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Abstract 
In its purest form, multiple imputation is a technique that compensates for item 

nonresponse using prediction modeling. Although developed in a Bayesian framework, 

its advocates claim the technique has good "frequentist" properties. With weighted survey 

data, however, this is generally true only when the item missingness is completely at 

random. We present a way to conduct a weighted multiple imputation under which 

resulting estimates are doubly protected from nonresponse bias; that is to say, if either the 

assumed prediction model or the response (propensity) model is correct, the resulting 

estimator is nearly unbiased in some sense. Unfortunately, the multiple-imputation-

variance estimator will itself be nearly unbiased only when both models hold. Unlike 

multiple imputation, available imputation and variance-estimation techniques requiring 

only one of the two models to be true generally focus on a single survey item at a time.  

Key Words: Bootstrap, Item-response model, Prediction model, Survey weight, 

Nonresponse bias 

1. Introduction 
 

Rubin (1987, 1996) introduced the technique of multiple imputation (more correctly 

labeled “repeated imputation”) for handling item nonresponse in complex surveys and 

measuring its impact of mean squared error. Although developed in a Bayesian 

framework, Rubin claimed that this technique had good “frequentist properties” under 

certain conditions.   

 

Many took that to mean the multiple-imputation variance-estimator had good properties 

if inferences under an assumed prediction model (relating the survey variable to 

covariates) were replaced by inference under the probability-sampling mechanism and an 

assumed response model (governing which units respond to the item in question and 

which don’t).  Looking at a few simple special cases of survey-weighted estimates, Kott 

(1995) showed this to be a misunderstanding. Item nonresponse had to be completely at 

random (independent of all covariates) for the multiple-imputation variance-estimator to 

be nearly unbiased. Moreover, it appeared that the prediction model had to hold as well. 

Kim et al. (2006) put Kott’s observations in a more rigorous and general framework.   

 

Given a complex survey data set and a fitted item-response model, we will propose a new 

method for conducting a multiple imputation and estimating its variance. We begin with a 

brief description of multiple imputation. A discussion of prediction modeling for single 

imputation follows. In it, we introduce the notion of a quasi-random response model and 

show how to conduct prediction-mean imputation in such a way that the resulting survey 

estimate is doubly protected from nonresponse bias under mild conditions. We then 

present a simple bootstrapping method for conducting multiple imputation that can also 

result in an estimator doubly protected from nonresponse bias. This is followed by an 
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investigation of the multiple-imputation variance estimator in this context, which, unlike 

the multiple imputation itself, effectively requires both the prediction and response 

models to be correct for the variance estimator to be unbiased. We end with some 

concluding remarks.         

 

2.  A Brief Outline of Multiple Imputation  
 

To simplify the exposition, we focus on the imputation of a single item subject to 

nonresponse and the impact of that nonresponse on the estimation of a population mean 

for that item. Note that a proportion is a special case of a mean. 

 

Let y denotes the item and k the element. In multiple imputation, a missing yk is imputed 

T times (T is often chosen to be 5 in practice) and then the average of those imputations is 

computed. If each of the T imputations is denoted kty  (t = 1,..., T), then the final imputed 

value for yk is  

 

   1
1

.
T

k ktT t
y y


                                                                                    (1) 

 

It is more common to think of multiple imputation as the combination of T completed 

data sets (samples). One such data set Dt consists of yk for each k  R and kty  for each k 

 M, where R denotes the subset of the sample with valid responding y-values, and M. 

the subset without valid responding y-values.   

 

Suppose that in the absence of item nonresponse the estimator for the population y-mean, 

P, has the form:   
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where S denotes the sample and kd an element sampling weight (after, perhaps, adjusting 

for unit nonresponse and calibrating for sample balance). The multiple-imputation 

estimator would then be  
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,                                                              (3) 

 

where R denotes the set of r sample units providing item y-values, and M the set of m 

item nonrespondents.     

