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Abstract
Statistical inference with missing data requires assumptions about the population or about the response probability. Doubly
robust (DR) estimators use both relationships to estimate the parameters of interest, so that they are consistent even when
one of the models is misspecified. In this paper, we propose a method of computing propensity scores that leads to DR
estimation. In addition, we discuss DR variance estimation so that the resulting inference is doubly robust. Some asymptotic
properties are discussed and results from two limited simulation studies are also presented.
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1. Introduction

Missing data occurs in surveys because some of the sampled units refuse to respond to the survey or because of
the inability to contact them. Dropout or noncompliance in clinical trials may also lead to missing responses for
some subjects. It is well known that unadjusted estimators may be heavily biased if the respondents differ from
the nonrespondents systematically with respect to the study variables. It is thus desirable to develop estimation
procedures exhibiting low biases.

Doubly robust estimation procedures have attracted a lot of attention in mainstream statistics in recent years;
e.g., Robins et al. (1994), Scharfstein et al. (1999), Tan (2006), Bang & Robins (2005), Kang & Schafer (2008),
Robins et al. (2008), Cao et al. (2009), among others. In the context of finite population sampling, doubly robust
estimation has been studied in Kott (1994), Kim & Park (2006), and Haziza & Rao (2006). In doubly robust
estimation, two models are introduced: (i) the nonresponse model that requires the specification of a nonresponse
model describing the unknown nonresponse mechanism and (ii) the outcome regression model approach that requires
the specification of a model describing the distribution of the study variable. An estimator is said to be doubly
robust if it remains asymptotically unbiased and consistent if either model (nonresponse or outcome regression) is
true. Doubly robust procedures offer some protection against misspecification of one model or the other. In the
context of finite population sampling Haziza & Rao (2006) and Kim & Park (2006) proposed doubly robust variance
estimators, provided the overall sampling fraction is negligible. In the first paper, the authors considered Taylor
linearisation procedures, whereas jackknife variance estimation was considered in the second paper.

In this paper, we consider doubly robust inference in the sense that the inference based on point estimator and
variance estimator is justified of either one of the two models, nonresponse model or outcome regression model,
holds. The proposed doubly robust variance estimator has a simple form that can be easily implemented using the
software for complete sample data.

2. Basic Setup

For simplicity, assume that we have n independent realizations of a random variable Y , denoted by y1, · · · , yn, from
a distribution and we are interested in estimating θ = E(Y ). In the absence of nonresponse to the study variable y,
the parameter θ is consistently estimated by the sample mean

θ̂n =
n∑

i=1

wiyi, (1)

where wi = 1/n. In Section2 and Section3, we set wi = 1/n. In Section4, we use a different set of weights wi as
we treat the problem of doubly robust inference in the finite population sampling context. In addition to the study
variable y, assume that a vector of auxiliary variables, denoted by x, is also available in the sample. Let δi be a
response indicator attached to unit i such that δi = 1 if yi is observed and δi = 0, otherwise. Instead of observing
(xi, yi) for the whole sample, we observe (xi, yi) for δi = 1 and observe only xi for δi = 0.

In this case, a natural approach for estimating θ consists of first postulating a model for the conditional distri-
bution of yi given xi. In particular, if we are only interested in the mean of the y-values, we consider the following
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model
E (yi | xi, δi = 0) = m (xi;β0) , (2)

where m (xi, β) is a continuous differentiable function of β. The model (2) is called the outcome regression model.
A natural estimator of θ is the so-called imputed estimator given by

θ̂I =

n∑
i=1

wi

{
δiyi + (1− δi)m(xi, β̂)

}
, (3)

where β̂ is a consistent estimator of the true parameter β0. Since

θ̂I − θ̂n = −
n∑

i=1

wi (1− δi)
{
yi −m(xi, β̂)

}
we have

E
{
θ̂I − θ̂n | δ1, · · · , δn, x1, · · · , xn

}
= −

n∑
i=1

wi (1− δi)
{
E (yi | xi, δi = 0)−m(xi, β̂)

}
,

where E(· | δ1, · · · , δn, x1, · · · , xn) denotes the conditional expectation with respect to the outcome regression con-
ditionally given δi and xi. Thus, the validity of the imputed estimator (3) follows if the outcome regression model

(2) is true and β̂ is a consistent estimator of β0. Often, a consistent estimator of β is obtained by solving

n∑
i=1

wiδi {yi −m (xi;β)}h(xi;β) = 0, (4)

for some h(xi;β), which is justified under the missing at random assumption that can be expressed as

E (yi | xi, δi = 1) = E (yi | xi, δi = 0) . (5)

Note that, under some regularity conditions, the solution β̂ to (4) is consistent for β0 if model (2) and the missing-
at-random condition (5) hold.

