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Abstract 
The method of weighted quasi-likelihood (wql) is commonly used for point estimation in 

survey data analysis along with the Taylor method for variance estimation (VE) and 

Wald for interval estimation (IE). However, for small or moderate sample sizes, it is 

known that the above VE may be unstable and IE may have poor coverage properties. We 

consider ways to improve standard VE and IE by using Gaussian replicates of the pivotal 

estimating function (EF) derived from the wql-score vector using the method of randomly 

recentered estimating equations of Singh (2007). The basic idea is that the nonstudentized 

pivotal is expected to be closer to normal than the wql-estimator.  The replicate estimates 

are obtained by solving the equation defined by setting the pivotal EF equal to random 

draws from the standard multivariate normal distribution.  The computational problem of 

solving a multivariate estimating equation for each replicate may be quite cumbersome in 

the case of high dimensions.  As an alternative, we propose an EF-based MCMC in a 

frequentist framework for this purpose which consists of solving repeatedly one-

dimensional estimating equations and thus simplifies the computations considerably 

although it may be time consuming. The method is illustrated by an example of fitting a 

logit model to data from the Canadian Community Health Survey. 

 

Key Words:  Taylor Variance Estimate; Wald Interval Estimate; Estimating Function 

Based MCMC 

1. Introduction 

First consider simple surveys; i.e., the sample is simple random with replacement or it 

may be without replacement but with a negligible sampling fraction.  For fitting a 

generalized linear model in a semiparametric framework (in the sense of up to first two 

moment assumptions), the method of quasi-likelihood based on estimating functions 

(EFs) is commonly used; see e.g., Wedderburn (1974), and McCullagh and Nelder (1989, 

Ch. 9). In particular, for a random sample of n binary observations i=1,2,…,n, 

conditional on covariates ix ’s, consider fitting a logit model given by 
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where ix is a p-vector of covariates, and the parameter   is of dimension p. The ql-

estimator of   solves the equations obtained by setting the ql-score or EF vector 
( )ql  to 

0 where 

1

( ) 1
( ( ) / ) ( ( )) ( ( ))

n

ql i i ii
V y x y        


       ,            (1.2) 

V being the covariance matrix 
1diag( ( )(1 ( ))i i i n      of the observation errors 

i ’s. It 

turns out that in this case, the ql-estimator coincides with the maximum likelihood (ml) 

estimator. Note that if we allow for cluster-correlation in the data as is often the case in 

practice, then the ql-score vector under multiplicative overdispersion continues to be 

given by (1.2). However, now it is not possible to specify the joint likelihood and hence 

the ml-estimator without making any further assumptions about the intra-cluster 

dependence. For the example under consideration, the cluster correlation is assumed to be 

absent for simplicity. The point estimate (PE) ˆql can be obtained by solving (1.2) using 

an iterative method such as Newton-Raphson. The estimated covariance ( )
ˆ

ql  of ˆql after 

Taylor linearization is obtained in a sandwich form as 

                     
1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ; ( / )qlql ql ql ql ql qlJ V J J     

         ,                        (1.3) 

where 
( )qlJ 

is the p p observed ql-information matrix computed as 
1

( )
n

i i iu x x   where 

( ) ( )(1 ( ))i i iu        and 
( )qlV 

is the p p covariance matrix of the ql-EF vector 
( )ql  .  

Here 
( )qlV 

coincides with 
( )qlJ 

because the link function is canonical, and the EF is 

optimal for the model in the sense that 
( )ql  is closest to the conceptual (which may be 

unknown) ml-score vector by being the projection of the score vector on the elementary 

EFs  under the covariance norm; see Godambe and Thompson (1989); 

also Singh and Rao (1997). In the above problem with binary data, the two score vectors 

(ql- and ml-) do of course coincide with each other. 