 

Another way to express this estimator is as  

 

    
( ) ( )
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Observe that 
( )t
MIp  is computed by treating all y-members of the completely data set  Dt  

as a full sample.   
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The multiple-imputation variance estimator has the form:  

 

1( ) (1 ) ,T
MI T

v p B W                                                                             (5) 

 

where W =  ( )
var( )

T t
MIp T   is the so-called “within variance.” It estimates the 

variance of pF, the estimator of the mean had there been no nonresponse. Each var(
( )t
MIp )  

is calculated as if the singularly-imputed kty were equal to the real missing yk.   

 

The B is equation (5) is   

 

( ) 2
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T
t T
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B p p
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 

                                                                     (6) 

 

the so-called “between variance.” It estimates the contribution to variance caused by 

imputation in the theoretical construct MIp , which is what would result if multiple 

imputation had been conducted an infinite number of times. This contribution to variance 

is formally E[( MIp pF)
2
].    

 

3.  Prediction Modeling, Survey Weights, and Single Imputation  
 

Suppose every yk, whether item respondent or nonrespondent, is assumed to fit a 

prediction model of the form: 

 

yk  =  k + k,                                                                                             (7) 

  

where the k  are random variables with mean zero given k, and each k = (xk) is a 

function of a known row vector of covariates xk including 1 (or the equivalent), while  is 

an unknown column vector of parameters.   

 

Two common examples of the function (xk) are k =  xk, which can be reasonable 

when yk is continuous, and k =  (1 + exp(xk))
-1

, which can be sensible when yk is binary 

(0/1). We effectively limit our treatments here to these examples.  

 

Often xk = (xk1, xk2, …, xkG) is a vector of group-membership indicators (xkg = 1 when k is 

in group g, 0 otherwise).When these groups are mutually exclusive, equation (7) is a 

group-mean model.     

 

If the goal is to estimate the population mean of the yj, then the ideal imputation for a 

missing yk would be the predictive mean, k, assuming the prediction model in equation 

(7) is correct. But k is unknown because β is unknown. If b were a consistent estimator 

for β, then the estimated predictive mean, ˆ k = (xkb), would be a nearly (i.e., 

asymptotically) unbiased estimator for k. 

 

An intriguing method for determining b is given below. It incorporates both the sampling 

weights, dk, and estimates of the element probabilities of item response, k. We will 
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assume these ρk have been computed based on a quasi-random response model 

independent of the prediction model in equation (1).      

 

We propose finding a b that satisfies   

 

    
1 1

( ) ( ) ,k k

k k
k k k k k k k k kR S

d y d r y
 

 
    x b x x b x 0                   (8) 

 

where rk  is a random variable equal to 1 when k is an item respondent and 0 otherwise.  

 

The choice of the implicit weight wk = dk (1 )k k   in equation (8) assures us that  

 

  
1 1

ˆ ,k k

k k
k k k kR R

d y d
 

 
                                                              (9) 

 

where ˆ k = (xkb)  since effectively 1 is a component of xk.    

 

To see why this weighting may be useful will take a bit of work. Let us assume the quasi-

random model generating the element item-response probabilities is correct and ignore 

the finite-sample distinction between the k and the response probabilities they estimate 

(this distinction commonly goes away asymptotically). Let us also ignore the finite-

sample distinction between b and the solution, b
0
, to  

 

    01 ( )k k k k kS
d y   x b x 0 ,                                                  (10) 

 

where the left-hand side of equation (10) is the expectation under the response 

mechanism. Finally, assume that a solution to equation (8) exist whether or not the 

prediction model, E(yk) = (xkβ), holds.  

 

With this in mind, taking the response expectation of both sides of equation (9) reveals 

that  

  

ˆ(1 ) (1 ) .k k k k k kS S
d y d                                                      (11) 

  

The above is an approximate equality because of the finite-sample distinctions we are 

ignoring. This means that if the response model is correct, then imputing for missing yk 

with ˆ k  produces an unbiased estimator in some sense even if the prediction model in 

equation (7) does not hold.   