Now, suppose that the probability of response to the study variable y, denoted by pi = Pr (δi = 1 | i), follows a
logistic regression model

pi = pi(ϕ0) =
exp (ϕ′0xi)

1 + exp (ϕ′0xi)
(6)

for some ϕ0. The model (6) is called the nonresponse model. We assume that the intercept term is included in (6).
In the classical two-phase sampling setup, where the second-phase sample corresponds to the set of respondents, the
second-phase conditional inclusion probability pi is known and the two-phase regression estimator, given by

θ̂tp =

n∑
i=1

wi

[
m(xi; β̂) +

δi
pi

{
yi −m(xi; β̂)

}]

= θ̂n +
n∑

i=1

wi

(
δi
pi

− 1

){
yi −m

(
xi; β̂

)}
, (7)

is approximately unbiased for θ under the nonresponse model pi = Pr (δi = 1 | i) (Cochran, 1977) regardless of
whether or not the outcome regression model (2) holds. Also, when the nonresponse model is not correct, the

estimator is still approximately unbiased if (2) and (5) hold and β̂ is consistent for β0. Thus, θ̂tp is doubly robust in
the sense that it remains valid if either one of the two models holds.

When the response probability is estimated, rather than known, we consider a class of estimators of the form

θ̂DR(β̂, ϕ̂) = θ̂n +

n∑
i=1

wi

{
δi

pi(ϕ̂)
− 1

}{
yi −m

(
xi; β̂

)}
, (8)

indexed by (β̂, ϕ̂), where β̂ is consistent for β0 under the assumed outcome regression model and ϕ̂ is consistent for
ϕ0 under the assumed nonresponse model. As noted by Scharfstein et al. (1999), the double robustness property also

follows if pi is replaced by p̂i = pi(ϕ̂) using a consistent estimator ϕ̂ for ϕ0. Note that the doubly robust estimator,

θ̂tp(β̂, ϕ̂), in (8) is a class of estimators and different choice of (β̂, ϕ̂) leads to different doubly robust estimators.
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Scharfstein et al. (1999) and Haziza & Rao (2006) used ϕ̂ estimated by the maximum likelihood method and β̂
estimated by ordinary or iteratively reweighted least squares. Recently, Cao et al. (2009) proposed a doubly robust
estimator using the optimal score equation based on influence function theory. However, the optimal estimator of
Cao et al. (2009) is sub-optimal because they first estimate ϕ̂ by ϕ̂MLE obtained from the maximum likelihood

method and then seek for the optimal estimator in the class of estimators θ̂∗tp(β̂) = θ̂tp(β̂, ϕ̂MLE) as a function of β̂.

As discussed in Kim & Kim (2007), the choice of ϕ̂MLE does not necessarily lead to the optimal propensity score
estimators. Thus, we expect that the efficiency of the sub-optimal estimator of Cao et al. (2009) can be improved

for a suitable choice of ϕ̂.
We propose a new doubly robust estimator of the form (8) using a different choice of (β̂, ϕ̂). Some asymptotic

properties of the resulting doubly robust estimator are discussed in Section3. Also, we propose a new variance
estimator that is doubly robust in the sense that it remains consistent even when one of the outcome regression or
nonresponse models, is misspecified. Thus, the proposed point and variance estimation procedure leads to doubly
robust inference.

3. Main Results

Under the setup described in Section2, we propose a new imputed estimator θ̂I of the form (3) using (β̂∗, ϕ̂∗), where

(β̂∗, ϕ̂∗) is obtained by solving
n∑

i=1

wiδi

{
1

pi (ϕ)
− 1

}
{yi −m (xi;β)}xi = 0 (9)

and
n∑

i=1

wi

{
δi

pi (ϕ)
− 1

}
ṁ (xi;β) = 0. (10)

Because an intercept term is included in x, condition (9) implies that

n∑
i=1

wiδi
1

pi(ϕ̂∗)

{
yi −m(xi; β̂

∗)
}
xi =

n∑
i=1

wi

{
yi −m(xi; β̂

∗)
}
xi

and the imputed estimator (3) can be expressed as a doubly robust estimator of the form (8). Condition (9) has
been used in Scharfstein et al (1999) and Haziza & Rao (2006). Condition (10) is a calibration condition in the
sense that the propensity score adjusted estimator applied to ṁ (xi;β) leads to the complete sample estimator. For
example, consider the linear outcome regression model for which m(xi;β) = x′iβ. Then, condition (10) is equivalent
to

n∑
i=1

wi
δi

pi (ϕ)
xi =

n∑
i=1

wixi. (11)

Condition (11) has been used by Lannacchione et al. (1991) and Chang & Kott (2008) in the context of unit
nonresponse in the survey sampling context. From (11), it follows that estimates corresponding to the x-variables

do not suffer from nonresponse error. Thus, writing yi = x′iβ0 + ei, the imputed estimator θ̂I can be written as

θ̂I = θ̂n +
n∑

i=1

wi

{
δi

pi(ϕ̂∗)
− 1

}{
x′iβ0 − x′iβ̂

∗
}
+

n∑
i=1

wi

{
δi

pi(ϕ̂∗)
− 1

}
ei.

