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1. Introduction 

 

Various government agencies (e.g., the United States Census Bureau, USDA‟s National 

Agricultural Statistics Service (NASS), Statistics Canada and the Central Statistical Office of 

the United Kingdom) are  required to produce reliable small-area statistics. A small-area 

generally refers to a geographical entity (e.g., county) for which limited information is 

available from the primary source of data. Accurate small-area statistics are needed for 

regional planning and fund allocation in many government programs and thus their 

importance cannot be overemphasized.  County estimates of crop parameters such as yield 

are used by farmers, agribusinesses and government agencies for local agricultural decision 

making. 

 

NASS has been publishing county level crop and livestock inventories since 1917 (see Iwig, 

1993). The main source of data used by the agency for commodity estimation has always 

been its surveys of farmers, ranchers and agribusiness managers who provide requested 

information on a voluntary, confidential basis. Since surveys designed and conducted at the 

national and state levels are seldom adequate for obtaining reliable county level estimates, 

NASS has made extensive use of ancillary data sources such as list sampling frame control 

data, previous year estimates, earth observing satellite data and census of agriculture data in 

its county estimation procedures.    

 

The basic county estimation approach used by NASS has remained relatively unchanged 

over the years. The procedure for estimating totals such as crop acreages and livestock 

inventories initially involves scaling the survey estimates and other available administrative 

data at the county level for consistency with official state level estimates. The scaled 

estimates are composited together (usually with previous year estimates) to produce county 

level estimates for the current year, which are checked against available administrative data 

sources that are considered reliable indicators of minimum levels and modified if necessary. 

Program changes over the years have been driven by advances in data storage and 

processing technology as well as improvements in sampling frame and sample selection 

methodology, most notably the introduction of probability based sampling by NASS in the 

1950s and 60s and multiple frame (area and list) methods in the 1970s.   

 

NASS field offices (located in 45 states) have the task of producing estimates of various crop 

and livestock items at the county level within their respective states. Each field office 

conducts a separate annual County Estimates Survey (CES). Since 2002, multivariate 

probability proportional to size (MPPS) sampling has been used to select the CES samples of 

farms, with questionnaires mailed out to the operators and telephone followups done where 

necessary. Data from other NASS surveys (such as the September and December Quarterly 

Agricultural Surveys (QAS) and January Cattle Survey)  are merged with the CES sample to 

form a combined data set which is then used to calculate various commodity indications at 

the county level. Final county estimation usually takes place after the QAS-based state level 

estimates have been released. The main software tool employed by the field offices is the 

Database Integrated County Estimates (DICE) system, a client-server type system that 

processes input indications from all internal and external data sources used. Outputs of the 

DICE system are used to set final official county estimates subject to certain consistency and 

confidentiality requirements. For example, county estimates are constrained to sum to 
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official district (subdivision of a state into agricultural regions) and state level totals. The 

census of agriculture (conducted twice each decade by NASS in years ending in „2‟ and „7‟) 

serves as a useful benchmark for county estimation.  

 

In general, traditional direct methods that utilize only small-area specific survey data are 

highly unreliable, mainly due to small sample sizes in the areas of interest. In addition, 

effects of nonsampling errors such as coverage and nonresponse can be severe, and 

combining data from several different surveys doesn‟t often resolve this problem 

satisfactorily. In order to improve on direct estimation, several indirect and model-based 

methods have been proposed in the literature. These procedures essentially use implicit or 

explicit models that borrow strength from related resources such as administrative and 

census records and survey data from previous years. Rao (2003) and Jiang and Lahiri (2006) 

provide comprehensive reviews of different small-area estimation methods and applications.  

