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1. Introduction 
 

Missing data are found in almost all large survey datasets. Multiple imputation (Rubin 1976) has 
emerged as a general and widely used technique for analysis in the presence of missing data. The key idea 
of multiple imputation is that missing values are imputed with plausible values drawn from the 
conditional distribution of the missing data given the observed data under a specified model. This 
produces a series of “complete” datasets which can then be used for analysis. For a detailed review of 
multiple imputation see Rubin (1987) and Little and Rubin (2002). 

 
Advances in statistical software packages that support multiple imputation (e.g. Stata, SAS, R, 

and SPSS) have produced considerable flexibility and ease of use for practical researchers. Many 
software packages assume joint multivariate normality of the variables being imputed, and this is widely 
viewed as a robust and unbiased approach (Schafer 1997; Schafer 1999). In practice, researchers often 
deal with variables that are not “normal” in a sense that they are required to be measured at an interval or 
categorical level for the data analysis. When non-normal variables are imputed under the normal 
assumption, the imputation produces an implausible value. For example, when imputing the variable 
“number of children” a value of 1.43 could be imputed under the normal model. This poses a practical 
problem for researchers who wish to utilize the benefits of multiple imputation but require their data to 
have discrete values. 

 
 When dealing with values imputed under the normal model, researchers have often been advised 
to round the imputed values to the nearest integer (Schafer 1997). If a value of 1.43 was imputed for a 
variable representing number of children, for example, the value would be rounded to a 1.0. Other 
research has shown that this naïve rounding method can cause more bias than the original “implausible” 
imputation values (Horton, Lipsitz and Parzen 2003). A number of alternative rounding methods have 
recently been proposed to deal with this limitation (Demirtas 2007; Yucel, He and Zaslavsky 2008). 

 
  A second option for multiple imputation in the presence of categorical data is a model based 
approach. When all the variables in the model are categorical, for example, a log-linear imputation model 
can be used (Schafer 1997). Most survey datasets are more diverse than this and there is a clear need for 
an imputation procedure than can handle a relatively complex data structure. Logical or consistency 
bounds have been proposed as one method for dealing with this (Heeringa, Little and Raghunathan 1997; 
Raghunathan et al. 2001). Another approach is to impute each variable conditional on all others, an 
iterative univariate imputation procedure proposed by Kennickell and McManus (1994). This procedure is 
known as regression switching, chained equations, sequential regressions, or variable by variable Gibbs 
sampling (van Buuren and Oudshoorn 1999). The basic idea behind this procedure is that since there are a 
variety of regression techniques for modeling non continuous data (e.g. logit, multinomial), each variable 
to be imputed can be fit with a tailored prediction equation, reducing the multivariate imputation task to a 
series of regression models. This procedure is implemented in the Stata ICE package (Royston 2004). 

 
  The primary advantage of multiple imputation is that it provides unbiased estimates of the means 
and covariances and accurately accounts for the standard errors. An important limitation when dealing 
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with categorical data is that it does not provide accurate estimates of the frequency distributions of the 
imputed values. Particularly when data are imputed under multivariate normality, analysis methods that 
use crosstabs or report frequencies may be in error, even with a planned missing design where the missing 
data are distributed completely at random (MCAR). This is of no small consequence for researchers who 
rely upon descriptive statistics.  

 
  In this paper we use ICE in Stata to multiply impute both planned missing and regular missing 
data from a large national telephone interview survey on social factors in infertility. We first demonstrate 
the problem of biased frequency distributions for the imputed data in a set of Likert-type items included 
on the survey instrument. We next apply to these imputations a method developed by Yucel, He and 
Zaslavsky (2008; hereafter referred to as YHZ) to correct the frequency distributions when the data are 
assumed to be missing completely at random. Finally, we develop and apply a modification of the YHZ 
approach to yield approximately correct distributions when the missing data follow a missing at random 
(MAR) pattern. The effect of these adjustments on the covariances is also empirically examined. Finally, 
we evaluate the different calibration approaches in a simulation.  