Note that the second term on the right hand side of the previous expression is equal to

n∑
i=1

wi

{
δi

pi(ϕ̂∗)
− 1

}
x′i

{
β0 − β̂∗

}
= 0 (12)

if (10) holds. Thus, under (10),

θ̂I = θ̂n +
n∑

i=1

wi

{
δi

pi(ϕ̂∗)
− 1

}
ei.
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and the variability associated with β̂ can be safely ignored. On the other hand, using the fact ∂p−1
i (ϕ) /∂ϕ =

−
{
p−1
i (ϕ)− 1

}
xi under the nonresponse model (6), we can apply the Taylor expansion to get

θ̂I = θ̂n +
n∑

i=1

wi

{
δi

pi(ϕ∗)
− 1

}
ei −

n∑
i=1

wiδi

{
1

pi(ϕ∗)
− 1

}
eixi

(
ϕ̂− ϕ∗

)
+Op

(
n−1

)
, (13)

where ϕ∗ is the probability limit of ϕ̂∗. Using condition (9), it can be shown that

n∑
i=1

wiδi

{
1

pi(ϕ∗)
− 1

}
eixi = op (1)

and (13) reduces to

θ̂I = θ̂n +

n∑
i=1

wi

{
δi

pi(ϕ∗)
− 1

}
ei + op

(
n−1/2

)
(14)

and the variability associated with ϕ̂∗ can also be safely ignored.
The following theorem extends the above results to the general form of E(yi | xi) = m(xi;β0). The proof of

Theorem 1 is stated in Appendix A.

Theorem 1 Under the regularity conditions stated in Appendix A, we have

√
n
{
θ̂I − θ̃I

}
= op (1) (15)

where

θ̃I =
n∑

i=1

wi

[
m (xi;β

∗) +
δi

pi (ϕ∗)
{yi −m (xi;β

∗)}
]

(16)

and β∗ is the probability limit of β̂.

Note that the probability statement in (15) is made in the doubly robust sense that the convergence in probability
holds if one of the two models is true. If the reference distribution in (15) is with respect to the outcome regression
model (2), then β∗ = β0. If the reference distribution in (15) is with respect to the nonresponse model (6), then
ϕ∗ = ϕ0. When the two models are true, then (β∗, ϕ∗) = (β0, ϕ0) and the variance of θ̃ is equal to

V
(
θ̃I

)
= V

(
θ̂n

)
+ E

[
n∑

i=1

w2
i

{
pi(ϕ0)

−1 − 1
}
e2i

]
(17)

where ei = yi −m(xi;β0). Under simple random sampling, the variance (17) is equal to the semiparametric lower
bound of the asymptotic variance and, as a result, is locally efficient (Robins et al. 1994).

If we define

ηi (β, ϕ) = m (xi;β) +
δi

pi (ϕ)
{yi −m (xi;β)} , (18)

then (15) means that
n∑

i=1

wiηi(β̂
∗, ϕ̂∗) =

n∑
i=1

wiηi (β
∗, ϕ∗) + op

(
1√
n

)
.

Thus, if (xi, yi, δi) are independently and identically distributed, then ηi(β
∗, ϕ∗) are independently and identically

distributed, even though ηi(β̂
∗, ϕ̂∗) are not necessarily independently and identically distributed. Because ηi (β

∗, ϕ∗)
are independently and identically distributed, we can apply the central limit theorem and the Slutsky theorem to
get √

n
(
θ̂I − θ

)
→L N

(
0, σ2

)
, (19)

where →L denotes the convergence in distribution and σ2 = V ar {ηi(β∗, ϕ∗)}. Furthermore, since ηi(β
∗, ϕ∗) are

independently and identically distributed with bounded fourth moments, we can apply the standard complete sample
method to estimate the variance of θ̃I =

∑n
i=1 wiηi (β

∗, ϕ∗). That is,

V̂ (β∗, ϕ∗) =
1

n

1

n− 1

n∑
i=1

(ηi − η̄n)
2
, (20)
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where ηi = ηi(β
∗, ϕ∗) and η̄n = n−1

∑n
i=1 η̂i, satisfies

p lim
n→∞

V̂ (β∗, ϕ∗)/V = 1,

where V = V ar
{
n−1

∑n
i=1 ηi (β

∗, ϕ∗)
}
= n−1σ2. Therefore, by the Slutsky theorem again, we have

θ̂I − θ√
V̂ (β̂∗, ϕ̂∗)

→L N (0, 1) . (21)

The asymptotic result in (21) can be used to construct the confidence interval for θ = E(Y ). The reference
distribution in (21) is either the outcome regression model or the nonresponse model.

4. Extension to finite population sampling

In this section, we consider the problem of doubly robust inference in the finite population sampling context.
Consider a finite population U of size N . We are interested in estimating the mean of the finite population,
θN = N−1

∑
i∈U yi. To that end, a sample s, of size n is selected according to a given sampling design p(s). In

the complete data situation, a basic estimator is the expansion estimator given by (1) with wi = 1/(Nπi), where πi
denotes the first-order inclusion probability of unit i in the sample. In the presence of nonresponse to the y-variable,
the imputed estimator θ̂I of θN is given by (3) with wi = 1/(Nπi). Note that θ̂I reduces to θ̂n in the complete data
case (i.e., when δi = 1 for all i).

