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Abstract 

There are at least two reasons to calibrate survey weights: force estimators to be unbiased under a 
prediction model and adjust for the bias caused by unit nonresponse. Although a prediction-model 
justification is possible, Lundströrm and Särndal (1999) argued that a unit's weight adjustment under 
calibration estimates the inverse of the unit's response probability. The functional form of the response 
model in their linear calibration adjustment is awkward and unlikely. We describe a nonlinear calibration 
procedure available in SUDAAN that includes a logistic response model, generalized raking, and bounds 
the weight adjustments limiting their inflationary impact on mean squared errors. Using this procedure 
provides double protection against nonresponse bias. If the linear prediction model or implied unit 
response model holds, the resulting estimator is asymptotically unbiased. 
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1. What is calibration? 

In the absence of nonresponse, calibration is a weight adjustment method that creates a set of weights, 
{𝑤𝑘|𝑘 ∈ 𝑆}, where S is the set of selected sampling units, that 

1. Are close the original design weights, dk = 1/πk where πk is the probability of selection for the kth 
selected sampling unit. Since the wk weights are close to the original design weights, we assume 
that they will produce nearly unbiased estimates under the randomization distribution. 

2. Satisfy a set of calibration equations with one equation for each component of xk which is the 
vector of auxiliary variables for the kth selected sampling unit. That is, the sum of the weighted 
auxiliary information from the selected sample units equals the sum of the auxiliary information 
from the population 

� 𝑤𝑘𝒙𝑘
𝑆

= � 𝒙𝑘
𝑈

 

When estimating a total, 𝑇 = ∑ 𝑦𝑘𝑈 , from the weighted sample total, 𝑇� = ∑ 𝑤𝑘𝑦𝑘𝑆 , or estimating a mean, 
𝑇
𝑁

= ∑ 𝑦𝑘𝑈
𝑁

, from the weighted sample mean, 𝑇
𝑁
� = ∑ 𝑤𝑘𝑦𝑘𝑆

∑ 𝑤𝑘𝑆
, calibration will tend to reduce mean squared 

error when yk is correlated with the components of xk. 
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More formally, 𝑇� is an unbiased estimator for T under the prediction model: 

𝑦𝑘 = 𝒙𝑇𝜷 + 𝜀𝑘, 

where 𝐸(𝜀𝑘|𝒙𝑘) = 0 whether or not k is in the sample, i.e., the sample design is ignorable. This means 
𝐸�𝑇� − 𝑇� =  0. 

The simplest way to compute calibration weights is linearly, 

𝑤𝑘 = 𝑑𝑘 �1 + �∑ 𝒙𝑗𝑈 − ∑ 𝑑𝑗𝒙𝑗𝑆 �𝑇�∑ 𝑑𝑗𝒙𝑗𝒙𝑗𝑇𝑆 �−1𝒙𝑘� = 𝑑𝑘[1 + 𝒈𝑇𝒙𝑘], 

which is the generalized regression (GREG) estimator. There are nonlinear calibration routines where 
𝑤𝑘 = 𝑑𝑘𝑓(𝒈𝑇𝒙𝑘), but they are asymptotically equivalent to the GREG because 𝑓(0) = 𝑓 ′(0) = 1 and 
𝒈𝑇𝒙𝑘 converges to zero as the sample size grows. 

 

2. What is double protection for unit nonresponse? 

Most surveys experience some level on nonresponse, which is usually beyond our control. We are forced 
to assume, either explicitly or implicitly, some type of model to adjust for nonresponse.  A prediction 
model on the survey variable usually assumes the response/nonresponsne mechanism, like the sampling 
design, is ignorable. A response model assumes the response mechanism behaves like a round of Poisson 
sub-sampling. Double protection means that if either the prediction or response model is specified 
correctly, the estimator is nearly unbiased in some sense. 

