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Abstract

Models are developed for the correlation effect of block clusters and housing units on the capture/recapture
model of Census coverage measurement using data from 2006 Census test. The purpose of understanding
this possible correlation is two-fold: 1) as noted by Malec and Maples (2005) a model for within small area
variability is needed because design based estimates may be imprecise. Also, using 2000 census coverage
information, Keller (2008) has shown evidence of both variable census capture rates and correct enumeration
rates between block cluster and 2) the heterogeneity effects of between correlation due to block clusters and
housing units on estimates of coverage have not been thoroughly evaluated. Random effects and the choice
of a random effects model will be evaluated as a tool for measuring variability and correlation at these small
levels.
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1. Introduction

The use of logistic models with person-level covariates is currently being planned for national-level estimates
of the 2010 U.S. Census coverage (Mule 2010). One reasonable way to develop small area models for census
coverage is to modify the national-level model to include small area effects. This was the approach used
by Malec and Maples (2008) when developing a small area method for the Census 2000 coverage. As with
most small area estimation models, the model can be characterized by a set of explanatory variables, a
specification of error within the small area and a specification of variability between small areas (Rao 2003,
page 4). This paper is concerned only with specification of the variability within a small area. Future work
may include development of other parts of a small area model for the 2010 Census coverage.

The specific concern here is that design-based estimates of within small area variance and covariance
may be unstable so that the usual practice of regarding design-based estimates of variation in a model as
fixed and known may adversely influence both estimates of the variability of a small area estimator as well
as the amount of “borrowing strength.” An early recognition of the problem that small areas or domains
may have unstable variances and unstable means can be found in the Normal-theory work of Singh and
Sedransk (1988). In that work, a statisical model was included for the unknown sampling varainces. In this
work, a model for the variances is not specified. Instead, data analysis is used with the aim of modeling the
underlying variability of the binary data. Randomization tests are proposed and used as a first step to study
the effect of clustered responses on this variability.

The interest in looking more carefully at the within small area estimation for census coverage arose as
follows. Malec and Maples (2008) proposed a binomial model using a logistic model with added Gaussian
random effects to account for small area variability (e.g. Rao (2003), sec 5.6), with an adjusted sample size
to model match status and the correct enumeration status within a small area. They used a separate model
for each of these two types. The model for small area, k, and domain, i, took the following form:

mki ∼ binomial(nki, pki),

where nki was the sample size adjusted by an estimate of the miss-specification effect ( i.e. nki = p̂ki(1 −
p̂ki)/V̂D(p̂ki) where p̂ki is the design-weighted rate and V̂Dits design-based variance estimate). Direct esti-
mates of the adjusted sample size appeared very unstable due to the underlying small samples they were
based on. Ultimately, the effects were smoothed using the following model of adjustment factors:

log(V̂D(p̂ki))− log(p̂ki(1− p̂ki)/n′
ki) = aki + log{(1 + (b̄ki − 1)ρki)}+ eki,

where bki is the primary sampling unit (PSU) size of observations in small area k, domain i, n′
ki is the actual

sample size, aki and ρki are unknown parameters to be estimated, in addition to the definitions above. The
eki denotes Gaussian error with unknown variance. After the parameters were estimated, the model was
used to smooth out the sample sizes as a way to adjust for the sample design. However, the approach of
Malec and Maples is inadequate because it is based on the assumption that an adjusted binomial distribution
adequately describes the within actual small area sampling distribution. In addition, it used estimates of
parameters without accounting for their error. The goal of this paper is to develop a systematic, more
defensible method to account for the distribution of the direct estimates of small area sample rates. The
approach described here builds on the work in Malec and Maple, extending the model below the small area
level. At the block cluster level, using 2000 census coverage information, Keller (2008) has already shown
evidence of both variable census capture rates and correct enumeration rates. Here, both housing unit and
block clusters are evaluated using 2006 Census Test data.
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2. The 2006 Travis County Texas Test site

The data used to evaluate the within small area variability is from the 2006 Travis county Texas Test site.
The sample consists of approximately two hundred census blocks and the Travis county Test site is used to
represent one, single small area. For more details on the 2006 coverage measurement test see Shoemaker et
al. (2006).

The basic components of the census 2010 coverage includes includes components similar to those used in
previous census coverage estimates which use a capture/recapture/correct enumeration approach. The basic
components are:

1. data-defined (dd) rate - based on the proportion of data-defined (non-imputed) census enumerations,

2. correct enumeration (ce) rate - based on the proportion of data-defined census enumerations that are
correct and

3. the census capture (match) rate - based on the proportion of persons in the follow-up sample who are
also in the census.

