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Abstract 
 
Considering two different sampling schemes (Tille and Pareto), we present the results of 
a Monte Carlo simulation studying the statistical properties of several variance estimators 
on a synthetic data set, modeled on establishment data. We test the validity of including a 
varying finite population correction in the formulation of the stratified jackknife (as done 
with the Yates-Grundy-Sen estimator), and we compare the effects of direct replication of 
a rate to a Taylor linearization formulation. 
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1. Introduction 
 
The distribution of manufacturing sector establishments tends to be highly skewed. 
Consequently, to ensure a representative sample, a stratified, unequal probability 
sampling scheme (a π-ps or PI-PS design) is preferred to a stratified, simple random 
sampling scheme, and large units are often included with certainty. To reduce variance 
and to limit costs, a fixed sample size is preferred as well.  
 
Although unequal probability sampling provides a measure of control over the sample, 
such strategies present difficulties in variance estimation. Approximate sampling formula 
variances require all joint inclusion probabilities. This makes computation and storage 
more complicated, especially when more than two units per strata are selected. These 
statistics are unbiased only under complete response and for estimates of totals; 
linearization techniques must be used for non-linear estimators. In contrast, replicate 
variance estimators require fewer sampling parameters and no linearization formulae.  
 
The purpose of our research is to determine whether a replicate variance estimator can be 
used for key estimates produced by the U.S. Census Bureau’s Quarterly Survey of Plant 
Capacity (QSPC). The QSPC replaces the annual Plant Capacity Utilization (PCU) 
Survey and has a very similar design. Like its predecessor, the QSPC has a stratified π-ps 
design, and the key estimate is the Plant Capacity Utilization Rate.  
 
The combination of survey design and estimator (a smooth statistic) suggests that these 
data are suited to the stratified jackknife replication variance estimation procedure. We 
will compare that to the current procedure which takes the approximate sampling formula 
estimates of the variance and covariance of the rate’s totals, and inputs them into a 
standard Taylor series linearization formula to estimate the variance of the rate. This 
procedure was used by the PCU and is currently used by the QSPC. 
 
The QSPC sample is currently selected via a Pareto sampling scheme. This replaces the 
Tillé sampling scheme used for both the PCU and the initial quarters of the QSPC. 
                                                 
1 This report is released to inform interested parties of ongoing research and to encourage 
discussion. Any views expressed on statistical or methodological issues are those of the authors 
and not necessarily those of the U.S. Census Bureau. 
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Consequently, we consider the statistical properties of all the considered variance 
estimators under both sampling schemes. 
 
This paper describes the results of a Monte Carlo simulation studying the statistical 
properties of several variance estimators on a synthetic data set. This data set was 
modeled from a subset of the industries represented in the PCU historical data. Section 2 
describes the Tillé and Pareto sampling methodologies and the associated approximate 
sampling formulae. The stratified jackknife variance estimators are specified in section 3, 
and section 4 presents the data synthesis and our Monte Carlo simulation results. We 
conclude in Section 5 with some observations and recommendations. 
 

2. PCU and QSPC Sample Design 
 
The PCU published industry level estimates of plant capacity utilization rate, defined as 
the ratio of actual production to full production capability. The PCU survey used a Tillé 
sampling procedure (Tillé, 1996). In this procedure, units are rejected from the 
population one by one until the desired sample size is reached. The approximate sampling 
formula variance of a Horvitz-Thompson estimator under Tillé is: 
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where the data are sorted in ascending order within stratum by Bi  (Slanta and Fagan, 
1997). There are L sampling strata, indexed by h, and 
  πhi   =  inclusion probability for unit i 

(hi =  0    i = 1 
   = $hi, h1 − $h(i+1), h1  if 1 < i < n 
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The variance estimate of the plant capacity utilization rate ( ) is obtained with the 
following Taylor linearization variance estimator: 
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and the and  are calculated using the approximate sampling formulae.  DTv DTcov
 
The PCU sample was selected towards the end of 2004. The initial frame consisted of 
manufacturing and publication establishments from the 2002 Economic Census and was 
stratified by 6 digit NAICS (North American Industry Classification System). To reduce 
coverage bias, additional strata were added to represent establishments that came into 
business (were born) after 2002. Births were introduced on an annual basis after the 
initial cohort. These strata were created from the birth frames identified for the Annual 
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Survey of Manufactures. Each birth stratum contained representatives from a variety of 
NAICS codes. 
 