 

3. How does the GREG handle unit nonresponse? 

The sample S is replaced by the respondent sample R in defining the GREG and g by 

𝑇𝐺𝑅𝐸𝐺 =� ∑ 𝑤𝑘𝑦𝑘𝑅 = ∑ 𝑑𝑘(1 + 𝒈𝑇𝒙𝑘)𝑅 𝒙𝑘, 

where 

𝒈 = �� 𝒙𝑗
𝑈

−� 𝑑𝑗𝒙𝑗
𝑅

�
𝑇
�� 𝑑𝑗𝒙𝑗𝒙𝑗𝑇

𝑅
�
−1

 

or  

𝒈 = �� 𝑑𝑗𝒙𝑗
𝑆

−� 𝑑𝑗𝒙𝑗
𝑅

�
𝑇
�� 𝑑𝑗𝒙𝑗𝒙𝑗𝑇

𝑅
�
−1

 

depending on whether the respondent sample is calibrated to the population (∑ 𝒙𝑗𝑈 ) or to the original 
sample (∑ 𝑑𝑗𝒙𝑗𝑆 ). When calibrating to the population, the estimator is unbiased under the prediction 
model, 𝑦𝑘 = 𝒙𝑇𝜷 + 𝜀𝑘 and 𝐸(𝜀𝑘|𝒙𝑘) = 0, whether or not k is in the respondent sample. When calibrating 
to the sample, the estimator is nearly unbiased under a combination of the prediction model above and the 
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original sampling design. Either way the estimator is also nearly unbiased under the quasi-sample design 
that treats response as a second phase of random sampling as long as each unit’s probability of response 
has the form 

𝑝𝑘 = 1
1+𝜸𝑇𝒙𝑘

, 

and g is a consistent estimator for γ. Put another way 

𝑇𝐺𝑅𝐸𝐺� = ∑ 𝑤𝑘𝒙𝑘𝑆 = ∑ 𝑑𝑘
1
𝑝𝑘�
𝒙𝑘𝑆 . 

Notice that with nonresponse 𝒈𝑇𝒙𝑘 no longer converges to 0. 

 

4. What about raking? 

Raking is a form of nonlinear calibration in which effectively the weights for the raking adjustment have 
the form 

𝑤𝑘 = 𝑑𝑘exp (𝒈𝑇𝒙𝑘). 

Traditionally, the components of xk are indicator variables, i.e., they are 0/1 variables with the value of 1 
indicating the observation has the characteristic, and an iterative proportional fitting routing is used to 
solve the calibration equations. The components do not have to be binary, but an iterative search using 
Newton’s method is still needed to find the g that satisfies one of the two versions of the calibration 
equations, i.e., calibration to the population or the sample. 

Using raking to adjust the weights results in a calibration estimator (nearly) unbiased under the same 
linear prediction model as the GREG. The quasi-random response model under which the raking 
estimator is nearly unbiased has a more reasonable form than the GREG. It is 

𝑝𝑘 = exp (−𝜸𝑇𝒙𝑘). 

Raking is asymptotically equivalent to the GREG when there is no nonresponse or when every unit is 
equally likely to respond. 

 

5. What about fitting a logistic regression model? 

Search for a g that forces the wk to satisfy a version of the calibration equations the weights using the 
logistic adjustment have the from 

𝑤𝑘 = 𝑑𝑘exp (1 + 𝒈𝑇𝒙𝑘), 

which produces a calibration estimator that is nearly unbiased under the same linear prediction model as 
the GREG. This estimator is also nearly unbiased under the logistic response model 

Section on Survey Research Methods – JSM 2010

508



𝑝𝑘 = [1 + 𝑒𝑥𝑝(−𝜸𝑇𝒙𝑘)]−1 = 𝑒𝑥𝑝�𝜸𝑇𝒙𝑘�
1+𝑒𝑥𝑝(𝜸𝑇𝒙𝑘). 

The weight adjustments 𝑓(𝒈𝑇𝒙𝑘) are centered at 2, when g = 0. By contrast, raking and GREG 
adjustments are centered at 1. 