 
2. Empirical example of bias in distributions 

 
 When data are imputed under a fully normal model, as many modern imputation programs 
implement (e.g., SAS MI, MI in SPSS and Stata, NORM), this poses problems when conducting 
frequency distributions. We illustrate this by examining the distributions of four-category Likert-type 
items in the National Survey of Fertility Barriers (NSFB). The first item we examine is a social support 
item which asks the respondent to indicate how often “Someone gives you give advice in a crisis”. There 
are four ordinal response categories (often, occasionally, sometimes, and never). To reduce survey length 
and participant burden, this item was a part of a set of questions given to only two-thirds of randomly 
selected respondents. This planned missing design results in missing values for about one-third of the 
respondents that are missing completely at random (MCAR). The distribution of the missing values 
would be expected to have roughly the same distribution as the fully observed values. The missing values 
were imputed using the normal model in ICE. Table 1 compares the distributions of the observed and 
imputed values. The imputed values were rounded to the nearest whole valid response (1-4). It is clear 
that the distribution of the imputed values is biased, with particularly large differences in the first two 
categories. The reason for this is that the imputed values are generated to fit a normal distribution. In this 
case the observed data do not conform to a normal distribution so the imputed data are biased when 
naively rounded.  
 
 

Table 1. Observed and imputed distributions when the missing data are MCAR 
"Nieve" 
Rounded 
Imputed 
Data 

YHZ 
Calibration 
of Imputed 
Data Observed Data 

  N %   N %  N % 
1. Often  2,656 78 531 63 640 76 
2. Occasionally  413 12 226 27 100 12 
3. Seldom  220 6 68 8 53 6 
4. Never  124 4   20 2  52 6 
Total  2,656 100   845 100  845 100 
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Figure 1 illustrates this difference from another item on the survey—the respondents rating of the 
importance of having children. Red bars (integers 1–4) give the density of the observed values. Blue bars 
(non-integer values that follow an approximately normal distribution) show imputed values which were 
not rounded. The distributions are quite distinct and it is clear that rounding the imputed values would not 
reproduce the observed distribution into the four ordinal categories.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Calibration approaches 
 

 Because rounding the imputed values to discrete categories does not adequately approximate the 
observed distribution, Yucel, He, and Zaslavsky (2008) developed a method to calibrate thresholds for 
assigning the imputed data to the observed categories. The Yucel-He-Zaslavsky(YHZ) method forces the 
distribution of the imputed data to match the distribution of the observed data. The method generates a 
centile score for each imputed value and assigns the score to the category based on thresholds computed 
from the non-missing data. The distribution of the recoded imputed data now closely matches to the 
distribution of the observed data and is much more accurate depiction of the distribution than was found 
for the “naive” rounding method. Column three in Table 1 shows the YHZ calibrated distribution for this 
example with MCAR data.  
 
3.1  Limitations of the YHZ Method 

 
 When the missing data are distributed completely at random (MCAR) such as is the case with 
planned missing designs, the YHZ method works quite well in reproducing the distribution in the 
categories. When data are missing at random (MAR), however, the expectation of the true distribution 
assuming no missing data is not equal to the observed distribution when missing data are present. In this 
case, calibrating the imputed data to match the observed distribution can yield a biased estimate of the 
true distribution.  
 

Importance of Having Children (4 = Very Important) 

Figure 1. Comparison of distributions of observed and imputed values  
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We illustrate this limitation with MAR data from the NSFB. In this survey targeting women 
(primary respondents), interviews with husbands (secondary respondents) were also sought if the primary 
respondent was married.  An interview was successfully completed with the husband in less than half of 
the cases, producing substantial missing data. Because husband’s response was correlated with a number 
of characteristics of his wife, the data were not missing completely at random and the MAR assumption is 
more plausible. We use the husband’s response to the social support item: “Someone to give you 
information to help you understand a situation” which has four ordered response categories (often, 
occasionally, seldom, and never). The results of both naïve rounding and the YHZ calibration method are 
shown in Table 2. In this case there is a substantial difference between the distribution of the rounded 
imputed data and the observed data and the YHZ calibrations. We suspect that because the missing data 
are MAR that the naïve rounding may indeed be a closer approximation to the distribution that would 
have been found if these values had been observed.  