The Tillé sampling procedures used to obtain the PCU sample have been replaced by a 
Pareto sampling scheme for the QSPC. Pareto sampling is a particular case of order 
sampling. Like Tillé sampling, Pareto sampling is a π-ps procedure that yields a fixed 
sample size. However, the Pareto sampling procedure is easier to implement, and the 
approximate sampling variance formula is quite easy to derive. Both procedures produce 
similar samples with regards to the distribution of units by size and we hope to confirm 
that stratified jackknife methods for variance estimation work well on both kinds of 
samples.  
 
We use the following procedure for selecting a Pareto sample. First, for each unit i within 
stratum h, compute   
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The sample of size nh consists of nh units with the smallest qhi within stratum h. 
 
An approximate sampling formula variance of a total obtained by Pareto sampling 
(Rosén, 1997) is  
 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
= ∑∑∑

>
=

>
h

hy
hy

C
h h

h
n

i h

hy

hi

hi
hi

C
h h

h
DP C

B
A

n
n

C
By

n
n

Yv

h

h

h

2

0
1

2

0
1

1
1

ˆ
π

π  

 

where  ( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

hn

i hi

hi
hihy

yA
1

2

1
π

π  ( )∑
=

−=
hn

i hi

hi
hihy

yB
1

1
π

π  

 . ( )∑
=

−=
hn

i
hihyC

1
1 π

 
The approximate sampling formula covariance is given as  
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Note that these formulae apply only to Horvitz-Thompson estimates. As with the Tillé 
samples, we apply Taylor’s linearization formula to obtain an approximate variance of 
the plant capacity utilization rate:  
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where  and  are as just defined and ,  , and  are as they appear in (1). 
These totals and ratio estimates are calculated for each domain (NAICS). 

DPv DPcov T̂1 T̂2 0̂Y

 
3. Stratified Jackknife Variance Estimators 

 

The standard stratified jackknife replicate estimate  is created by dropping the ith 
unit from the sample and reweighting the remaining of the nh-1 units within stratum h by 
nh/(nh-1). In a stratified simple random sample, the stratified jackknife formula is 
modified to include the finite population correction factor (if necessary) by incorporating 
it into the replicate sums-of-squares corresponding to the units’ strata. With an unequal 
probability sample design, this pre-multiplication by a stratum-level constant is not 
appropriate. Instead, we can multiply each replicate i's contribution to the sums-of-
squares by (1-πi), where πi is the inclusion probability associated with omitted unit, i. We 
call this factor a varying finite population correction. 
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For each sampling scheme and estimator ( )Ŷ , we estimated the variance with the 
standard stratified jackknife estimate (3) and two variations: 
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Note that (3) and (4) differ only in the second term of the sums-of-squares -- it is the full 
sample estimate in (3) and a weighted average of replicate estimates over the stratum in 
(4). Equation (4) is algebraically equivalent to the approximate sampling formula 
variance estimate of a total from a Pareto sample, . Equation (5) is included to assess 
the necessity of including the varying fpc-correction factor in the variance estimator. 

DPv

 
Finally, we compute the Taylor linearization variance estimate using the stratified 
jackknife variance estimates as input. This estimator mimics our standard procedure for 
non-linear estimators.  
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where  and  are the variances and covariance computed via the “traditional” 
stratified jackknife method in (3).    
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4. Monte Carlo Simulation Study 

 
4.1. Generating An Artificial Population 
 
In order to examine multiple sampling processes and their effect on variances, we 
produced a simulated population modeled on data selected from the Plant Capacity 
Utilization survey. For a detailed description of the PCU data and sample design see the 
publication appendices: http://www.census.gov/prod/2007pubs/mqc1-06.pdf. Data for 
our simulation were obtained from the 2004-2006 survey collections. The PCU surveys 
hundreds of distinct industries. Despite a detailed classification of industry, some 
industries display complex distributions of size (capacity). We confined our simulation to 
those industries for which we had some confidence in our ability to model; that is, those 
that appeared to be distributed as a pure lognormal.  
 