 
A number of small-area methods have been proposed over the years for  county estimation 

of crop items.  Stasny, Goel, and Rumsey (1991) developed a unit level regression model to 

produce county regression synthetic estimates of wheat production in Kansas.  Stasny, Goel, 

Cooley and Bohn (1995) proposed a more sophisticated unit level Bayesian mixed effects 

model (with a simple spatial component) for estimating crop yields.  Griffith (1999, 2001) 

considered a small-area unit level model that allows for both temporal and spatial 

correlations. Comparisons of different methods are provided by Crouse (2000) and Bellow 

(2007).  

 

Data from multiple sample surveys (such as the Acreage and Production Survey (APS) and 

QAS) are used to estimate harvested yield for various crops at the county level. Currently, 

standard design-based estimates of soybean harvested yield cannot be obtained from the 

database since survey weights are not available.  The main component of the data is the 

APS, which is also subject to high nonresponse rates and coverage bias. Kott (2009) 

proposed a model-based direct estimator of crop items such as harvested yield, based on a 

county specific regression model with heteroscedastic error variances using size variables 

from the sampling frame. This method (known as Kott-Busselberg) is direct since estimation 

is based on county specific data for the commodity in question.  In a previous study, the 

Kott-Busselberg (KB) estimator of harvested yield exhibited bias when compared with 

corresponding census yields – this problem has since  been rectified by Lahiri (2010). Since 

the direct variance estimators are unstable for counties with small sample sizes, Kott 

proposed a smoothed variance estimator using data from all counties in the agricultural 

district in which the county resides. From this point on, Lahiri‟s modified version of the 

Kott-Busselberg estimator will be referred to as the direct estimator.    

 

In Section 2, we propose an empirical Bayes (EB) estimator of harvested yield that improves 

on the direct estimator by combining it with different auxiliary variables (described in 

Section 3).  The EB estimator is a weighted average of the direct estimator and a regression 

synthetic estimator that incorporates the ancillary  information. A parametric bootstrap mean 

squared error estimator for EB is also described in Section 2. 

 

In Section 4, we discuss results of a study evaluating soybean harvested yield at the county 

level for seven states in the midwestern US in 2007. The choice of a year when the census of 

agriculture was conducted enabled different estimators to be compared with corresponding 

census figures (regarded as a gold standard). Overall, our EB estimator of harvested yield 

was found to perform better than the competing  estimators. 
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2. Empirical Bayes  Estimation 

 
The following basic area-level model for crop harvested yield combines direct estimates and 

related county specific auxiliary variables (Fay and Herriot, 1979):     

 

    Level 1  -  t t ind N t Di

Dir

i i i

^

| ~ [ , ],  

    Level 2  -  t ind N x A i mi i

T~ [ , ] ( ,..., ). 1    

 

 where: 

 

    m = number of counties in the state, 

 
    

ti   = true harvested yield of crop in county i,  

 

    t i

Dir^

= direct estimator of harvested yield in county i, 
   

  

    Di = sampling variance of  direct estimator,   

 

     xi 
T   

= (x1i , …, xpi ) = vector of auxiliary variables (i = 1, … m),            

 

      = (1, …, p) = vector of regression parameters,         

 

     A = model variance of  ti. 

 

Level 1 accounts for the sampling variability of the direct estimates of true harvested yield, 

while level 2 links the true yield to known auxiliary variables (discussed in detail in Section 

3). The smoothed variance estimates of the direct estimator are used to estimate the sampling 

variances {Di}. 

 

The Fay-Herriot model has been used extensively in small-area estimation and related 

applications due to its simplicity and ability to protect confidentiality of microdata and to 

produce design-consistent estimators. Some earlier applications of the Fay-Herriot model 

include estimation of: (i) false alarm probabilities in New York City (Carter and Rolph, 

1974); (ii) batting averages of major league baseball players (Efron and Morris, 1975); and 

(iii) prevalence of toxoplasmosis in El Salvador (Ibid.). More recently, the Fay-Herriot 

model was used to estimate poverty rates for states, counties, and school districts in the US 

(Citro and Kalton, 2000) and to estimate proportions at the lowest level of literacy for states 

and counties (Mohadjer et al., 2007). In each case, the survey sample sizes in the areas of 

interest were insufficient to obtain direct estimates of adequate precision. A wide variety of 

methods has been developed to address such problems related to small-area estimation; see 

(for example) Lahiri (2003), Rao (2003, chapter 7), and Jiang and Lahiri (2006). 