Under regularity conditions, the estimator ˆql is consistent, and gives rise to a consistent 

estimator ˆ( )ql

i  of the prevalence or the conditional mean given the covariate value.  In 

this paper we will mainly be concerned with estimating such prevalence parameters for 

given covariate levels. Using Taylor, a consistent variance estimator (VE) ˆ( ( ))ql

iv   for 

ˆ( )ql

i  can be obtained as  

ˆ( )
ˆ( ( )) ( ( ) / ) ( ( ) / ) ; ( ) / ( )ql

ql

i i ql i i i iv u x 
                         .(1.4) 

The VE ˆ( ( ))ql

iv   tends to be unstable (i.e., with high relative variance) for small n or for 

low or high prevalence outcomes.  For interval estimate (IE) of ( )i  under ql-estimation, 

one can use the Wald IE -- a normality based symmetric interval given by 
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/ 2
ˆ ˆ( ) ( ( ))ql ql

i iz v             (1.5) 

which also tends to show undercoverage for small n or for low or high prevalence 

outcomes due to inadequate (i.e., unbalanced tails) normal approximation caused by 

nonlinearity of ˆ( )ql

i  , the main reason being that the skewness in the distribution of 

estimated prevalence may be marked.    Moreover, the interval boundaries may not lie in 

the admissible range of (0,1); the latter problem can, however, be addressed by using 

logit-Wald (cf. Singh and Nadeau, 2008) resulting in asymmetric IE which, although 

conservative, tends to improve coverage.  

For complex survey data, we can use the optimal weighted quasi-likelihood (wql) method 

of Godambe and Thompson (1986). For the logit model (1.1) with two parameters of 

intercept  and slope , say,  the wql-EFs for the parameters are given by 

                        0 1( ) ( )1 1
( ( )), ( ( ))

n n

wq i i i wq i i i ii i
w y w x y      

 
     ,  (1.6) 

where iw ’s denote the design weights.  Note that we could have also used the pseudo-

maximum likelihood  (pml) estimator as described in Binder (1983). The two estimators 

(wql and pml) are generally identical except that wql-method does not require a 

likelihood for the superpopulation model. A consistent estimate ( )
ˆ
wqV  of the covariance 

matrix 
( )wqV 

of the EF-vector 
( )wq  can be obtained using standard survey sampling 

methods where the unknown  -parameter is evaluated at the wql-estimator ˆwql

computed as a solution of (1.6). Analogous to (1.3), the estimated covariance matrix 

( )
ˆ

wq  of ˆwql is obtained after Taylor linearization in a sandwich form (Binder, 1983), and 

is given by  

1 1

ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ; ( / )wqlwq wq wq wq wq wqJ V J J     

         , (1.7) 

where the observed wq-information matrix 
( )wqJ 

is similar to the matrix in (1.3) except 

that sampling weights iw ’s are appropriately inserted.  Now the wql-Wald or logit Wald 

method for IE can be applied using the approximate distribution of ˆwql as ( )
ˆ(0, )p wqN  . 

As an alternative to ql- or wql- estimation, the method of randomly recentered estimating 

equations (RREE) of Singh (2007) (see also Singh and Nadeau, 2008, for the case of 

multidimensional parameters) may be considered with the goal of improving the 

performance of VE and IE for finite samples. The RREE method consists of creating 

parameter estimates by solving the standardized (but nonstudentized) EF vector centered 

at the random vector of values drawn from the pivotal normal distribution.  The basic 

idea is that the nonstudentized pivotal is expected to be closer to normal than the wql-
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estimator. For survey data, the covariance matrix ( )
ˆ
wqV  is smoothed using design-effect 

(deff)-type ideas so that it can be expressed analytically as a function of the parameters. 

The Monte Carlo distribution of parameter estimates or the empirical confidence 

distribution so obtained is used to compute new PE, VE, and IE.   

In the multi-parameter case, the computation for implementing RREE could, however, be 

quite demanding as it requires in general solving a set of nonlinear equations (number of 

equations correspond to the dimension of the parameter) repeatedly for a large number of 

recenters, and this is in addition to the iterations required for solving each equation. Even 

for the usual ql-estimation in the case of a  high dimensional parameter, although we need 

to solve for only one value (i.e., 0) of the center, the computation can be tedious and 

methods such as modified Gauss-Seidel are proposed for computational simplicity so that 

only one equation is solved at a time; see Jiang (2000). In this paper, we propose a new 

frequentist application of Markov Chain Monte Carlo (MCMC) to EFs so that for each 

value of the recenter vector (i.e., the right hand side of the estimating equation), only one 

equation is solved at a time while holding other parameters fixed at their current values. 