We used a program developed by the Census Bureau, LogNormSim (McNerney and 
Adeshiyan, 2006), to generate industry level multivariate lognormal data populations, 
using noncertainty cases from the selected PCU data as training data. Our multivariate 
lognormal distributions modeled three variables: full production capability, actual 
production, and payroll. The first two variables are used in the estimate of the plant 
capacity utilization rate; the third is a measure of size used to calculate the probability of 
selection.  
 
For each industry, we evaluated the fit of the simulated population to the training data on 
seven percentiles, kurtosis, skew, standard deviation, mean, and the correlations between 
the three variables. We also calculated the average percent difference in all percentiles 
from the survey to the simulated data and the average percent difference in the 
correlations. From those without major defect in fit, we selected eleven subpopulations 
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with attention given to variety and the inclusion of several which modeled industries 
known to be of particular interest in the final survey publication.  
 
After conducting an empirical analysis of the original PCU data, we decided to construct 
two additional subpopulations to study particular data phenomena. In industry 
‘ZZZZZZ’, we randomly set approximately 18% of the values to 0 in a selected modeled 
industry. This was the highest reported-zero rate observed in original PCU microdata. In 
industry ‘YYYYYY’, we added an outlier/influential value. The outlier was a sample 
case, but received a weight very close to one. In all populations, certainty cases were 
excluded from the training data used for modeling. Instead, after the 13 simulated 
subpopulations were created, we added the relevant certainty cases from the PCU survey 
to our simulated population.  
 
Next, we divided our simulated population into 15 distinct strata:  13 (non-certainty) 
strata based on frame industry; one birth stratum with cases randomly recruited from 
those 13 subpopulations based on the proportion of births observed in the PCU survey; 
and one stratum containing all of the certainty cases. Two of the domains, 327332 and 
332722, had a high proportion of births (between 1.5 and 2 percent of cases). Nine 
domains, including ‘YYYYYY’ and 334518, had no births. It seems likely that our 
modeling criteria had a tendency to exclude NAICS with active birth processes.  
 
From this population, we drew 10,000 independent samples using the Tillé sampling 
method and 10,000 independent samples using the Pareto sampling method. In each 
sample we calculated the variance estimates of the plant capacity utilization ratio using 
the three stratified jackknife methods (vJ from equation 3, vJR from equation 4, vJU from 
equation 5), the Taylor approximation using the sampling formula variance (i.e.,  
the former production method that used vDT for Tillé samples (from equation 1) or  
the current production method that uses vDP for Pareto samples (from equation 2)), and 
Taylor approximation using v  ( , which uses equation 6 with stratified jackknife 
variances of totals--using equation 3--as inputs).  

,T
DTv

,T
DPv
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To assess the performance of each method over repeated samples, we calculated the 
relative bias and relative stability for each variance estimator ( ) within each domain 
using the formulae below (Shao and Tu, 1995, p251): 
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sŶ  is the sample estimate, Y  is the mean of all 10,000 sample estimates, and Y is the 
subpopulation value of the plant capacity utilization rate.  
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4.2. Results 
 
Tables 1 through 4 present the relative bias and relative stability results for the six 
variance estimators. The relative bias results presented in tables 1 and 2 can be 
summarized as follows: 
 
o Under either sampling scheme, the Taylor linearization variance approximations 

( T
DTv  and T

Jv  or T
DPv  and T

Jv ) tend to yield higher absolute relative bias than their 
fpc-corrected jackknife counterparts (vJ and vJR). In the few populations where the 
currently implemented Taylor linearization method ( T