 

The Bayes estimator of 
it under squared error loss function is given by: 
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  where: 
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We first assume that the model variance A is known but the regression coefficients {i} are 

unknown. The weighted least squares estimator of the vector of regression coefficients is 

given by:   
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An empirical Bayes (EB) estimator of true harvested yield can then be obtained by inserting 

this formula into the above expression for t i

B^

: 

    
 

     t t A B t B x Ai

EB

i

EB

i i

Dir
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The estimator 
EB

it is also the best linear unbiased predictor (BLUP) estimator of ti under the 

following simple linear mixed model: 

    

     t t e x v ei

Dir

i i i
T

i i

^

      

     

where the sampling errors {ei} and county specific random effects {vi} are assumed to be 

independent with:  

 

    ~ [0, ]i ie N D
,
   

    ~ [0, ]iv N A . 

Thus the EB estimator shrinks the direct estimator t i

Dir~

toward the regression synthetic 

estimator ˆ( )T

ix A , with the degree of shrinkage determined by Bi 
.  The higher the value of 

Bi , the greater is the strength of the level 2 model and hence the efficiency of the EB 

estimator as reflected by a smaller value of its mean squared error (MSE). When A = 0, the 

level 2 model is perfect -  Bi = 1 (i=1,…,m). In this case, the EB estimator is identical to the 

regression synthetic estimator. However, this situation is unrealistic since level 2 modeling 

(like any modeling) cannot be perfect (i.e., A will always be strictly greater than 0). 

 
In practice, the model variance A (and hence the county specific shrinkage factors {Bi}) are 

unknown and must be estimated from the data. A number of consistent estimators of A have 

been proposed in the literature (see Rao, 2003). In the current application, we used the 

residual maximum likelihood (REML) method to estimate A. When the REML estimate of Bi 

is  substituted  into the above expression for 
EB

it , one obtains the following empirical Bayes 

estimator of ti : 
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where: 
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ˆ ˆ( )A  ,  

    Bi

^

  REML estimate of Bi . 
  

This estimator is also known as an empirical best linear unbiased predictor (EBLUP) of 
it . 

 

The mean square error (MSE) of t i

EB^

is defined as: 

 

    MSE t E t ti

EB

i

EB

i( ) ( )
^ ^

  2  

 

where E denotes the expectation with respect to the Fay-Herriot model.  We propose to 

estimate this mean square error by the following parametric bootstrap estimator:  

 

     mse t E t ti

EB

i

EB

i( ) ( )
^

*

^ *
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where t i

EB^ *

is exactly like t i

EB^

except that it is based on the parametric bootstrap direct 

estimates t i

Dir^ *

, and
*E  is the expectation with respect to the following parametric bootstrap 

model that mimics the original Fay-Herriot model:  
        


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A double bootstrap method along the lines of Chatterjee and Lahiri (2007) may be developed 

to correct for the potential bias in mse t i

EB

( ).
^

But we believe that the extent of bias is likely 

to be small, especially if Di/A  is large. Further details on the parametric bootstrap MSE 

estimator can be found in an unpublished manuscript by Lahiri (2010). 

 

3.  Auxiliary Variables 

 

In this section, we discuss the construction of auxiliary variables from different data sources. 

The objective is to improve the predictive power of the model by identifying a set of 

variables considered good potential predictors of harvested yield.  