In the finite population sampling, the set of respondents can be viewed as the result of a three-stage process.
First, the finite population is generated from an infinite population according to a given model. Then, a sample
s of size n, is selected from the finite population according to a given sampling design p(s). Finally, the set of
respondents is generated from s according to the unknown nonresponse mechanism. Therefore, we identify three
sources of randomness: (i) the model m, which generates the vector of population values YU = (y1, ..., yN )′; (ii)
the sampling design p(s), which generates the vector of sample indicators IU = (I1, ..., IN )′ such that Ii = 1 if unit
i is selected in the sample and Ii = 0, otherwise; (iii) the nonresponse mechanism, which generates the vector of
response indicators δU = (δ1, ..., δN )′. Here, the response indicator δi is defined for all the population units.

We discuss the asymptotic properties of the imputation estimator θ̂I of the form (3) using (β̂∗, ϕ̂∗), where

(β̂∗, ϕ̂∗) is obtained by solving simultaneously (9) and (10). Again, under some regularity conditions, the asymptotic
equivalence in (15) holds and the resulting imputed estimator is doubly robust.

Traditionally, the total variance of the imputed estimator θ̂I has been expressed as the sum of the sampling
variance and the nonresponse variance. This decomposition of the total variance results from viewing nonresponse
as a second-phase of selection. For this reason, this framework is often called the two-phase framework; e.g., Rao &
Shao (1992), Särndal (1992) and Deville & Särndal (1994), among others. In this paper, we consider an alternative
framework, which we call the reverse framework ; e.g., Fay (1992), Shao & Steel (1999) and Kim & Rao (2009). It
consists of viewing the situation prevailing in the presence of nonresponse as follows: first, applying the nonresponse
mechanism, the finite population U is randomly divided into a population of respondents Ur and a population of
nonrespondents Um. Then, given (Ur, Um), a sample s, containing both respondents and nonrespondents, is selected
from U according to the given sampling design.

Under the nonresponse model approach, the total variance of θ̂I can be expressed as

V NM
T = V NM

1 + V NM
2 , (22)

where V NM
1 = E{V (θ̂I | YU , XU , δU )|YU , XU} and V NM

2 = V {E(θ̂I | YU , XU , δU )|YU , XU} with XU = (x1, ..., xN )′.

Under the outcome regression model approach, the total variance of θ̂I can be expressed as

V IM
T = V IM

1 + V IM
2 , (23)

where V IM
1 = E{V (θ̂I − θN | YU , XU , δU ) | XU , δU} and V IM

2 = V {E(θ̂I − θN | YU , XU , δU ) | XU , δU}. An
estimator of V NM

T (respectively V IM
T ) is thus obtained by estimating separately V NM

1 and V NM
2 (respectively V IM

1

and V IM
2 ). Under mild regularity conditions, the component V NM

1 (respectively V IM
1 ) is of order O

(
n−1

)
, whereas

the components V NM
2 (respectively V IM

2 ) is of order O
(
N−1

)
. Therefore, the contribution of V NM

2 (respectively

V IM
2 ) to the total variance, V NM

2 /V NM
T (respectively V IM

2 /V IM
T ) is of order O

(
N−1n

)
and is negligible when the

sampling fraction n/N is negligible.
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In order to estimate either V NM
1 or V IM

1 , it suffices to estimate V (θ̂I |YU , XU , δU ), which represents the variance

due to sampling conditional on YU , XU and δU . Once again, we can apply Theorem 1, which states that θ̂I is asymp-
totically equivalent to θ̃I given by (16). As a result, we can approximate V (θ̂I |YU , XU , δU ) by V (θ̃I |YU , XU , δU ).
For example, for a fixed size or random size without replacement sampling design, we have

V (θ̃I |YU , XU , δU ) =
1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)
ηi
πi

ηj
πj
, (24)

where ηi is given by (18) and πij denotes the second order inclusion probability for units i and j. An estimator of

V NM
1 (respectively V IM

1 ), denoted by V̂1, is then given by

V̂1 =
1

N2

∑
i∈s

∑
j∈s

(πij − πiπj)

πij

η̂i
πi

η̂j
πj
,

where η̂i is obtained from ηi by replacing (β0, ϕ0) with (β̂∗, ϕ̂∗). Note that V̂1 is obtained by applying a standard
variance estimation methods to η̂i in the sample. Under mild regularity conditions (e.g., Deville, 1999), the estimator
V̂1 is consistent for either V NM

1 or V IM
1 regardless of the validity of the assumed nonresponse model and imputation

model. Consistency of V̂1 follows from standard regularity conditions used in the complete data case. If the sampling
fraction n/N is negligible, a consistent estimator of the total variance of θ̂I (under either the nonresponse model
approach or the outcome regression model approach) is given by V̂1.