 
 

  

Table 2. Rounding and Calibration Distributions with MAR data 

Naïve 
Rounded 
Imputed Data 

YHZ 
Calibrated 
Imputed Data 

Johnson-
Young 
Calibrated 
Imputed Data 

Observed 
Data  

  N  %    N  %   N  %   N  %  
1 Often  550 66 995 45 1448 66 1322 60 
2 Occasionally  170 20 886 40 447 20 443 20 
3 Seldom  78 9 283 13 205 9 254 12 
4 Never  34 4   26 1  90 4  172 8 
Total  832 100   2190 100  2190 100  2190 100 

 
 

3.2   A revised calibration approach for MAR data 
 
Because the YHZ method yields biased estimates under MAR conditions and naïve rounding has 

also been shown to be biased, a revised approach is needed. We next develop a modified method 
(Johnson-Young) that is designed to work with MAR data. Rather than developing a single set of 
thresholds based on the observed distribution to allocate the missing values, we instead develop a set of 
thresholds (5 are used here) based on the observed distributions of the variable for different levels of 
predicted values of the variable. We estimate the distribution of the missing values from the distribution 
of the observed scores based on the predicted score from a regression including all variables used in the 
imputation. For example, assume we have four variables Y, X1, X2, X3. All may have missing values and 
are all used in the imputation model. In the first step we regress each variable on the other three variables 
and generate a predicted score for each observed case on the variables. We then divide the predicted 
scores into quintiles. Within each of the quintiles we generate the distribution of the observed scores. 
These distributions are used to develop thresholds for assigning the case to the categories of the variable. 
The final step is to calibrate the imputed values with the thresholds from the quintile in which the 
predicted score of the imputed value falls. This is illustrated in Figure 2. The vertical lines divide the 
predicted social support scores into five quintiles. Within each quintile the distribution of the observed 
scores falling is calculated. The scores for the missing values predicted from the variables in the model 
which have observed values are used to select the thresholds for calibrating the imputed values. 

 
 

Comment [RY1]: I think this might be sort‐of 
confusing to people who are not familiar with the 
survey 
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 Table 2 shows the distribution obtained when the Johnson-Young calibration method is used with 
MAR data. Although the YHZ method and the Johnson-Young method yield similar distributions, with 
the largest difference in the highest and lowest scores, both are substantially different from those obtained 
under naïve rounding. Although the distributions are likely less biased using these calibration approaches 
it is possible that because this method changes the imputed values that the estimates of the correlations, 
covariances, and regression coefficients may be biased by applying the procedure. To assess this we 
conduct a simulation study. 

 
4. Testing the New Calibration Method with a Simulation Study 

 
 To assess how the different methods of calibrating the imputed values affect the estimates 
obtained when analyzing the imputed data we conducted a simulation using Stata with 1,000 replications 
under the following conditions. 

– Two normally distributed random variables were generated, W and X, that were set to be 
correlated  (r ~ .3). 

– Two sample sizes were used with N of 250 and 2,000. 
– Missing data was generated for W so that approximately one-third of the values would be 

missing. The missing were assigned in two ways. In the first case, the missing were 
assigned completely at random (MCAR) and in the second the missing data were 
assigned to be correlated with X (MAR).  

– W was recoded into 4 ordinal values (1, 2, 3, 4) where the cases were distributed in one 
of 4 ways: 

– The X was either kept as a normally distributed continuous variable or was recoded into 4 
ordinal uniformly distributed values 

• uniformly distributed (.25, .25, .25, .25) 
• normally distributed  (.20, .30, .30, .20) 
• triangularly distributed (.05, .15, .30, .50) 
• bimodally distributed (.40, .10, .10, .40) 
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Figure 2.  Illustration of the Johnson-Young Calibration Approach  
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The missing data were imputed using ICE in Stata under two different models. The first was the 

widely used normal model similar to the approach used in SAS MI, NORM, and the MI procedure in 
SPSS. The second approach used the multinomial regression method to impute the missing data in W. In 
both approaches we used 20 imputations with 200 burn-in and 100 between dataset iterations. Because of 
space limitations we only present the results with 250 cases in the dataset, when the missing was MAR 
and the X variable was recoded into 4 uniformly distributed categories. The results of the other models 
are available from the authors on request.  

 
4.1  Imputation and Calibration Methods Compared 
 
 For each of the simulation conditions we compared statistics derived in the true score model 
which contained no missing data in W with the statistics derived from six different approaches. The first 
approach involved no calibration. Here, the imputed values were not rounded or transformed in any way. 
The second approach was naïve rounding, where the imputed values were rounded into the four integer 
categories. The third approach was the use of the multinomial option in ICE. The W variable was treated 
as a categorical variable and multinomial regression models were used to assign the missing value 
imputations to one of the four categories. The YHZ and the Johnson-Young calibration methods were the 
fourth and fifth methods. Finally, we also reported the results from a complete cases analysis where the 
missing cases were excluded from the model.   
 