 

Similarly, if the item-response model does not hold, but the prediction model does, then 

this imputation approach is unbiased in a prediction-model sense. Consequently, using 

equation (8) to estimate b results in imputations that have been called “doubly protected” 

(or “doubly robust”) against item nonresponse. See, for example, Bang and Robins 

(2005).  
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4.  A Bootstrapped Version of Weighted Multiple Imputation 
 

As pointed out earlier, with multiple imputation a missing yk is imputed T times. Rather 

than deriving T estimates of k, a good multiple-imputation method provides T 

predictions of yk = k + k. We propose doing that using the following steps: 

 

1.  For each set of m imputations in Dt, draw a simple random sample with replacement of 

size r from the r elements in R.  This is called the t
th
 bootstrap respondent sample and is 

denoted by Rt. 

  

2.  Estimate bt for each t by replacing R is equation (8) with Rt (using k). 

 

3.  Compute ˆ kt = (xkbt) for each missing yk. 

 

4a. If y is binary (0/1), then independently set each ykt to 1 with probability ̂kt  and to 0 

otherwise.   

 

4b. If  y is continuous,  then  compute  ejt  =  yj  (xjbt)  for  every  unit  in  Rt.   Set   ykt =  

(xjbt) + e(k)t, where each of the m residuals e(k)t is selected from among the ejt in Rt with 

probability proportional to wj = dj(1−j)/j either with or without replacement.  

 

There are appealing alternatives to 4b (for example, ones that force ykt to be nonnegative 

when the y-values are all nonnegative), but the formulation the serves our immediate 

purposes. Observe that b satisfying equation (8) assures that the expected value of e(k)t 

under the selection mechanism in 4b is 0.   

 

Under a group-mean model with constant wj within groups, the bootstrap described above 

using Step 4b is very similar to the approximate Bayesian bootstrap (Rubin and Schenker 

1986) except that in that methodology a separate bootstrap sample is drawn in every 

group.         

 

The bootstrap selection mechanisms in Step 1 and both versions of 4 do not rely on 

questionable modeling assumptions. They are fully under our control. For simplicity, we 

will assume the same for the original sampling mechanism associated with the dk even 

though, in reality, it may incorporate unit-nonresponse adjustments.  

 

Suppose the full-item-response estimator is equation (2) is nearly unbiased under the 

sampling mechanism. We show in the next section that the multiple-imputation estimator 

in equation (4) is nearly unbiased in some sense if either the prediction model in equation 

(7) or the item-response model generating the j is correct. When only the prediction 

model is correct, the estimator is nearly unbiased under the combination of the original-

sampling and bootstrap selection mechanisms and the prediction model. When only the 

item-response model is correct, the estimator is nearly unbiased under the combination of 

the original-sampling, bootstrap, and item-response selection mechanisms.    
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5.  The Multiple-Imputation Variance Estimator  
 

5.1  The Decomposition 

Let MIp  be this idealized multiple-imputation estimator based on an infinite number of 

sets of imputations. Observe that  

 

( ) ( )MI M F Fp P p p p P      ,  

so that  
2 2 2( ) ( ) ( ) 2( )( ).MI MI F F MI F Fp P p p p P p p p P                             (12) 

 

Multiple-imputation attempts to estimate the expected value of the quantity on the left 

with equation (5). It does this by estimating the expectation of the first two terms on the 

right. These estimates are B and W in equation (5). The expectation of the third term in 

equation (12) is assumed to be asymptotically zero. It can be, as we shall see, when the 

expectation is taken over both the prediction and response models.    

 

It is not hard to see that the arithmetic mean of the infinite imputations for a missing yk 

described last section would be its estimated predictive mean, k. If (z) is a smooth 

function, then 

     
1

ˆ ˆ ˆ' ' ,T T
k k k k j j j j j j jR R
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

     x x x x  

 

where ˆ 'k is the first derivative of (xkb). Consequently,   
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while 

 

Fp P =  .
k k k k k kS S S

k k kS S S

d d d
p P P

d d d

     
       
   
   

  
  

                     (14) 

 

Since Fp  is an unbiased estimator for P, for MIp  to be doubly protected from 

nonresponse, we need the right-hand side of equation (13) to have mean zero under the 

prediction model, which it clearly does, and expectation near zero under the item-

response model, which we show soon.  Note that 
( )t
MIp  is an unbiased estimator for MIp  

under the bootstrap selection mechanisms, so T
MIp  is doubly protected when MIp  is.   
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5.2  The Last Term of Equation (12)  
Let us look first at the last term on the right-hand side of equation (12). This term needs 

to be small for the multiple-imputation variance estimator in equation (5) to be useful. 