When the sampling fraction is not negligible, we must take the term V NM
2 into account (in the case of the

nonresponse model approach) or V IM
2 (in the case of the outcome regression model approach). Once again, we use

the asymptotic equivalence between θ̂I and θ̃I established in Theorem 1. First, we have

E(θ̃I − θN |YU , XU , δU ) =
1

N

∑
i∈U

(η∗i − yi),

where η∗i = ηi(β
∗, ϕ∗) is defined in (18). Under the nonresponse model,

V NM
2 = V

{
E(θ̃I − θN |YU , XU , δU )|YU , XU

}
=

1

N2

∑
i∈U

pi(1− pi)

p2i
{yi −m(xi, β

∗)}2.

Thus, an estimator of V NM
2 , denoted by V̂2, is given by

V̂2 =
1

N2

∑
i∈s

π−1
i δi

(1− pi(ϕ̂))

pi(ϕ̂)2
ê2i , (25)

where êi = yi −m(xi, β̂). Because (β̂∗, ϕ̂∗) is a consistent estimator of
(
β∗, ϕ̂0

)
under the nonresponse model, V̂2

in (25) is asymptotically unbiased and consistent for V NM
2 under the nonresponse model. Therefore, a consistent

estimator of the total variance under the nonresponse model is given by

V̂T = V̂1 + V̂2. (26)

To see if V̂T in (26) is doubly robust, we need to check if V̂2 in (25) is consistent for V IM
2 under the outcome

regression model. Note that

V IM
2 = V

{
E(θ̃I − θN |YU , XU , δU ) | XU , δU

}
=

1

N2

∑
i∈U

{
δi

pi(ϕ∗)
− 1

}2

V (yi | xi)

=
1

N2

∑
i∈U

{
δi

pi(ϕ∗)2
− 2δi
pi(ϕ∗)

+ 1

}
V (yi | xi). (27)

Thus, the asymptotic bias of V̂2 in (25) as an estimator of V IM
2 under the outcome regression model is

E
{
V̂2

}
− V IM

2
.
=

1

N2

∑
i∈U

E

{
δi

pi(ϕ∗)
− 1

}
V (yi | xi). (28)
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Thus, under the outcome regression model, if we further assume that

V (yi | xi) = ψ(xi;α0)

for some α0 and a consistent estimator α̂0 is available, then the right side of (28) can be estimated by

B̂
(
V̂2

)
=

1

N2

∑
i∈s

π−1
i

{
δi

pi(ϕ̂∗)
− 1

}
ψ(xi; α̂). (29)

Note that the expected value of the estimated bias term in (29) is asymptotically equal to zero under the nonresponse

model because pi(ϕ̂
∗) converges to the true response probability. Thus, a bias-adjusted estimator of the total variance

V̂T = V̂1 + V̂2 − B̂
(
V̂2

)
(30)

is doubly robust.

5. Simulation Study

To test our theory, we performed two limited simulation studies. The first simulation study, presented in Section5.1,
compares the performance of several point and variance estimators in the infinite population set-up. In Section5.2,
the case of finite population sampling is considered.

5.1 Infinite population set-up

In the first simulation, the simulation study can be described as a 2×2×5 factorial design with B = 5,000 replication
within each cell. The factors are two types of sampling distributions, two types of the nonresponse mechanisms,
and five types of point estimators. For the sampling distributions, the first was generated from a linear regression
model, whereas the second was generated according to a non-linear model. For the linear model, we used

yi = 1 + x1i + ϵi, (31)

where x1i ∼ N(1, 1), ϵi ∼ N(0, 1), and x1i and ϵi are independent. For the non-linear model, we used the same x1i
and ϵi, but yi was generated independently according to

yi = 0.5(x1i − 1.5)2 + ϵi. (32)

Two sets of random sample of size n = 500 were separately generated from the two models. From each sample, we
generated two types of the respondents from Bernoulli(p1i) (Type A) and Bernoulli(p2i) (Type B), respectively,
where logit (p1i) = x2i and logit (p2i) = −0.5 + 0.5(x2i − 2)2, where x2i ∼ exp(1) and x2i is independent of (x1i, ϵi).
The overall response rates were about 60% in both cases.

In each sample, we computed five estimators for θ = E(Y ).

1. Complete sample estimator (ȳ = n−1
∑n

i=1 yi).

2. The proposed doubly robust estimator. (New)

3. The doubly robust estimator proposed by Haziza & Rao (2006). (HR)

4. The doubly robust estimator proposed by Cao et al. (2009). (CTD)

5. The doubly robust estimator proposed by Tan (2006). (Tan)

We considered three scenarios at the estimation stage:

1. Scenario 1: Both models are correct. That is, the sample was generated from (31) and the respondents were
generated from the Type A model. The “working” outcome regression model is E(yi | x1i) = β0 + β1x1i and
the “working” response model is δi ∼ Bernoulli(pi) with logit(pi) = ϕ0 + ϕ1x2i.