DTv  obtained via (6)) has 
better properties, the vJR variances provide a close second. Note that the majority of 
these differences in relative bias are fairly trivial; 

o The performance of the vJ estimator appears to be greatly affected by existence of 
an outlier in the sample (see industry (‘YYYYYY’’) but not does not appear to be 
overly affected by the prevalence of zeros in the data (see industry ‘ZZZZZZ’); 

o The vJR replicate estimator appears to be fairly resistant to the presence of an 
outlier as well as being unaffected by a high prevalence of zeros in the data, as do 
all three Taylor linearization variance estimators ( T

DTv , T
DPv , T

Jv );  
o The relative bias of the uncorrected replicate variance estimator (vJU) is uniformly 

poor, with overestimation in all cases. This provides strong evidence of the 
necessity of including a finite population correction in estimates of variance for 
both of these fixed size sample designs. 

 
Table 1:  Relative Bias Using Tillé Sampling  

NAICS vJ vJR T
Jv T

DTv  vJU

313320 0.12% -0.72% -2.38% -1.21% 61.29%
325131 -1.90% -3.86% -11.59% -9.90% 48.51%
325510 -1.96% -2.12% -5.38% -5.48% 14.93%
327121 1.07% 0.75% -16.92% -16.09% 12.74%
327332 6.64% 3.30% 2.65% -2.12% 47.92%
332721 5.52% 5.21% 4.80% 3.70% 38.84%
332722 5.00% 4.02% 2.85% 2.20% 50.60%
332912 0.05% -1.31% -3.40% -4.84% 52.54%
333414 0.00% -0.12% -3.94% -3.73% 30.19%
334416 0.46% -0.02% -2.34% -2.80% 34.64%
334518 16.24% -2.74% 11.40% -4.08% 256.00%

YYYYYY 111.08% 1.84% 104.35% -6.35% 1880.25%
ZZZZZZ 1.86% 0.52% 0.21% -0.87% 58.44%
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Table 2:  Relative Bias Using Pareto Sampling  

NAICS vJ vJR T
Jv T

DPv  vJU

313320 -1.98% -2.81% -4.45% -5.22% 57.98%
325131 -1.42% -3.40% -11.12% -12.74% 49.75%
325510 -0.46% -0.61% -3.92% -4.06% 16.70%
327121 0.88% 0.56% -17.02% -17.13% 12.57%
327332 7.42% 4.08% 3.36% 0.18% 48.90%
332721 0.04% -0.25% -0.63% -0.92% 31.65%
332722 0.78% -0.17% -1.30% -2.18% 44.66%
332912 1.87% 0.51% -1.64% -2.88% 55.47%
333414 -3.33% -3.45% -7.12% -7.22% 25.90%
334416 -3.83% -4.29% -6.50% -6.91% 29.11%
334518 17.09% -2.03% 12.22% -6.13% 261.73%

YYYYYY 106.30% -0.58% 99.77% -8.16% 1840.95%
ZZZZZZ -0.64% -1.93% -2.24% -3.48% 54.57%

 
The stability results presented in tables 3 and 4 can be summarized as follows: 
 
o In most cases, the stabilities of the variance estimates are comparable for the two 

corresponding Taylor linearization variance estimators ( T
DTv and T

DPv ) and the two 
corrected jackknife variance estimators (vJ and vJR). Thus, direct replication of the 
plant capacity utilization rate (a ratio) does not appear to detrimentally affect the 
variance of the variance estimates. It appears that the additional smoothing by the 
Taylor linearization approximation is not necessary with this ratio estimator, 
population, and sampling scheme (Tillé or Pareto); 

o In the few cases where the stability is affected by the choice of variance estimator, 
the vJR formulation generally produces the more stable variance estimates than the 
other methods; 

o The uncorrected jackknife replicate estimates (vJU) are the most unstable in all 
domains. 