Under the prediction model in equation (7), with uncorrelated k each with variance k
2
:
 

 

( )( )MI F FE p p p P

   
 

                                                                                  

 
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1
2 2 2
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ˆ ˆ' ' T T
k k k j j j j j j j j k kM R R M

kS

d w d w d

d


       



x x x x
.       (15) 

 

The right-hand side of equation (15) is not zero. To make it nearly so, we can assume the 

item-response model. We then have the asymptotic equalities:  

 
1 1

(1 ),k k

k k
k k k k k k k k k k kR S S S

w C d r C d C d C
 

 
         and    

(1 ) (1 ).k k k k k k k kM S S
d C d C r d C         

 

From this, we see that the numerator of the right-hand side of equation (15) is 

asymptotically equal to  

 

        
 

1
2 2

2 2
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     
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Recall that either a component of kx is 1 or the equivalent. This means there is a vector g 

such that kx g = 1T T
k g x  for all k. Accordingly, we can rewrite ˆ ' (1 )k k k kS

d   x  

as ˆ ' (1 )T T
k k k k kS

d   g x x . After some work, the expression above collapses to 0.  

 

Observe that when there is no explicitly postulated response model, the ρk are implicitly 

assumed to be identical. Put another way, nonresponse is assumed to be completely at 

random.   

 

5.3  A Domain Mean 

Even when both the prediction and response models are correct, the value of 

 ( )( )MI F FE p p p P   may not be nearly zero for a domain mean. This can happen 

because the estimation of the prediction-model parameter β uses respondent information 

from outside of the domain.  
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The equivalent of equation (15) in this context can be shown to be  

 

( )( )MI F FE p p p P   
 

                                                                                                   

 
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where zk = 1 when k is in the domain of interest, and 0 otherwise. Notice that zj is missing 

from 1ˆ( ' )T
j j j jR

w  x x .  This will tend to make the third component and the mean 

squared error of Mp  negative. As a result, the multiple-imputation mean-squared-error 

will tend to be biased upward. This bias will be ignorably small when zj is a component 

of xj and the domain has its own prediction model (e.g., each component of the x-vector 

that has a nonzero value for an element in the domain has zero values for every element 

outside the domain).   

 

5.4  Estimating the Between Variance   
Observe that arguments analogous to those used above to show that the right-hand side of 

equation (15) is approximately zero under the item-response model (except, sometimes, 

for a domain mean) can be applied to the right-hand side of equation (13). This is the last 

piece we needed to establish the double protection of the multiple-imputation 

estimator, T
MIp .  

 

Unfortunately, the square of that expression (which is the sum of the variances of 
1 1ˆ ˆ( ) ' ( ' )T T

k k k k j j j j j j jS M R R
d d w w      x x x x and 1( ) )k k kS M

d d    

is assured of having an expected value nearly equal to the expected value of B in equation 

(6) only when the original-sampling and bootstrap selection mechanisms are combined 

with the prediction model. Given that our bootstrap samples elements from the original 

respondent sample, the k may need to be uncorrelated. Moreover, for continuous 

variables, the variance of the k may need to be equal (to capture the variance of 
1( )k k kS M

d d    correctly). 