2. Scenario 2: Only the outcome regression model is correct. That is, we used the same working models in
Scenario 1 but the sample was generated from (31) and the respondents were generated from the Type B
model.
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Table 1: Monte Carlo average and variance of the point estimators, based on 5,000 Monte Carlo samples
Scenario Method Mean Variance Standardized

Variance
Sample Mean 2.00 0.003925 100

1 New 2.00 0.005524 141
CTD 2.00 0.005907 150
HR 2.00 0.005524 141
Tan 2.00 0.005530 141

Sample Mean 2.00 0.003925 100
New 2.00 0.005278 134

2 CTD 2.00 0.005287 135
HR 2.00 0.005360 137
Tan 2.00 0.005623 143

Sample Mean 0.62 0.003466 100
3 New 0.62 0.005936 171

CTD 0.62 0.006540 189
HR 0.62 0.005939 171
Tan 0.62 0.005942 171

3. Scenario 3: Only the nonresponse model is correct. That is, we used the same working models in Scenario 1
but the sample was generated from (32) and the respondents were generated from the Type A model.

For the three estimators (HR, CTD, Tan),
(
ϕ̂0, ϕ̂1

)
was computed by the maximum likelihood method but,

whereas it was computed by solving
n∑

i=1

δi
pi(ϕ)

(1, x2i) =
n∑

i=1

(1, x2i) (33)

for the New estimator, where ϕ = (ϕ0, ϕ1). Once the p̂i’s were computed, both HR and the New methods used

(β̂0, β̂1) given by

(β̂0, β̂1)
′ =

{
n∑

i=1

δi
(
p̂−1
i − 1

)
xix

′
i

}−1 n∑
i=1

δi
(
p̂−1
i − 1

)
xiyi, (34)

where xi = (1, x1i)
′
. For the CTD estimator, we used

(β̂0, β̂1, ĉ0, ĉ1)
′ =

{
n∑

i=1

δip̂
−1
i

(
p̂−1
i − 1

)
x̃ix̃

′
i

}−1 n∑
i=1

δip̂
−1
i

(
p̂−1
i − 1

)
x̃iyi, (35)

where x̃i = (1, x1i, p̂i, p̂ix2i)
′
. The doubly robust estimator of Tan (2006) is computed by

θ̂tan =
1

n

n∑
i=1

δiyi
p̂i

− 1

n

n∑
i=1

(
δi
p̂i

− 1

)(
k̂0 + k̂1m̂i

)
where m̂i = β̂0 + β̂1x1i and

(k̂0, k̂1, ĉ0, ĉ1)
′ =

{
n∑

i=1

δip̂
−1
i

(
p̂−1
i − 1

)
z̃iz̃

′
i

}−1 n∑
i=1

δip̂
−1
i

(
p̂−1
i − 1

)
z̃iyi, (36)

where z̃i = (1, m̂i, p̂i, p̂ix2i)
′
.

Table 1 presents the Monte Carlo averages and variances of five estimators under three different scenarios.
The four doubly robust estimators (New, HR, CTD, and Tan) were all approximately unbiased in all the scenarios,
illustrating that they are doubly robust. Turning to relative efficiency, both the HR estimator and the New estimator
showed similar performances and were more efficient than the CTD estimator and Tan’s estimator in all the scenarios.
In scenario 2, the New estimator performed the best since the calibration condition can be justified as the optimality
condition when the outcome regression model is true. Tan’s estimator showed slightly higher variance under scenario
2, whereas the CTD estimator had slightly higher variance under scenario 3.
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Table 2: Monte Carlo percent relative bias of the two variance estimators, based on 5,000 Monte Carlo samples
Sample Scenario Method Relative
Size Bias (%)

1 New 2.27
CTD 5.75

500 2 New 4.69
CTD 3.33

3 New -0.04
CTD 8.27

We now turn to variance estimation. We computed variance estimators for both the CTD and the New estimators.
The variance estimator proposed by Cao et al. (2009) was computed using (20) with

ηi = m(xi; β̂) +
δi
p̂i

{
yi −m(xi; β̂)

}
− ĉ′ (δi − p̂i) (1, x2i)

′
,

where β̂ = (β̂0, β̂1) and ĉ = (ĉ0, ĉ1) were computed from (35). The variance estimator for the New estimator was
computed using (20) with

ηi = m(xi; β̂) +
δi
p̂i

{
yi −m(xi; β̂)

}
(37)

and β̂ = (β̂0, β̂1) is given by (34). In (37), we obtained p̂i using the maximum likelihood method. Variance estimation
in the context of Tan’s estimator was not covered here as Tan (2006) did not discuss variance estimation.

Table 2 presents the Monte Carlo bias of the variance estimators of the CTD and the New estimators. The
proposed variance estimator corresponding to the New estimator showed small relative biases (less than 5% in
absolute values) in all the scenarios. Thus, the results from this study suggests that the variance estimator for the
New estimator is doubly robust. The variance estimator for CTD method showed some modest bias (8.27%) under
scenario 3.