Note that, because the current plans for National-level coverage estimates entail estimating the data defined
rate via a logistic model the same approach will be applied here.

3. Randomization Tests of Block Effects and Housing Unit Effects

Each of the three rates described in section 2 are based on binary outcomes and each can be modeled. A
logistic model that includes fixed effects which represent standard demographic characteristics, an effect for
being in block j, and an effect for being in housing unit k of block j is specified as follows:

E(binary outcome|x in block j, housing unit k) = ex
′β+µj+αjk/(1 + ex

′β)+µj+αjk)

Block effects and housing unit effects are tested in sequence. That is, the presence of a block effect is
tested first, assuming no housing unit effects. Next, the best estimate of a block effect is substituted into
the model, and the presence of a housing unit effect is tested. The following summarizes the test procedure:

step 0: Fit the covariate-only fixed effects model

Based on the model:
E(binary outcome|`(x), µ) = exβ)/(1 + exβ),
fit the largest fixed effects model that excludes block effects and housing unit effects. Start with the main
effects model determined by Olson and Springer (2008). Add the design strata as additional effects1 and as
many interactions as are estimable. Overfitting the model, in this way, helps avoid the possibility that either
block effects or housing unit effects only compensate for important covariates that were left out.

step 1: Include block fixed effects model into covariate only model

Use the estimate of β, determined in step 0, above, to form the offset:`(x) = xβ̂. Then, obtain the maximum
likelihood estimate (MLE) of the µjs using the model:

1One of three strata had two additional weighted classes which were not used as additional factors in the model.
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E(binary outcome|xin block j, housing unit k) = e`(x)+µj/(1 + e`(x)+µj )

These estimates will be of poor quality due to small sample size. However, they will only be used as a
group to form test statistics. Specifically, two statistics are formulated and used:

LargeMLE - the percent of MLEs that are either larger than 15 or smaller than −15 and

AbsMLE - the average of the absolute values of the the MLEs that are within ±15

Large values for either of these statistics indicate the presence of block effects.

step 2: Test the null hypothesis of no block effect

Assume that all block effects µj , are zero. Use the covariate-only fixed effects model and the offset (from
step 0) to generate a new sample. Estimate the MLEs of the block effects for each new sample (keeping
the offset `(x) fixed), and compare the distribution of the two test statistics. Based on 10,000 samples from
the distribution under the null hypotheses, the proportion of test statistics that are more extreme than the
observed statistics (using the actual data) is as follows:

LargeMLE AbsMLE
observed p-value observed p-value

census capture (match) rate 21 < .0001 .98 < .0001
correct enumeration (ce) rate 22 < .0001 .67 < .0001
data-defined (dd) rate 92 < .0001 1.19 < .0001

This indicates a significant block effect for all three rates.

step 3: Continuation: testing for housing unit effects

First, substitute the MLE’s of the block effects (using ±15 for the MLEs that are out of range) as part of
the offset. Then, as with block effects, form two test statistics: one the percentage of housing unit MLEs
outside of ±15, and the other the average absolute value of housing unit MLEs that fall between ±15.

step 4: Test the null hypothesis of no housing unit effects

As with blocks, generate new samples with zero housing-unit effects and compare resulting housing unit
effect MLEs. In this case, an offset which includes the estimated block effect MLEs is used.

LargeMLE AbsMLE
observed p-value observed p-value

match rate 88.8 < .0001 1.20 < .0001
ce rate 85.7 < .0001 95.5 < .0001
dd rate 71.1 ≈ 1 .003 ≈ 1

Housing unit effects for both capture rate and correct enumeration rate also appear to be significant indicating
a need to include a housing unit in the model. The data-defined housing unit effects were not significant.
Note that most of the block-level MLEs were out of range for the data-defined model, leaving few housing
units that did not not have extreme offsets left to model.
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4. Randomization tests of normality of block effects and housing unit effects

Based on the results of the randomization tests which included no block effect and no housing unit effect, this
study determines that both block effects and housing unit effects should be included in the model. However,
since sample sizes are too small to include block effects and housing unit effects as fixed effects, the shrinkage
estimator technique of modeling them as random effects with mean 0 will be used. Since there is no reason
to assume that these random effects are Normally distributed, randomization tests will be used to evaluate
this assumption.

The procedure used is the following.