 
We first consider an auxiliary variable that uses historical data on official and previous 

census production statistics. Let Pit
Off( ) denote the official NASS estimate of crop production 

for county i in year t (t = 0, …, T), where t=0 represents the most recent census year and t=T 

the current year. Let Pi

Cen

0

( ) denote the production for county i from the previous census. If 

this census figure is not available, it can often be imputed by multiplying the corresponding 

official production figure by the ratio R(dist) between the sums of census and official 

estimates for counties in the district where both figures are available. If both the census and  

official production are missing for a county, an imputed census value may still be generated 

(assuming all required numbers are available) by: 1) summing the non-missing official 

county level production estimates in the district, 2) subtracting that total from the official 

district level estimate (thereby obtaining a combined estimate for the counties with missing 

official production, 3) multiplying that number by R(dist) (to „ratio up‟ to the census), and 4) 
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multiplying the result by the ratio between number of (area frame) population units in the 

county of interest and total number of population units for all counties in the district with 

missing official production.    

Let P it

~

 denote a new estimator of production for county i in year t.  Then the following 

recursive relationship can be used to move the estimator forward: 

     P P P P t Tit it
Off

i t

Off

i t

~
( )

,

( )
~

,
[ / ] , ,...,   1 1

1 1     

      with P Pi i

Cen
~

( )
.0 0  

     

 

If either Pit
Off( ) or Pi t

Off

,

( )

1 is missing for a county, the ratio between official district level 

production estimates for years t and t-1 can be substituted for P Pit
Off

i t

Off( )
,

( )
/ 1 in the above 

formula. In the event that the district level estimate is unavailable for at least one of the two 

years, the state level ratio between official production estimates could be used (although that 

was not necessary for the seven-state study discussed in the next section).     

We shall adjust the estimates Pit

~

so that they sum to the official level state estimate of 

production. The resulting benchmarked estimates are given by: 

             

     P P P Pit it state t jt

j

m^ ~

,

~

[ / ] ,



1

 

where: 

 

      Pstate,t  = official state level estimate of production for year t,    

  

      m = number of counties in the state.   

 

Multiyear estimates of harvested acreage can be computed in similar manner, with multiyear 

estimates of harvested yield then obtained as the ratio between estimated production and 

estimated harvested acreage. In this paper, we consider the multiyear harvested yield for the 

previous year (2006 in the study) as an auxiliary variable in the Fay-Herriot model. 

 

Nomalized Difference Vegetation Index (NDVI) figures are derived from Moderate 

Resolution Imaging Spectro-Radiometer (MODIS) data. MODIS is a payload scientific 

instrument launched into Earth orbit by NASA in 1999 on board the Terra (EOS AM) 

satellite and in 2002 on board the Aqua (EOS PM) satellite. Designed to measure large scale 

global dynamics such as changes in cloud cover and processes taking place in the oceans, on 

land and in the lower atmosphere, MODIS captures data in 36 spectral bands and varying 

spatial resolutions, imaging the entire Earth every one to two days and providing global 

coverage with a 15 acre ground sample resolution and 8 and 16 day temporal windows.  

 

The NDVI is calculated from MODIS measurements of surface reflectance of visible and 

near infrared spectra. This index describes the vegetation condition of a crop from 

emergence to senescence, with the maximum value being nearly one for optimal vegetation 

cover.  The NDVI is defined as follows: 

 

       NDVI = (Near Infrared – Visible) / (Near Infrared + Visible). 

 

County level NDVI figures for the seven states of interest were obtained at 16 day intervals 

throughout 2007, but exploratory data analysis determined that the period between March 22 
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and August 13 (corresponding to the 7
th
 through 16

th
 satellite data capture dates) was 

adequate for purposes of this study. Two variables computed from the NDVI data were 

suggested by researchers at NASS who work with MODIS data as potentially good 

predictors of crop yield – the peak and weighted average NDVI defined as follows:  

 

(i)  = max(NDVIi,7 , NDVi,8 , …, NDVIi,16), 

 

(i) = [NDVIi,7 / 18] + [(NDVIi,8  + … + NDVIi,15) / 9] + [NDVIi,16 / 18]        (i=1,…,m) 

 

where: 

 

      NDVi,k  = NDVI value for county i, data capture date k.   