 

6. A Useful Generalization of Raking and Logistic Weighting 

In general, logistic weight adjustments cannot be less than 1; raking weight adjustments cannot be less 
than 0; and GREG weights can be negative. None of the three weight adjustments have an upper bound. A 
useful generalized weight adjustment that contains bounds proposed by Deville and Sarndal (1992) is 

𝑓(𝒈𝑇𝒙𝑘) = 𝐿(𝑈−1)+𝑈(1−𝐿)exp�𝐴𝒈𝑇𝒙𝑘�
(𝑈−1)+(1−𝐿)exp(𝐴𝒈𝑇𝒙𝑘) , 

where 

𝐴 =
𝑈 − 𝐿

(1 − 𝐿)(𝑈 − 1)
 

is centered at C with lower bound 𝐿 ≥ 0 and upper bound 𝑈 > 𝐶 > 𝐿. The user sets these parameters. 

 

7. SUDAAN’s WTADJSUT Procedure 

To extend the bounded function further, SUDAAN’s WTADJUST procedure allows for separate weights 
for each sample respondent k as proposed by Folsom and Singh (2000) with the function defined as  

𝑓𝑘(𝒈𝑇𝒙𝑘) =
𝐿𝑘(𝑈𝑘 − 𝐶𝑘) + 𝑈𝑘(𝐶𝑘 − 𝐿𝑘)exp (𝐴𝑘𝒈𝑇𝒙𝑘)

(𝑈𝑘 − 𝐶𝑘) + (𝐶𝑘 − 𝐿𝑘)exp (𝐴𝑘𝒈𝑇𝒙𝑘)
 

where 

𝐴𝑘 =
𝑈𝑘 − 𝐿𝑘

(𝑈𝑘 − 𝐶𝑘)(𝐶𝑘 − 𝐿𝑘)
 

  

but with common g chosen to satisfy one of the calibration equations. Some dk may also be scaled by a 
trimming factor, but these factors should be used sparingly, because trimming perturbs the sample design 
weights which could induce bias into the estimates. 

We can set common bounds and centers for all respondent sample units indexed by k. Alternatively, we 
may want to bound the weights themselves or bound the weighted total. This can be done with 
SUDAAN’s WTADJUST procedure. For example, setting 𝐿𝑘 = 1

𝑑𝑘
 forces all weights to be at least 1, and, 

setting 𝑈𝑘 = 𝑈
𝑤𝑘𝑦𝑘

 keeps the weighed totals no greater than U.  
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When adjusting for nonresposne, it makes sense to center at the inverse of the overall response rate 
(Folsom and Witt 1994). When using a logistic distribution to model nonresponse, not being able to do set 
the value of the center is a limitation. 

When the population totals for the components of the x vector of auxiliary variables in known, 
WTADJUST calibration can also be used to adjust for coverage errors in the frame. In this quasi-
randomization context, calibration implicitly estimates the expected number of times the kth respondent 
sample unit is on the frame. Here, a reasonable center would be the overall coverage rate. 

When calibrating for consistency with outside sources or for mean squared error reduction in the absence 
of nonresponse and coverage errors, we can center at 1, like the GREG, and make use of the bounding 
properties of WTADJUST. 

 

7. Generalizing Further 

Although we know how to estimate the mean squared errors of WTADJUST-calibration estimators using 
linearization, it has not yet been programmed in SUDAAN. The problem is the multiple calibration steps. 
One could use replication to estimate those mean squared errors in SUDAAN as long as the first-stage 
sample is selected with replacement, or we can treat the sample as if it were. 

Why not allow for the possibility that nonrespondents are not missing at random? In particular, what if 
assumed response model 

𝑝𝑘 = 𝑓𝑘(𝒈𝑇𝒛𝑘)−1 = 𝐿(𝑈−𝐶)+(𝐶−𝐿)exp (𝐴𝑘𝒈𝑇𝒛𝑘)
(𝑈−𝐶)+𝑈(𝐶−𝐿)exp (𝐴𝑘𝒈𝑇𝒛𝑘)

, 

where some components of zk are known only for respondents, but fit calibration equations as an x vector 
containing values for respondents and nonrespondents? We often can when the dimension of xk is greater 
than that of zk. This is coming in SUDAAN 11 and will be called WTADJSTX.  
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