The resulting chain or the sequence of parameter estimates after a large number of cycles 

yields the empirical joint stationary distribution or the confidence distribution of the 

parameter vector from which PE, VE, and IE can be obtained. Note that unlike the usual 

MCMC applications, here the joint frequentist distribution of estimated parameters is in 

fact approximately known to be normal and we don’t have the integration problem for 

finding marginals.  Instead, we want to obtain an alternative (empirical) approximation to 

the joint distribution using RREE for improved finite sample performance, and in doing 

so we want to work with one EF at a time conditional on other parameters which is 

somewhat analogous to drawing realizations from full conditionals in GIBBS sampling 

under MCMC. This is the motivation of the proposed method termed EF-MCMC. 

The organization of this paper is as follows.  Section 2 contains a background review for 

RREE for simple surveys, while the proposed method of EF-MCMC is described in 

Section 3.  EF-MCMC for the problem of complex surveys is considered in Section 4 

along with an illustrative application to the data from the 2001 Canadian Community 

Health Survey (CCHS).  Empirical results based on a simulation study to compare RREE 

with and without MCMC are presented in Section 5. Section 6 contains concluding 

remarks. 
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2. Background Review: RREE for Simple Surveys 

In RREE, we start with a pivotal 1

( ) ( )ql qlH   based on the ql-EF 
( )ql  such that even for 

moderate n,  

                                                 
1

( ) ( ) ~ (0, )ql ql approx p pH N I 


,                   (2.1) 

where 
( )qlH 

is the Cholesky root of the covariance matrix 
( )qlV 

; i.e., 
( ) ( ) ( )ql ql qlV H H  

 .  

Under ql-estimation, ˆql is obtained by solving 1

( ) ( ) 0ql qlH    , or 
( ) 0ql   , while under 

RREE, a large number R of replicate parameter estimates 
1{ }r r R  

are obtained by 

randomly recentering the estimating equations; i.e., by solving the p equations for each r, 

     1

( ) ( ) ; ~ (0, )ql ql r r iid pH N I      .  (2.2) 

The empirical distribution 
1{ }r r R  

so obtained gives rise to new PE, VE, and IE for  , 

and any function of it; see Singh (2007) for theoretical details. In fact, in certain special 

cases, one can show analytically that although both PE and VE based on RREE may have 

higher relative biases than that under ql-estimation, but rather interestingly they have 

smaller relative MSE (mean square error); the bias decreasing with larger sample sizes as 

expected. However, it is IE where RREE has in general much improved finite sample 

property in terms of central and tail coverage probabilities;  the reason being that the 

(nonstudentized) pivotal 1

( ) ( )ql qlH   is expected to be closer to normal than the commonly 

used pivotal 1

( ) ( )ql qlH   under ql-estimation where 
( )qlH 

 is 
( )qlH  evaluated at ˆql ; see 

e.g., McCullagh (1991), and Godambe and Thompson (1999). For example, in the case of 

estimating a proportion    , the superior performance of the Wilson IE based on the 

pivotal ( ) (1 )n y     over the commonly used Wald IE based on the pivotal 

( ) (1 )n y y y  is well documented in Cai, Brown and Dasgupta (2001).  

With RREE, it is possible to truncate the empirical distribution of ˆql (although the 

theoretical distribution is approximately normal) by discarding those recenters r ’s that 

give rise to infeasible or nonexistent solutions to the estimating equations. Moreover, 

before computing PE and VE, it may be desirable in practice to trim extreme replicate 

values in 
1{ }r r R  

for which at least one element of the p-vector lies outside the interval 

given by median 2.5( )IQR ; IQR  denoting the inter-quartile range. Such trimming helps 

to robustify PE and VE against extreme values.  However, trimming is not needed for IE 

as it is generally not affected by extreme values.  The empirical distribution 
1{ }r r R  

gives 

rise to empirical distributions of other functions of ˆql such as the conditional predictive 

mean or the prevalence ˆ( )ql

i  as 
1{ ( )}i r r R   

at the covariate value ix of the logit model 

mentioned earlier. 
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For a simple example of a multi-parameter RREE, consider the logit model with a single 

covariate and the intercept. Then     

                         
1

0 1 0 1( ) exp( )[1 exp( )]i i ix x                             (2.3) 

and the corresponding ql- EFs based on a random sample of n observations are  

0 1( ) ( )1 1
( ( )), ( ( ))

n n

ql i i ql i i ii i
y x y      

 
     . (2.4) 