 
Table 3:  Relative Stability Using Tillé Sampling  

NAICS vJ vJR T
Jv T

DTv  vJU

313320 41.78% 41.54% 39.23% 40.89% 78.13%
325131 69.51% 69.19% 60.44% 64.95% 98.18%
325510 49.95% 49.87% 45.89% 46.01% 56.34%
327121 86.80% 86.39% 66.04% 66.73% 93.43%
327332 41.30% 40.31% 36.31% 35.36% 65.89%
332721 16.30% 16.16% 15.76% 15.39% 42.62%
332722 33.25% 32.86% 31.13% 31.26% 62.57%
332912 30.47% 30.30% 28.68% 29.02% 71.86%
333414 34.48% 34.43% 32.17% 33.03% 49.10%
334416 37.23% 37.05% 35.31% 35.87% 56.52%
334518 70.75% 61.60% 63.88% 62.12% 271.21%

YYYYYY 130.84% 47.66% 123.20% 47.48% 1905.76%
ZZZZZZ 25.84% 25.61% 24.91% 25.12% 66.32%
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Table 4:  Relative Stability Using Pareto Sampling  
NAICS vJ vJR T

Jv T
DPv  vJU

313320 41.37% 41.18% 38.96% 38.91% 75.03%
325131 70.53% 70.22% 61.09% 61.33% 99.86%
325510 50.83% 50.75% 46.58% 46.53% 57.75%
327121 87.02% 86.61% 66.15% 66.10% 93.62%
327332 42.38% 41.33% 37.15% 36.53% 67.47%
332721 14.44% 14.41% 14.16% 14.14% 35.72%
332722 31.85% 31.57% 30.05% 29.87% 57.07%
332912 30.89% 30.64% 28.86% 28.80% 74.37%
333414 33.29% 33.26% 31.49% 31.48% 45.39%
334416 35.93% 35.83% 34.44% 34.40% 51.79%
334518 71.76% 62.44% 64.81% 57.60% 276.92%

YYYYYY 126.25% 46.67% 118.87% 44.90% 1865.69%
ZZZZZZ 25.22% 25.12% 24.48% 24.48% 62.67%

 
With either sampling scheme, the vJR estimates have relatively trivial bias and are fairly 
stable. The estimates vJR and vJ differ significantly only on the outlier population. In all 
cases, the replicate variance estimates have comparable – if not better – statistical 
properties to their Taylor linearization counterparts. This presents a clear advantage over 
the current production method: obtaining estimates with comparable statistical properties 
in a simpler fashion, with no assumed approximations (e.g., negligible higher order 
derivatives for the Taylor linearization, trivial non-response for the input approximate 
sampling formula variances and covariances). These advantages apply regardless of the 
sampling scheme in this simulation.  
 

5. Conclusion 
 
This research was motivated by a practical problem:  to determine whether the stratified 
jackknife variance estimator could be used to produce usable variance estimates for the 
U.S. Census Bureau’s Quarterly Survey of Plant Capacity (QSPC). As a part of this 
analysis, we evaluated both direct replication of a ratio estimate and a variance 
approximation that combined approximate sampling formula or replicate estimates with a 
Taylor linearization approximation.  
 
With a highly stratified sample, the literature supports the usage of the stratified jackknife 
variance estimator for a smooth statistic such as a ratio (e.g., Shao and Tu, 1995). 
However, we found very little guidance in the literature on the appropriate finite 
population correction factor with an unequal probability sample. We also found little in 
terms of concrete recommendations for the “gold standard” in the replicate sums-of-
squares. The presented analysis provides strong evidence for the usage of the varying 
finite-population correction factor in the replicate variance estimator, demonstrating that 
failing to include this correction leads to consistent overestimation. [Note that Deville 
(1999) advocates the usage of this adjustment in his paper on linearization variance 
estimators.]  Our research also provides support for the local replicate weighted average 
in the sums-of-squares, though the performance is only marginally better than the full 
sample estimate in all but the outlier population.  
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The strong performance of vJR on the population with an outlier in the current production 
variable could not be traced to any component of the estimator. It may only be coincident 
to whatever direction the outlier pulls the ratio. More research is needed to determine if in 
fact the vJR estimator performs better on data with significant outliers. 
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