 For each approach we report five outcome measures. These are all expressed as differences from 
the “true score” model with no missing data. These are the mean of W, the correlation of W and X, the b 
coefficient from a regression model where X was the dependent variable and W was the independent 
variable, and the standard error of this b coefficient. For the situations in which we use discrete values for 
the imputed values of W (all models except for the default ICE model in which the imputed values were 
not recoded) we also report the absolute value of the difference in the proportions in the categories in the 
true model compared to the imputed model. The results from these models are summarized in Table 3. 
 
4.2  Summary of the results of the simulations. 
 
 When comparing how well the different models conformed to the true estimates, we begin with 
certain expectations about the pattern that we expect to emerge. The multiple imputation normal model is 
designed to provide unbiased estimates of the means and covariances when computed using the imputed 
values assigned by the procedure without rounding or assignment to the observed range. Therefore we 
would expect the no calibration model to provide the least biased estimates of the mean, correlation, and 
the regression coefficient. Because this same normal model makes a normality assumption about the 
distribution of the variables, we would expect it to perform more poorly when the distribution departs 
most from normal. The multinomial imputation model makes no distributional assumptions, so we would 
expect it to perform well in reproducing the true score distribution. Finally, because the data in the 
simulation we report are MAR, we would expect the YHZ method to not perform well. We also report the 
complete cases analysis, primarily for comparison purposes, but expect it to be biased in some of these 
measures with MAR data.  
 
 Comparing the estimates of bias in the means, no calibration, multinomial and Johnson-Young 
methods consistently showed the least bias across the distributions. Complete case analysis and YHZ 
were similar, as would be expected. The YHZ approach calibrates the distribution to that of the non-
missing cases, but substantially underestimate the mean. Naive rounding works relatively well for the 
normal condition, but not as well when the distribution deviated from the normal. When examining the 
bias in the correlation coefficient the no calibration and Johnson-Young were very similar and showed the 
least bias. The estimates were quite good for the multinomial approach. As the distribution departed 
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further from normality, the naïve rounding method showed increasing bias. The most bias was found in 
the YHZ calibration method and the complete cases.  
 
 Because the imputed values in the no calibration approach have decimal values, we could not 
compare the differences from the true distributions to the categories for this method. We would expect the 
multinomial and the Johnson-Young method to perform best here, which indeed they did. The other three 
methods were all more biased, with naïve rounding the most biased as the distribution departed from 
normality. We expected the no calibration approach to yield the least biased estimates of the b 
coefficients, but instead found less biased estimates for all distributions for the Johnson-Young approach. 
The Multinomial estimates were also better than the uncalibrated estimates and similar to those for 
Johnson-Young. Naïve rounding also performed well except when the distribution was triangular. The 
YHZ and complete cases methods showed the most bias for the b coefficient. Finally, when examining 
the difference from the true standard error of the b coefficient, complete cases analysis came closest to the 
true estimate with no clear pattern of differences for the other methods which tended to have similar 
differences.  
 
 Although not reported here, the findings from the simulations with a larger sample size (2,000) 
and when the X variable was a normally distributed continuous variable are very similar to the findings in 
this simulation model discussed here.  
 
5.0 Discussion and Conclusions 

  
 Researchers who have a need for the distributions of the imputed missing values to accurately 
reflect the distribution that would have been found if no missing data were present have few tools 
available to meet this requirement. Moreover, the missing data literature has cautioned against rounding 
or otherwise recoding the imputed values because this is likely to lead to biased estimates of the 
covariances and regression coefficients computed from the data. Our findings here suggest that several 
approaches are available to calibrate the distribution even when the pattern of missing data are MAR and 
then when calibrated do not appear to distort the means, covariances, and regression coefficients. Two 
methods appear to work well at producing accurate distributions as well as means and covariances. These 
are the use of a multinomial imputation model, such as the one in ICE, and the other is by calibration 
using the Johnson-Young approach. The Johnson-Young method performed slightly better when the 
distribution departed most from normality. The differences, however, were small. Perhaps the most 
surprising finding is that recoding the imputed values follow the Johnson-Young approach did not distort 
the covariance-based estimates. The expectation was that when the imputed values were calibrated to 
yield more accurate distributions it would be at the cost of distorting the other coefficients. Because we 
did not find evidence of this in our simulation, it suggests that researchers can calibrate the values without 
distorting the models.  
 