The covariance matrix 
( )qlV 

is given by  

                    

1 1

( )
2

1 1

( ) ( )

( ) ( )

n n

i i i

ql n n

i i i i

u x u
V

x u x u


 

 

 
 
 
 

 

 
,               (2.5)  

Now, the replicate values of the vector parameter estimate ˆql  are obtained by solving 

iteratively  

                                            

0

1

( ) 1,

( )

2,( )

ql r

ql

rql

H






 



   
     

  

,                                    (2.6) 

where  1, 2,, :1r r r R    are independent standard normal deviates.  For computational 

convenience, one can first evaluate 
( )qlH  at the initial value ˆql to compute the next 

iterative value of   serving as the current value. Next 
( )qlH  is evaluated at the current 

value of  , and the process is repeated until convergence to obtain 
r . 

3. Proposed Method of EF-MCMC for Implementing Multi-dimensional 

RREE 

 

We propose a new application of MCMC for large sample frequentist estimation 

problems using RREE. First consider simple surveys for the sake of simplicity. The case 

of complex surveys follows in an analogous manner as described in the following Section 

4. Before we consider MCMC for EFs, it is useful to note the approximate equivalence of 

confidence distributions of the parameter   obtained from the EF-based pivotal and the 

estimator-based pivotal. The confidence distribution of    (a frequentist concept) needed  

for RREE can be viewed as being analogous to an empirical posterior distribution of    

in a Bayesian framework. Although the estimator-based pivotal is not of interest, it would 
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be useful to consider RREE based on this pivotal to motivate the proposed method. Since 

the joint confidence distribution of   obtained from ˆql is proper, it follows that it can be 

determined jointly by all full conditional confidence distributions.  Now, partitioning  as 

 where denotes any one element of , and  the remainder, the full 

conditional confidence distribution of  given  is easily obtained as a univariate 

normal where  

, ,  (3.1) 

and the matrices  in customary notation denote the partitioned 

submatrices of the covariance matrix  of (1.3).  Consider the sequence of values of 

elements of the -vector drawn one at a time from (3.1) while keeping other elements 

fixed at their current values; here ˆql  could serve as the initial starting value. Following 

Casella, Ravine, and Robert (2001), since the above sequence forms an aperiodic and 

irreducible Markov Chain and the joint distribution is proper, the observed chain is 

convergent to its stationary distribution.  Thus we have a GIBBS version of MCMC 

based on the estimator-based pivotal. 

 

However, our goal is to obtain the confidence distribution of  using MCMC based on 

the EF-based pivotal instead. In the parametric case, the optimal EF for  given  is the 

conditional score function which is asymptotically sufficient for .  So heuristically, we 

would expect that the pivotal based on the conditional score function for  would give 

rise to a confidence distribution of that is approximately equivalent to the 

corresponding conditional confidence distribution based on the maximum likelihood 

estimator. In the semi-parametric case, this suggests that the conditional confidence 

distribution of given  based on the optimal ql-score function of  given  would be 

approximately equivalent to  obtained from the ql-estimator. This is indeed 

true and can be seen as follows. 

 

First observe that the conditional confidence distribution of  given  based on the 

estimator ˆql can be obtained from the corresponding marginal of    in 

view of (3.1) because 

= , 

          (3.2)      
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Now using the relation  where  is the expected information 

matrix , and (1.3), we have 

                    =     .          (3.3) 

 

From (3.3) it follows that for optimal ql-score functions or EFs , the full 

conditional confidence distributions of  parameters based on  the EF-pivotal can be 

obtained from the corresponding marginals of  because of information 

unbiasedness  = .  It also follows that for nonoptimal ql-score functions 

, the corresponding marginals of the transformed EF-vector    

provide the desired full conditional distributions as the information unbiasedness property 

is now satisfied ; see Godambe and Thompson (1989). It is also observed from (3.3) that 

it is important to match the order of the parameter with the corresponding order of the EF 

to get the correct marginal distributions.  

 

Thus for the two-parameter logit model (2.3), the ql-score functions are given by (2.4) 

which happen to be optimal and the corresponding covariance matrix by (2.5). So starting 

with the initial value , the steps of MCMC for cycle  consist of the following 

two steps where  denote the realized values of   after cycle r.  