For block effects, if the block effects are normally distributed, the distribution of the MLEs will reflect it.
Use the MLEs for the fixed block effect block model determined in section 3 to form test statistics of this new
hypothesis of normality. Specifically, the block level effects will be assumed to be normally distributed with a
single, unknown variance. New samples based on the normal assumption with estimated variance component
are generated and the resulting distribution of MLEs are compared to the distribution of observed MLEs.
The following steps detail the procedure:

Step 0: Use the block MLEs obtained in section 3 and determine the following features of their distribu-
tion: 1) the percentage of MLE’s that are less than or equal to -15, the percentage of MLEs that were greater
than or equal to 15 and, of the MLEs that were between ±15: their minimum value, their first quartile, their
median, their third quartile and their maximum. These six statistics, obtained from the observed data will
be used as test statistics.

Step 1: Obtain the restricted maximum likelihood estimate (RMLE) of the variance of the assumed nor-
mally distributed random block effect distribution using “glmer” from the “lme4” package of the R-System
(2005).

Step 2: Generate new data sets by first generating new block effects based on a normal distribution with
a variance component equal to the RMLE and then generating binary data from the logistic model with
combined offset and block-level random effect.

Step 3: Obtain the Block level MLE under the fixed block effect model and obtain the distributional
summaries of these new MLEs (with the artificial, normally distributed random effects inserted into the
model).

Step 4: Compare the observed MLEs against those based on the normal assumption. If the normal
assumption is justifiable, the resulting MLEs based on the normal assumption should have a distribution
close to the observed MLEs.

The following plots show the results for each distribution summary. Each vertical line represents the
95% probability interval based on the generated data. As shown in the graphs below, the observed data
does not follow the hypothesized data very well, bringing the Normality assumption into question. A similar
approach with similar conclusions (details not included) was taken for the housing unit effects after using
the offsets that include block effects, as in section 3. The data-defined rates were not evaluated.
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5. Use of estimates of sampling frame capture rate for model evaluation

Although more difficult to define and estimate in the 2010 Census coverage evaluation, the capture rate in
the coverage sample frame (ce-match) can be estimated in the 2006 Test site (due to the use of the same
housing unit address list for both the Census and coverage survey). Randomization tests of no block effects,
no housing unit effects, Normal Block random effects, and Normal Housing unit random effects can all be
performed in the same manner as before.

Testing of no block effect:

LargeMLE AbsMLE
observed p-value observed p-value

ce-match 21 < .0001 .99 < .0001

Testing no housing unit effect:

LargeMLE AbsMLE
observed p-value observed p-value

ce-match 88.7 < .0001 1.14 < .0001

Testing the normality of block effects and housing unit effects, respectively:
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6. Sample correlation between estimated components

Including random effects for each component still leaves the unanswered issue of whether or not they are
independent of each other. The following figure plots the estimates of block effects for the four types of
outcomes.
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Most appear uncorrelated, but the two coverage rates (the census capture rate (match) and the followup-
survey capture rate (ce-match)) are highly correlated. Although not substantiated here, this correlation
between coverage rates suggests a hypothesis that the underlying block level capture rates may also be
correlated, which could cause heterogeneity bias in the estimates if not accounted for.

7. Summary and Conclusion

In summary, the existence of block effects and housing unit effects were evaluated using randomization tests
with fixed effect MLEs as test statistics. Both block and housing unit effects were found to be significantly
different from zero. Additionally, the Normality assumption of the census capture rate, the census correct
enumeration rate, and the capture rate of the coverage survey frame does not appear warranted. The
correlation between effects was briefly evaluated using scatterplots, and it was noted that the sample estimates
of the two capture rates appeared highly correlated while the others did not. Although this is not conclusive
proof that the underlying capture rates are correlated, it does show that further evaluations are merited,
since heterogeneous capture can result in bias.

In conclusion, a fully satisfactory unit level model requires more work. So far, a need for non-normally
distributed random effects and possibly a need for correlation between certain random effects is indicated.
The benefit of additional random effects (such as interactions with block level or housing unit effects) has not
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been tested yet. In a different but related census coverage context in the 2000 Census, the use of additional
housing unit effects was been reported by Olson (2009).

Perhaps even more problematic is the modeling of shifts in the small area due to time differences between
census and coverage survey and to differences due to housing unit mapping. Although the population at the
national level can be corrected to account for births and deaths between the census and coverage survey and
for movers in and out of the country, the effects of movers as well as the effects of geographic miss-classification
at the small area level will be hard to evaluate and will need to be based on a possibly incomplete data
model.
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