 

5.5  Estimating the Within Variance  
Let us now turn to the combined original-sampling/prediction variance of the without-

item-imputation estimator, pF. Assuming the k are uncorrelated, we can see from 

equation (14) that this combined variance is the sum of the variance of  

 

,
k kS

F
kS

d
p

d







 

 

under the original sampling mechanism and S dk
2
k

2
/(S dk)

2 
. When the y-variable is 

binary, k
2 

is a function or k, and our bootstrap imputation routine estimates k in a 

nearly unbiased fashion assuming the prediction model holds. In contrast to this, when 

the y-variable is continuous, W in equation (5) will be a nearly unbiased estimator of this 

sum when the k
2
 are constant but not necessarily otherwise.  
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6.  Concluding Remarks 
 

Although the bootstrap method introduced here to multiply impute for item nonresponse 

was essentially new, the results in the paper do no depend on it. Double protection for 

item nonresponse results only from the way the parameter  was estimated in equation 

(8). The limitations of the multiple-imputation variance estimator in equation (5) are 

inherent in the way the variance is decomposed in equation (12). They have little to do 

with how the components are estimated.   

 

If the only goal of imputation were to estimate population means (or totals), then one 

should impute for a missing yk with the estimated predictive mean, ˆ k = (xkb), where b 

satisfies equation (8). The resulting estimator would be doubly protected against 

nonresponse. Moreover, if the without-item-imputation estimator, pF, were unbiased 

under the original sampling mechanism (including, perhaps, weighting for unit 

nonresponse), then it would not be hard to derive a jackknife that estimates the combined 

sampling/ prediction-model variance in a nearly unbiased fashion.  In addition, the k can 

be hetero-scedastic and correlated within primary sampling units (but not across them).  

 

Although the double-protection against nonresponse bias from predictive-mean 

imputation as described above does not extend to an estimated domain mean when the 

membership indicator for the domain is not a covariate of the model, both the domain 

mean and its estimated jackknife variance can be nearly unbiased under the combination 

of the original sampling mechanism and the prediction model.  

 

Often one has additional goals in mind other than estimating means when imputing for 

item nonresponse in survey data. In particular, estimating the distribution of variables and 

the relationship between variables can also be of interest.    

 

Imputing for a missing continuous yk initially with ykt = (xjbt) + e(k)t is more conducive to 

the estimation of the distribution of the population y-values than predictive-mean 

imputation. By taking the mean of T such imputations, multiple-imputation almost 

perfectly let’s the user “have his cake and eat it too” (perfection obtains when T = ).   

 

A price the cake enthusiast apparently has to pay is to assume that the k are uncorrelated. 

If not, their correlation structure needs to be modeled and the impact of that structure 

worked into the imputation process. How to do such a thing is beyond the scope of this 

analysis.  

 

Assuming the k are uncorrelated, one may want to employ a different or more refined 

method for choosing the e(k)t than offered in Step 4b. Under a heteroscedastic error model, 

there are several things that can be done. When the k
2 
are known (or estimated) up to a 

constant multiple, one can replace Step 4b with  

 

4b*.  If  y  is continuous,  then  compute ejt  =  yj  (xjbt)  for  every unit  in  Rt.  Set  ykt  = 

 (xjbt) + ke(k)t /(k) where e(k)t is selected from among the ejt in the Rt with probabilities 

proportional to wj = jd j(1−j)/j either with or without replacement.  
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An appealing alternative that assumes only that the variance is a function of (xjb) is to 

sort both Rt and M by their respective (xjbt)-values, choose the donors using systematic 

probability sampling and assign them systematically to the missing yk.   

 

In a similar vein, one can sort the entire sample by their (xjb)-values, use this sort to 

divide the sample into G roughly-equal groups with limited variability of (xjb)-values 

within each group. One then remodels the yk using the group-mean model, draws 

bootstrap samples independently within each group, and uses these samples to create the 

donors as in Section 3. 

 

A little will be lost when the prediction model in equation (7) is correct, but if the 

functional form of (.) is other than what has been specified, this approach implicitly 

computes (and bootstraps) a locally linear approximation of the true functional form.   

 

Throughout this paper, we have ignored the issue of how to estimate the k. That was 

because any estimation method for the k that produces nearly unbiased estimates under 

the response model would be sufficient for our purposes.  For example, we employed the 

response model to show that the multiple-imputation variance estimator could be nearly 

unbiased when measuring the mean squared error under a combination of the sampling 

mechanism and prediction model. Since this mean squared error did not include a 

response-model component, estimating the response-model parameters has no large-

sample impact on its size. 
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