 The multinomial model also worked well and may be easier for the researcher to use than the 
Johnson-Young calibration approach. When a large number of variables are being imputed, many of 
which have a relatively small number of ordinal categories such as those found in many survey studies, 
then conducting the imputation may be problematic, take too long to complete, or fail to converge. 
Currently, only ICE in Stata and the impute package in IVEware implement an imputation approach 
which tailors the imputation model to the level of measurement of the variables. Until this ability 
becomes more widely available in other statistical packages, the use of the Johnson-Young calibration 
may be the best choice. 
 
 Additional research is needed to confirm some of our findings. Simulations are needed in which 
we vary the proportion of data missing, the degree to which the missingess is correlated with the 
variables, and which include more independent variables with missing data. We also only tested the 
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models when there were four categories in the ordinal variable. Variables with 2 to 5 or more categories 
should also be tested. Finally, a generalized computer program, such as a Stata ado, applying the Johnson-
Young method is needed that can work with several variables and with varying number of categories is 
needed before this procedure is accessible to other researchers.  
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Table 3. Differences from the true score for each method under each distribution 

No Calibration Naive Rounding Multinomial YHZ Johnson-Young Complete Cases 
Difference Mean SD   Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 
Mean  

Normal -0.0124 0.0466 -0.0191 0.0438 -0.0141 0.0451 -0.0956 0.0425 -0.0119 0.0459 -0.0970 0.0428
Uniform -0.0124 0.0505 -0.0222 0.0465 -0.0148 0.0486 -0.0975 0.0458 -0.0119 0.0498 -0.1040 0.0464
Triangular  -0.0047 0.0370 -0.0435 0.0342 -0.0153 0.0353 -0.0747 0.0357 -0.0067 0.0357 -0.0757 0.0358
Bimodal -0.0139 0.0630 -0.0312 0.0557 -0.0167 0.0607 -0.0747 0.0557 -0.0131 0.0620 -0.1179 0.0576

Correlation  
Normal -0.0092 0.0434 -0.0144 0.0423 -0.0104 0.0431 -0.0571 0.0410 -0.0093 0.0469 -0.0215 0.0417
Uniform -0.0088 0.0437 -0.0143 0.0424 -0.0103 0.0437 -0.0541 0.0415 -0.0088 0.0472 -0.0211 0.0419
Triangular  -0.0083 0.0394 -0.0321 0.0381 -0.0141 0.0397 -0.0527 0.0376 -0.0045 0.0434 -0.0200 0.0376
Bimodal -0.0092 0.0454 -0.0157 0.0433 -0.0103 0.0451 -0.0379 0.0423 -0.0084 0.0489 -0.0208 0.0434

Proportion 
Normal -- -- 0.0154 0.0067 0.0159 0.0071 0.0233 0.0081 0.0161 0.0072 0.0235 0.0081
Uniform -- -- 0.0213 0.0079 0.0161 0.0071 0.0234 0.0084 0.0162 0.0072 0.0242 0.0083
Triangular  -- -- 0.0224 0.0088 0.0132 0.0067 0.0220 0.0089 0.0129 0.0067 0.0221 0.0089
Bimodal -- -- 0.0505 0.0086 0.0149 0.0069 0.0274 0.0079 0.0148 0.0069 0.0247 0.0094

b - coefficient 
Normal -0.0105 0.0452 -0.0075 0.0458 -0.0096 0.0458 -0.0590 0.0440 -0.0083 0.0501 -0.0371 0.0444
Uniform -0.0095 0.0420 -0.0029 0.0428 -0.0086 0.0430 -0.0502 0.0413 -0.0073 0.0465 -0.0337 0.0410
Triangular  -0.0252 0.0494 -0.0346 0.0513 -0.0189 0.0529 -0.0745 0.0488 -0.0048 0.0581 -0.0535 0.0488
Bimodal -0.0086 0.0362 0.0026 0.0372 -0.0073 0.0370 -0.0245 0.0354 -0.0063 0.0401 -0.0274 0.0349

SE of b 
Normal 0.0139 0.0060 0.0150 0.0056 0.0149 0.0059 0.0177 0.0059 0.0139 0.0059 0.0106 0.0029
Uniform 0.0127 0.0054 0.0140 0.0050 0.0139 0.0053 0.0160 0.0053 0.0129 0.0053 0.0097 0.0025
Triangular  0.0134 0.0063 0.0176 0.0061 0.0197 0.0095 0.0194 0.0066 0.0147 0.0068 0.0092 0.0030

  Bimodal 0.0107 0.0043   0.0120 0.0037  0.0119 0.0042  0.0125 0.0039  0.0106 0.0040  0.0078 0.0019
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