UUUU yfyYif  .  If we can state that the variables IU and the values YU are 
conditionally independent given other design variables ZU, we can also have non-informative 

design where );( UUU zZIf  and the distribution of YU given ZU=zU as  )( UUU zZYf   
(Pffeferman 2003).   
 
Binder and Roberts (2001) state, that a design is ignorable if for a particular analysis if the 
inference based on all the known information is equivalent to the inference based on the same 
information excluding the outcomes of the random variables related to the design.  They note that 
ignorability is a concept related to a particular analysis and one can have ignorability with both 
informative and non-informative designs.  All non-informative designs are ignorable but not all 
ignorable analyses come from a non-informative design. 
 
In practice the analyst does not always have the exact sampling plan and should not assume that 
the sampling plan is independent of y.  And like any classical procedure model misspecification 
can lead to incorrect conclusions, particularly for large samples.  As Sharon Lohr states 
‘theoretically derived models known to hold for all observations do not often exist for survey 
situations’.   
 
Thus if we consider combining estimates of this type we can see that the variance will no longer 
just be a function of the sampling, but it now includes a part for the superpopulation, even though 

the point estimate is of the finite population parameter.  If we naively tried to combine 
)(ˆ SF we 

need to ensure that we take into account this extra variance.  Additionally, we note that 

combining 
)(ˆ FF and

)(ˆ SF type estimators would be problematic as the variance of the first 
would always be smaller than the second even for exactly the same sample.  
 
3.3 Combining estimates of the superpopulation parameter using a two-stage sampling 

approach -
)(ˆ SS  

 
If we are interested in the inferences from this model, and we wish to extend our inference to the 
superpopulation and its parameters, Molina et al (2001) suggest that inference should be made 
using the joint process of model and design.  They propose a joint model-design process 
satisfying the following:  For all the samples S that are possible under p 
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These conditions are satisfied when I and Y are independent. If this condition does not hold then 
they suggest modeling the mean and variance conditional not on the observed sample but on all 
possible samples under p. 
 
Estimation of a superpopulation characteristic  can be the objective of a meta-analysis. In this 

case we need to be combining estimates of 
)(ˆ SS  that we felt were from different finite 

populations that were realizations of the same superpopulation as in Figure 2 in order to converge 
to the superpopulation parameter.  
  
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  Meta-Analysis: Fixed and Random Effect Models 
  
In traditional meta-analysis when we combine estimates from an experiment we assume effect 
size observed in a study estimates the corresponding ‘population’ effect with a random error that 
stems only from the chance associated with the individual level ‘sampling error’ (not sampling in 
the case of probability sampling but randomness due to the distribution).  Differences in the 
studies are in the power to detect the outcome of interest and each experiment is independent of 

other experiments.  Here we assume asymptotically that the estimator of the treatment effect i is 

considered a random variable and has a normal distribution with mean i and variance iv .  We 
also assume that there is homogeneity of treatment effects across all n studies, that 

is   n...21 .    
 
We can see that we can calculate linear combinations of unbiased estimates that are themselves 
unbiased estimates and then the simplest approach is to calculate a weighted average from all the 
studies.  The fixed effect model (the weighted average) takes the general form  
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where ̂  is the estimator and the weights wi are chosen to minimize some constraint, such as 

g(̂ ) having minimum variance.  Here the weights themselves are generally not known, but are 
estimated from the data.  Hardy (2003) shows that there is no systematic bias caused by the 
estimation of the weights in the overall fixed effect estimate.   
 
Many researchers have addressed the optimum choice of weights.  In general we wish to give the 
greatest weight to studies that have the most precise estimates.  If we want to minimize the 
variance then the minimum variance estimate is the one obtained by taking the weight for the ith 
study to be the inverse of the variance.   
 
Fixed effect meta-analysis methods do not provide unbiased results when the heterogeneity of the 
estimates is not explained by known differences in the studies.  Here the assumptions are that the 
true treatment effect of each trial is normally distributed with mean   and a between-study 

variance
2
B .  Inference is based on the assumption that effects are independently and identically 

sampled from an overall population of all such effects.   
 
The infinite population is an important assumption in the classical parametric approach.  The 
assumption that the effects are random implies that we must include a between-study as well as a 
within study component of variation when estimating an effect size and a confidence interval 
(Demets).  Then we would assume that the variability beyond the individual ‘sampling error’ is 
random, that it stems from random differences among studies whose sources cannot be identified.  
This will normally mean that the confidence interval is at least as wide as that from a fixed effect 
model.     
 

We suppose that each trial estimate has a normal distribution i and variance iv .  Here let ̂  be a 
pooled estimate of effect size (with weights chosen to be the inverse of the estimated variances). 
Then to calculate the random-effects estimator (DerSimonian-Laird) we use  
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where 

2 is a point estimate of the heterogeneity variance.  This is a generalization of the fixed 

effect approach which occurs when
2 = 0.  However, it should be noted that the weights are 

themselves estimates and that will lead to an overestimation of the between study variance (Hardy 
year).  
 
5.  Simulations  
 
We illustrate meta-analysis on the most common case where we have a single finite population.  
Using this framework we ran two simulations.   
 
The first simulation was of a finite population of 100000 individuals from a simple 
superpopulation model.  The outcome of interest Y was generated as a normal random variable 
with mean 500 and variance of 10000.  The stratification variable used in this example had three 
levels and was generated to be strongly correlated with y ( 7. ).  1000 replicated samples of 
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1000 were then selected from this large finite population using SAS using both simple random 
and stratified sampling.  For the stratified case a simple random sample was selected within each 
stratum proportional to the size of the stratum.  Design unbiased estimates were calculated for 
each of the 1000 replicates. Fixed model using the inverse of the design variance as the weight 
were then calculated and random effects estimates using the variance between samples as an 
estimate of 

2 and compared for convergence to the superpopulation estimate.   
 