 

The weighted average is proportional to a composite trapezoidal rule approximation of the 

area under a fitted curve of the  NDVI values over the time window.    

 

4. Results 

 

The study area for evaluating the empirical Bayes estimator of  harvested yield includes the 

top five soybean producing states in the US for the year 2007 – Iowa, Illinois, Minnesota, 

Indiana and Ohio -  as well as Missouri (7
th
) and Kansas (11

th
). The SAS  MIXED procedure 

was used to fit the EB model. The three independent variables used  (described in Section 3) 

were -  1) multi-year estimate of harvested yield for 2006, 2) peak NDVI value (over the 

March 22 to August 13, 2007 period), and 3) weighted average NDVI over the same period. 

The dependent variable was the direct estimator of harvested yield for 2007. The estimated 

variance of the direct estimator was used to compute the weights. Counties with missing 

values for any one of the three independent variables were not used.  

 

For each state in the study, the following five estimate types were compared – empirical 

Bayes (EB), Kott- Busselberg (KB), direct (DIR), Stasny-Goel (SG) and official NASS 

estimates (OFF). Five accuracy metrics were computed for each of the five types - average 

absolute deviation (AAD), average squared deviation (ASD), average absolute relative 

deviation (AARD), average squared relative deviation (ASRD) and percentage below census 

(PBC). The census figures for harvested yield in 2007 were regarded as „truth‟ and used as 

the basis for measuring accuracy. AAD is the mean of absolute deviations between county 

estimates and corresponding 2007 census values, ASD the mean of squared deviations 

between estimates and census values, AARD the mean of ratios between absolute deviations 

and census values and ASRD the mean of squared ratios between absolute deviations and 

census values. PBC is the proportion of counties with estimate less than the corresponding 

2007 census value. Values of PBC below (above) 0.5 suggest overestimation 

(underestimation) tendencies for an estimator. Table 1 shows the computed accuracy 

measures for all seven states.  

 

The five estimate types were ranked from best or worst based on each of the five metrics 

(with the ranks for PBC computed based on absolute deviation from 0.5). Table 2 shows the 

average ranks (over the five metrics) by state and Table 3 the average ranks (over the seven 

states) by metric. Examination of Table 2 shows that EB had lowest (best) average rank 

(including the official figures) in four  of the seven states (Illinois, Indiana, Iowa and Ohio), 

while SG had lowest average rank in Kansas and Missouri and lower average rank than EB, 

KB and DIR  in Minnesota. In terms of the individual performance measures, Table 3 shows 

that EB had the best overall average rank for AAD, ASD and AARD, with SG and the direct 

estimator having the best average rank for ASRD and PBC, respectively.   
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Figures 1 and 2 are bar charts displaying the AARD and PBC (from Table 1) by state. Note 

the large AARD values for all four estimators (as well as official figures) in Kansas 

compared with the other six states in Figure 1. The tendencies of DIR, EB and SG to 

overestimate yield and KB to underestimate it are clearly discernible from Figure 2.   

 

Figure 3 is a set of seven box plots (one for each state) showing  relative deviations from 

2007 census figures of  the five estimate types being evaluated. Once again, Kansas stands 

out from the other states with its larger ranges for EB, KB, DIR and OFF.  

 
5. Conclusion 

 

The results discussed in Section 4  suggest that we have found reasonably powerful auxiliary 

data to explain soybean harvested yield at the county  level  In other words, we believe that 

the level 2 modeling is reasonable. However, outlier problems were observed in the direct 

estimates which impact the empirical Bayes based methodology considered in the paper. To 

further improve the methodology, the direct estimates may need to be treated for outliers. 