5.2 Finite population set-up

We generated two finite populations of size N = 5000. In each population, we generated 4 variables: a variable of
interest y and three auxiliary variables x1, x2 and x3. First, the x1 and x3-values were generated from a Gamma
distribution with parameters 2 and 2. The x2-values were generated from a Gamma distribution with parameters
25 and 2. Given the x1-values, the y-values were generated according to the linear model

yi = 1 + x1i + 1.8ϵi,

for population 1 and according to the nonlinear model

yi = 0.5 (x1i − 1.5)
2
+ ϵi,

for population 2. where the ϵi’s were generated from a normal distribution with mean 0 and variance 1. Note that
in each population, the model linking y and x1 possesses an homoscedastic variance structure.

In both populations, the x2-values were then sorted in ascending order and were partitioned into 4 strata
U1, U2, U3 and U4 of size N1 = 2500, N2 = 1000, N3 = 1000 and N4 = 500, respectively. For population 1,
the coefficient of determination (R2) of the model linking y and x1 varied from 0.75 to 0.81 across strata, whereas
it varied from 0.72 to 0.76 for population 2.

The objective consisted in estimating the finite population mean θN = N−1
∑

i∈U yi. From the population, we
generated R = 5, 000 samples according to stratified simple random sampling without replacement. That is, in each
stratum, a simple random sample sh of size nh was selected from Uh, h = 1, 2, 3, 4. Equal allocation (i,.e. equal
values of nh) was used with nh = 125 and nh = 250, which correspond to an overall sampling fraction of 10% and
20%, respectively. In each selected sample, nonresponse to the study variable y was generated according to the
nonresponse mechanism

logit (pi) = 2− x1i

for population 1 and
logit (pi) = (x1i − 1.5)2
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Table 3: Working models used for estimation
Population Scenario Nonresponse working Outcome regression working

model model
1 1 logit (pi) = ϕ0 + ϕ1x1i yi = λ0 + λ1x1i

2 logit (pi) = ϕ0 + ϕ1x1i yi = λ0 + λ1x3i
3 logit (pi) = ϕ0 + ϕ1x3i yi = λ0 + λ1x1i

2 4 logit (pi) = ϕ0 + ϕ1x1i + ϕ2x
2
1i yi = λ0 + λ1x1i + λ2x

2
1i

5 logit (pi) = ϕ0 + ϕ1x1i + ϕ2x
2
1i yi = λ0 + λ1x1i + λ2x3i

6 logit (pi) = ϕ0 + ϕ1x1i + ϕ2x3i yi = λ0 + λ1x1i + λ2x
2
1i

for population 2. The values of the parameters in the previous two expressions were chosen so that, within each
stratum, the response rate was approximately equal to 70%.

We computed three estimators of the mean based on the working models presented in Table 3: (i) the complete
sample estimator given by (1) with wi = 1/(Nπi); (ii) the estimator proposed by Haziza & Rao (HR) and (iii) the
proposed estimator (New).

Finally, in each sample, we computed the estimator of the total variance given by (30). Note that, in order to
compute (29), we used

ψ(xi; α̂) =

∑
i∈s wiδie

2
i∑

i∈s wiδi
,

where ei denotes the residual attached to unit i obtained after fitting the working outcome regression model.
For each population, we considered three types of scenarios:

(i) Scenarios 1 and 4: Both the nonresponse model and the outcome regression model were correctly specified.

(ii) Scenario 2 and 5: Only the nonresponse model was correctly specified.

(iii) Scenario 3 and 6: Only the outcome regression model was correctly specified.

For each scenario, the working models are presented in Table 3.
Table 4 presents the Monte Carlo averages and variances of three estimators under six different scenarios. Both

the HR and the New estimator showed negligible bias in all six scenarios, which is a clear indication that both
estimators are robust to misspecification of either one model or the other. In terms of stability, the two estimators
showed almost identical performances, with, in some cases, a slight advantage for the New estimator.

Table 5 show the Monte Carlo percent relative bias of the proposed variance estimator. We note that it performs
relatively well in all the scenarios (with a relative absolute bias less than 6.02 %), which illustrates that it is doubly
robust.

6. Concluding remarks

In this paper, we proposed a new doubly robust estimator that showed good finite sample performances in simulation
studies. The resulting variance estimator is also doubly robust and can be readily implemented using complete data
software, which is attractive from a data user’s perspective. The proposed doubly robust estimator can be obtained
by obtaining (β̂, ϕ̂) from (9) and (10). Condition (10) is called the calibration condition and can often lead to an
efficient estimator. In particular, if the “working” outcome regression model is a linear regression model E(yi) = xiβ,
then condition (10) is the typical calibration condition using xi as the control variable. In this case, if the working
regression model is good, then the resulting estimator is efficient. In the extreme case of yi = xiβ, which means a
perfect fit using xi, the resulting estimator is algebraically equal to θ̂DR =

∑n
i=1 wiyi, showing that the resulting

doubly robust estimator is fully efficient when the outcome regression model is perfect. This type of consistency,
so-called external consistency, does not hold for the other doubly robust estimators considered in this paper.