The second simulation involved a finite population of 10 million individuals from a simple 
superpopulation model.  The outcome of interest was generated as a normal random variable with 
mean 500 and variance of 100.  The stratification variable used in this example had three levels 
and was generated to be strongly correlated with y ( 7. ).  1000 replicated samples of 100 
were then selected from this large finite population using procsurvey select stratified sampling 
with a simple random sample within each stratum proportional to the size of the stratum.  Design 
based and purely model based estimates were calculated for each of the 1000 replicates. Fixed 
model estimates using the inverse of the design variance as the weight were then calculated and 
compared for convergence of the two methods.  
  
5.1 Convergence 
 
We can empirically show that when we are combining design unbiased estimates of the finite 
population parameter we will converge to the finite population parameter. Here the 
superpopulation has a mean of 500, but the finite population had a mean of 512. The convergence 
of the first 500 samples of the first simulation to the finite population mean is shown in Figure 3.  
Figure 3 

450

470

490

510

530

550

570

590

610

630

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

# of Samples

M
ea

n

 
 
This should make intuitive sense to the reader though when we combine information under a 
superpopulation framework we often neglect this.  If we wish to converge to the superpopulation 
parameter we must in fact be combining different realizations of the superpopulation as in Figure 
2, not different samples of the same finite population. 
 
5.2 Design or Model based 
 
If we have a very large finite sample we know that the census estimate will be closer to the 
superpopulation estimate.  Using a large finite population where sample mean is 499, we illustrate 
that purely model based estimates can be biased when the sampling design is not ignorable.  Here 
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the stratification variable was highly correlated and if we look at the first 10 replicates, in Figure 
4, the design based estimates in blue are not biased whereas the purely model based is.   
Figure 4 
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5.3 Small Sample Properties 
 
We used different seeds to discover the behaviour of these estimates when the number of surveys 
we would combine is small.  For many of the simulations these estimation techniques are not 
particularly robust when the number of samples being combined is small. Figure 5 illustrates that 
only two of the estimates were within 5% of the true value.  This is consistent with findings 
combining experimental data.   
Figure 5 

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10

Th
ou

sa
nd

s

# of Samples

M
ea

n

 
6. Practical Considerations 
 
Systematic reviews and subsequent meta-analysis are a form of research that use other primary 
research studies as their subjects or units of observation.  Like other forms of research they have 
many steps from planning, through implementation to dissemination.  It has been widely 
recognized that as Naylor states ‘methodology is less important than determining which results 
are to be aggregated’ when combining experimental data.  No two studies are identical and 
although it is often reported that research experiments should be reproducible, the reality is that 
research evolves.  Individual research is designed based on previous results and findings not to 
just reproduce findings but to advance knowledge (Peto 87).   
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Establishing the eligibility criteria for inclusion and exclusion is a fundamental step in this 
process.  There has been considerable research on the affect of data quality and publication bias 
on the results of a meta-analysis of a clinical trial (Schulz, 1996).  In the case of survey data, as 
with other systematic reviews, the meta-analysis is not simply the combining of simple random 
sets data.  Data sets need to be chosen using the same rigorous standards of other systematic 
reviews in order to minimize the publication and other sources of bias.   
 
The selection of surveys should be a clearly defined process.  Whether we use a research-based 
electronic facility (i.e. Pub-med, the Canadian Research Index, the Social Sciences Citation 
Index, POPLINE, PapersFirst or J-stor) or web-based electronic search engines including Google 
and Google Scholar, or contact a statistical agency directly, the researcher should set up and 
document the protocol use to select surveys.  These protocols should include the key words, 
search criteria, the years under study and a description of the databases that were searched.  Then 
the researcher should apply clear criteria for inclusion and exclusion to all studies found in the 
review.  These criteria should be based on the comparability and the quality of the studies.   
 
Data quality has many dimensions; accessibility, interpretability, coherence, relevance, 
unbiasedness, accuracy, precision, timeliness, coverage, completeness, consistency, and some 
would add methodological soundness.  Researchers need to be able to determine the extent to 
which the accuracy and other quality factors are consistent with their interpretation.  They can do 
this by verifying the conceptual framework and definitions used in the survey design, collection 
and processing of the data.  Without this verification the researcher can not be certain that the 
data they analyze meets their needs. 
 
7. Conclusions 
 
As Schenker et al (2007) points out when combining complementary survey data the researcher 
needs to know ‘to what extent are the target populations of the surveys mutually exclusive and 
exhaustive subsets of the overall domain of interest’. Following Schenker’s lead we expand this 
to take into account that estimation can be done for different levels of inference using different 
estimation frameworks.  So not only would want to know what is the target population and if the 
surveys differentially cover their target population we would also need to know why and how 
these survey estimates were calculated; adding into the framework the inference and the 
estimation procedure used and then assessing if these definitions overlap.    
 
Additionally we would also want to understand the possible biases associated with combining 
estimates that are purely model based and recommend that whenever possible design based 
estimates are used.  And like any estimation technique we would want to not only have 
convergence to what we feel we are estimating (be it the superpopulation or the finite population 
parameter), but also that the small sample properties behave in a way which satisfies our 
estimation needs.   
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