Step I:  Solve     iteratively to obtain . 

Step II: Set , and solve   

to obtain . 

This completes one cycle. Repeat it many times allowing for a burn-in period and then 

take every 10
th
 or so to obtain a set of R realizations from the confidence distribution of 

. The desired PE, VE, and IE can then be computed. Incidentally, in generating cycles 

of MCMC, we discard those values of  that do not lead to convergence. 

 

4. EF-MCMC for Complex Survey Data 

We will describe EF-MCMC for complex survey data in terms of an example from 

CCHS where one may be interested in modeling the prevalence of healthy life style 
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behavior outcomes such as smoking habit (a binary variable) using covariates such as 

age, gender, and education.  Consider the data of cycle 1.1 of the Canadian Community 

Health Survey (CCHS) conducted in 2000-2001 whose goal was to collect general health 

information at the health Region level, a sub-provincial level of geography (Béland, 

2002). The target population is all persons aged 12 years or older living in private 

dwellings in the ten provinces and three territories.  The sample design is fairly complex 

involving stratified multi-stage cluster sampling. For the RREE application, suppose the 

parameter of interest is the proportion of smokers among 18 years old for the Yukon 

territory. For Yukon, the sample size was 809 while the population size was 24937. For 

fitting a two parameter logit model, the wql-EFs were given earlier in Section 1 by (1.6) 

and VE under wql-estimation given by (1.7).  

To apply RREE to survey data, we need to express 
( )wqV 

as a function of all model 

parameters under consideration. In practice, it may be computationally tedious because of 

the need to have a design-based estimate of 
( )wqV 

iteratively for finding replicate 

parameter estimates. To alleviate this problem, we can use a smoothed version 
( )wqV 

 of 

( )wqV 
based on a working covariance matrix whose variances are adjusted by variance-

deffs and correlations by correlation-deffs after using Fisher’s z-transformation on 

correlations where deff , denoting design effect, is defined in the usual manner as a 

multiplicative adjustment factor for variance, but is defined as an additive adjustment for  

the transformed correlation. This is explained below. Under the assumption of design 

ignorability for the model (1.1), a working covariance 
( )wqV 

 as an alternative to 
( )wqV 

, can 

be obtained under the model while conditioning on the selected units in the sample as  

                                     

2 2

1 1

( )
2 2 2

1 1

( ) ( )

( ) ( )

n n

i i i i i

wq n n

i i i i i i

w u w x u
V

w x u w x u


 

 



 
 
 
 

 

 
,                                   (4.1) 

Now the diagonals of the above matrix involve variances and off-diagonals involve 

correlations and square-roots of variances. We multiply all variances by corresponding 

variance-deffs which are defined as ratios of the variances  and  for 

corresponding wq-score functions; the variance-deffs are evaluated only once at the 

consistent estimator ˆwql and not for each replicate. Similarly, denoting by    the 

Fisher’s z-transformation , we adjust the function  

by adding the term  evaluated at ˆwql where   denotes one of the possible 

correlations between wq-score functions and  ; the adjusted function is transformed 

back using inverse Fisher’s z. Now RREE without MCMC can be applied as before using 

the normal approximation 
( )(0, )p wqN V  for the distribution of 

( )wq  .  RRRE with MCMC 

also follows along the same lines as described in Section 3 for simple surveys except that 

Section on Survey Research Methods – JSM 2009

5459



the wql-EFs are not optimal (as they do not use second moment assumptions) and so the 

EF-vector will need to be transformed first to make it information unbiased before 

defining the pivotal.  

Table 1 illustrates the results obtained under wql-estimation and under RREE both with 

and without MCMC. Note this is only an illustration of the EF-MCMC methodology 

because the dimension of the parameter here is not high. The number of cycles used in 

MCMC was 21000 with first 1000 discarded for burn-in and 1 in 20 realizations were 

retained for the empirical joint confidence distribution. However, in the case of RREE 

without MCMC, 2000 replicates were used which were the same as reported in Singh and 

Nadeau (2008). It is of interest to compare results under the wrong assumption of simple 

designs. As expected estimates appear more precise than they really are assuming simple 

designs. The results for different methods are very similar because the prevalence 

parameter of interest is not low and the deff-adjusted sample size is still quite large.  