In the simulation studies, the new method showed better efficiency than the other doubly robust estimators in
most cases, but there is no guarantee that it is optimal uniformly. Further investigation in this direction may be a
topic of future research.
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Table 4: Monte Carlo average and variance of the point estimators, based on 5,000 Monte Carlo samples
Scenario Method Mean Variance Standardized Mean Variance Standardized

Variance Variance

nh = 125 nh = 250
Complete 5.01 0.02751 100 5.01 0.0130 100

1 New 5.01 0.03355 122 5.01 0.01586 122
HR 5.01 0.03355 122 5.01 0.01586 122

Complete 5.01 0.02802 100 5.01 0.01275 100
2 New 5.01 0.03446 123 5.01 0.01568 123

HR 5.01 0.03502 125 5.01 0.01593 125
Complete 5.01 0.02851 100 5.01 0.01281 100

3 New 5.00 0.03364 118 5.01 0.01524 119
HR 5.00 0.03364 118 5.01 0.01524 119

Complete 0.62 0.00241 100 0.62 0.00115 100
4 New 0.62 0.00279 116 0.62 0.00135 118

HR 0.62 0.00279 116 0.62 0.00135 118
Complete 0.62 0.00229 100 0.62 0.00108 100

5 New 0.62 0.00267 117 0.62 0.00126 117
HR 0.62 0.00267 117 0.62 0.00126 117

Complete 0.62 0.00240 100 0.62 0.00105 100
6 New 0.62 0.00261 109 0.62 0.00123 118

HR 0.62 0.00261 109 0.62 0.00123 118

Table 5: Monte Carlo percent relative bias of the proposed variance estimator, based on 5,000 Monte Carlo samples
Scenario nh = 125 nh = 250

1 -1.80 -2.51
2 3.85 5.44
3 -5.11 -3.55
4 -4.12 -2.15
5 5.24 6.02
6 -0.96 -0.33
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Appendix 1

Asymptotic properties

Before deriving the asymptotic properties of θ̂I , we assume the following regularity conditions.

(C.1) The response probability is bounded below; that is, there is a fixed constant KB such that π−1
i < KB for all

i = 1, 2, · · · , n uniformly.

(C.2) The assumed response probability function pi(ϕ) is differentiable with continuous first order partial derivatives
for all ϕ.

(C.3) The solution
(
β̂∗, ϕ̂∗

)
to (9) and (10) is uniquely determined and satisfies (β̂∗, ϕ̂∗) = (β∗, ϕ∗) + op(1) for some

(β∗, ϕ∗).

(C.4) The mean function m(xi;β) is twice differentiable with continuous second-order partial derivatives for all β.

(C.5) W (β) = (X,Y,m(x;β), ṁ(x;β)) has finite fourth moment for all β.

To prove Theorem 1, first write the imputed estimator as θ̂I = θ̂I(β̂
∗, ϕ̂∗), where (β̂∗, ϕ̂∗) is the solution to (9)

and (10). Now, if we define

U (β, ϕ) =
n∑

i=1

wi

(
δi

pi(ϕ)
− 1

)
{yi −m (xi;β)} ,

we can express θ̂I(β̂
∗, ϕ̂∗) as

θ̂I(β̂
∗, ϕ̂∗) = θ̂n + U(β̂∗, ϕ̂∗). (38)

Note that U (β, ϕ) satisfies

∂

∂ϕ
U (β, ϕ) = −

n∑
i=1

wiδi

{
1− pi(ϕ)

pi(ϕ)

}
{yi −m (xi;β)}xi

and
∂

∂β
U (β, ϕ) = −

n∑
i=1

wi

{
δi

pi(ϕ)
− 1

}
ṁ (xi;β) .

Thus, conditions (9) and (10), are equivalent to

∂

∂(β, ϕ)
U (β, ϕ) = 0. (39)

Because of the existence of the second moment of the partial derivatives in (39), standard arguments for the asymp-

totic normality of (β̂∗, ϕ̂∗) can be used to show that

(β̂∗, ϕ̂∗)− (β∗, ϕ∗) = Op

(
n−1/2

)
. (40)

Because (β̂∗, ϕ̂∗) satisfies (39), its probability limit (β∗, ϕ∗) satisfies

E

{
∂

∂(β, ϕ)
U (β, ϕ) | β = β∗, ϕ = ϕ∗

}
= 0. (41)

Condition (41) implies that the contribution due to estimating the parameters (β, ϕ) is negligible in the asymptotic
distribution of U (β, ϕ). Condition (41) is often called Randles (1982) condition. Results (40) and (41) implies that

U(β̂∗, ϕ̂∗) = U(β∗, ϕ∗) + op(n
−1/2). (42)

Therefore, combining (38) and (42), we prove (15).
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