Alternatively, we may consider unit level modeling which does not make use of direct 

estimates. 
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Table 1. Estimation Accuracy for Harvested Yield  

 
    State Estimator                              Metric 

AAD ASD AARD ASRD PBC 

   Illinois EB  1.33 2.67  0.036  0.002 0.54 

KB   2.7 12.6    0.07  0.009 0.85 

Direct  1.41  3.1  0.038   0.003 0.51 

SG  1.35 2.72  0.034  0.002 0.39 

Official   1.82 5.18  0.048  0.004 0.42 

  Indiana EB  1.31 2.94  0.034  0.002 0.37 

KB  3.02 16.6  0.075   0.01 0.82 

Direct  1.34  3.1    0.034  0.002 0.36 

SG  1.47 3.39  0.037   0.002 0.24 

Official   1.83 3.45   0.044  0.002 0.00 

  Iowa EB  1.45 2.96  0.029  0.001 0.15 

KB   2.7 13.5  0.055  0.006 0.82  

Direct  1.55  3.5  0.031  0.001  0.2 

SG  1.93 4.87  0.039  0.002 0.11 

Official   2.12 5.94  0.043  0.002 0.08 

 Kansas  EB  4.25 37.5  0.128  0.032 0.35 

KB  5.13  63.0  0.155  0.053 0.49 

Direct  4.57 45.7  0.137  0.038 0.35 

SG  3.52 20.2  0.107  0.018 0.23 

Official   3.57 23.8  0.108  0.021 0.35 

Minnesota EB  1.61 9.38  0.046  0.008 0.45 

KB  3.46 26.0  0.095  0.022 0.85 

Direct  1.68 10.4  0.048  0.009 0.48 

SG  1.37  3.71  0.037  0.003 0.35 

Official   1.32  2.67  0.034  0.002 0.19 

Missouri  EB  1.91 7.24  0.063  0.012 0.25 

KB  2.14 12.2  0.065  0.011 0.56 

Direct  2.01 8.07  0.061  0.008 0.27 

SG  1.94  6.58   0.06  0.007 0.24 

Official   2.02  7.43  0.064  0.009 0.13 

Ohio EB  2.08  7.79  0.054  0.009 0.23 

KB  3.82 24.5  0.091  0.015 0.73 

Direct  2.22 9.48  0.056  0.008 0.23 

SG  2.82 12.1  0.069  0.009 0.07 

Official    2.5 11.8  0.062  0.009 0.22 

 
Table 2. Average Estimator Ranks by State for Harvested Yield 

 

 

 

 
 

 

 

 

 

 

 

 

 

   State                     Estimator 

EB KB Direct SG    Official 

Illinois   1.6  5 2.6 2    3.8  

Indiana   1.2  4.8  2.2 3.2    3.6 

Iowa   1.4  4.4 1.8 3.2    4.2 

Kansas   2.9  4.2 3.7 1.8     2.4  

Minnesota   2.8  5 3.4 2.2     1.6 

Missouri   2.8  4 2.6  1.8    3.8  

Ohio   1.5  4.2 1.9 4.2    3.2 
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Table 3. Average Estimator Ranks by Metric for Harvested Yield 

 

 

 

 

 

 
 

 

 

 

 
Figure 1. Average Absolute Relative Deviation (AARD) of Estimators by State 

 

 

 

 
Figure 2. Percentage Below Census (PBC) of Estimators by State 

 

 

 

 

 

 

 

 

 

Metric                  Estimator 

EB KB Direct SG    Official 

AAD 1.6 5 2.9   2.4    3.1 

ASD 1.7 5  3 2.3     3  

AARD 2  5 2.7 2.1    3.1 

ASRD 2.6 4.9 2.7  2.3    2.6 

PBC 2.3    2.7 1.7 4    4.3 

 All 2.0  4.5  2.6 2.6    3.2 
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Figure 3. Box Plots of Relative Deviation of Estimates from Census 2007 Harvested Yield 

Figures 
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