Table 1: PE, VE, and IE for   

(2001 CCHS Yukon Data) 
Method Simple Design Assumed Complex Design of CCHS 

PE in 

% 

VE 

x10
4
 

IE in % PE in 

% 

VE x10
4
 IE in % 

QL(Wald) 28.95 6.91 (23.79,   34.10)                   24.93 10.17 (18.67, 31.18) 

QL(Logit 

Wald) 

28.95 6.91 (24.08,   34.36) 24.93 10.17 (19.21, 31.68) 

RREE  29.01 7.11 (23.97, 34.32) 25.05 10.34 (19.09, 31.64) 

RREE 

(MCMC) 

28.87 7.45 (23.76, 34.60) 24.85 10.66 (18.99, 31.94) 

 

5. Simulation Results 

A simulation study was conducted for a four parameter logit model for binary data where 

the first parameter corresponds to the intercept, second for the covariate x for i=1, 2, …,n 

was defined as the centered version of  min {1, (mod( ,10) 0.5) /10}ix i  ; i.e., it takes 

values from -.45 to .45 in increments of .10 and then repeats itself, the  third for the 

covariate being a dummy variable taking the value of 1 for the odd observation and 0 

otherwise, and fourth for the interaction between the second and third covariates. The  -

vector was chosen as (-0.75, 3, 0,0) and the covariate values as (1,-.03, 0,0) which define 

the value of the prevalence parameter of interest. The sample size n was set at 10, 20, 30, 

50, and 100, the number M of simulation runs at about 2500, and the number R of 

recenters for each simulation at 1000. For MCMC version of RREE, 21000 cycles were 

run for each simulation and after discarding the first 1000 for the burn-in period, every 

20
th
 cycle was retained. Table 2 compares results for five methods, QL (quasi-likelihood 
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consisting of the solution of ql-EF at 0 for PE, and Taylor linearization for VE), RREE, 

RREE/MCMC, QL-RREE and QL-RREE/MCMC. The composite methods QL-RREE 

and QL-RREE/MCMC are composite in the sense that while the PE is based on QL, the 

VE is based on RREE and RREE/MCMC replicates. Extreme replicate estimates were 

trimmed using the rule of median ± 2.5(IQR) for all elements of the parameter vector for 

RREE methods. The abbreviation ME in Table 2 stands for MSE estimator which is the 

same as VE but the RB and RRMSE are computed by treating it as ME. 

Table 2: % Relative Bias and Relative Root MSE of PE and ME for  

 

The main points to observe is that the performance of RREE and RREE/MCMC are 

generally similar except for RB for ME for both sample sizes where RREE/MCMC tends 

to provide smaller values than those for RREE. This needs to be investigated further. 

However, as expected RREE provides more stable estimate of ME than QL. In fact, it 

follows from the behavior of composite methods that RREE provides considerably more 

stable estimate of MSE of the usual PE (based on QL) compared to the Taylor method.  

More detailed results including those for IE are currently under investigation.  

6. Concluding Remarks 

In this paper we presented a computationally simpler alternative based on EF-MCMC to 

implement the method of RREE when the parameter dimension is not low. It is a new 

application of MCMC and different from the usual one where numerical integration to 

obtain marginals of the posterior is computationally complex. Here, instead the problem 

is to find marginals of the empirical confidence distribution as solutions of EFs. The EF-

MCMC consists of solving one-dimensional equations at each step within MCMC cycles. 

 

 

Method 

n=10 n=30 

PE ME PE ME 

RB RRMSE RB RRMSE RB RRMSE RB RRMSE 

QL 81.39 158.11 23.63 74.81 8.23 84.28 7.54 72.57 

RREE 98.25 141.80 -9.78 23.59 18.59 76.61 6.95 47.65 

RREE/

MCMC 

95.67 155.41 -16.78 35.53 15.55 83.51 -7.74 54.11 

QL-

RREE 

  -27.44 32.42   -11.63 40.65 

QL-

RREE/

MCMC 

  -19.59 36.05   -9.43 53.41 
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It is remarked that the EF-MCMC method may not be economical in time, but it does 

involve much simpler computational steps which may be attractive in practice. 
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