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Abstract

Variances in the American Community Survey are estimated using a replicate
weight methodology (Fay, 1995). In counties with small sample sizes, the variance
estimates of poverty statistics show wide variation as a function of sample size.
Generalized Variance Functions (GVF) can be used to smooth out the uncertainty
of the design-based variance estimate. We propose incorporating GVFs with small
area model techniques to smooth out the variability in counties where the precision
of the design-based variance is lacking. These smoothed variances can then be used
in the small area models for poverty estimates.
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1. Introduction

The U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE)
program annually produces model-based estimates of income and poverty at the
state and county levels for various age groups using Fay-Herriot (1979) models.
Since 2005, data from the American Community Survey (ACS) have been used in
the modeling. (Prior to 2005, data from the Current Population Survey were used.)
For this paper, we will focus on county models used for estimating the number of
related school-age (5-17 year old) children in poverty.

The county model used by the SAIPE program follows the Fay-Herriot frame-
work:

yi = Yi + ei

Yi = Xiβ + ui (1)

where yi is the log of the direct ACS estimate of the number of related children
aged 5-17 in poverty (log total poor), Yi is the log of the true number of related
children aged 5-17 in poverty, Var(ei) = σ2

i is the sampling error variance in yi as an
estimate of Yi, and Var(ui) = σ2

u is the model error variance. Usually, the sampling
variances, σ2

i , are treated as known, even though they are estimated. The estimates
of the σ2

i s are thus important inputs to the model.
In the ACS, sampling error variances are estimated using the successive differ-

ence replication variance estimator (Fay and Train, 1995). This method creates a
set of replicate estimates, yi,k, by perturbing the survey weights, according to values
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in a Hadamard matrix, and then computing the variance estimate using the sum
of squares of the replicate estimates around the original estimate. In application to
ACS data, 80 replicate estimates are used. The resulting variance estimator is

̂Var(yi) =
4
80

∑
k

(yi,k − yi)2 (2)

To obtain the variance of the log total poor, we apply the log transformation to the
set of 80 replicate estimates before computing the sum of squares around the log of
the original estimate.

s2i = ̂Var(log(yi)) =
4
80

∑
k

(log(yi,k)− log(yi))2 (3)

Figure 1 shows the estimated sampling error variances from (3) of the log number
of children aged 5-17 in poverty as a function of sample size, defined as the number
of responding households. Notice the large range of values of the estimated sam-
pling variances for small and moderate sized counties (also note that both the X-
and Y-axis have log scaling). Bell (2008) demonstrates the potential for a signifi-
cant increase in the MSE (and a negative bias in the estimate of the MSE) of the
small area estimate E(Yi|yi) for counties whose sampling variances are substantially
underestimated. This is important for counties in which the true variance is high
(typically counties with small sample size).

One of the concerns with the Fay-Herriot model in (1) is that the estimated
sampling error variance may be very imprecise for counties with small sample sizes.
Although the ACS has a large national sample size, the sample sizes in individual
counties for a single year can be small, with many (200+) counties having less than
50 responding households. (To address this issue, the official direct estimates of
characteristics for these small counties from the ACS use 3 or 5 years of data, de-
pending on the population size of the county.) Contrary to the usual assumption in
small area modeling that the sampling variances are known, such small sample sizes
raise questions about the precision of the resulting sampling variance estimates.
Error in estimates of sampling error variances can adversely affect small area mod-
eling in two ways. First, it can affect estimation of the regression coefficients β in
(1), since these are fitted by weighted least squares, where the weights are the total
variances, i.e. model error variance plus sampling error variance σ2

u + σ2
i . Second,

the sampling error variance is used to construct the weight, wi = σ2
u/(σ

2
u+σ2

i ), given
to the direct estimate when making the final shrinkage (empirical Bayes) estimate.

In this paper, we use a small area model framework to improve estimates of the
sampling error variances of ACS county (log) poverty estimates. The model will
incorporate a Generalized Variance Function (GVF) to explain the sampling error
variances as a function of other variables. In the next sections, we will lay out the
model framework, examine the issue of estimating the precision of the sampling
variance estimator, and apply this model to the sampling variance estimates of log
number of related children aged 5-17 in poverty from the 2005 American Community
Survey.

2. Small Area Framework for Variance Models

Let s2i be the estimated sampling variance of the log number of related children
aged 5-17 in poverty for county i. We develop a model for the s2i as follows. Given
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the true sampling variance, σ2
i , we assume the variance estimate is unbiased, i.e.,

E(s2i ) = σ2
i , and that it follows a chi-squared distribution with di degrees of freedom.

We will discuss what value to use for di in the next section. The second part of the
model specifies the distribution of the σ2

i ’s across counties. The σ2
i ’s are assumed

to follow an Inverse Gamma distribution centered around a GVF, gi = exp(Ziγ),
and with precision parameter α. The predictors, Zi, used in the GVF models will
be discussed in Section 4.

The model can be written in hierarchical form as follows:

dis
2
i

σ2
i

|σ2
i ∼ χ2

di
(4)

σ2
i ∼ InvGamma(α+ 1, αgi). (5)

The quantity of interest, σ2
i , is an unobserved random variable in this framework.

To obtain the observed data distribution for s2i , we must integrate out σ2
i which has

an Inverse Gamma(α+ di/2 + 1, dis2i /2 + αgi) kernel. The variable transformation

of x = α+1
α

s2i
gi

follows an F-distribution with degrees of freedom di and 2(α + 1).
The marginal distribution of s2i then has the form:

f(s2i ) =
Γ(α+ di/2 + 1)
Γ(α+ 1)Γ(di/2)

(dis
2
i

αgi
)di/2 s2i

−1(
1 + dis2i

2αgi

)α+di/2+1
(6)

The mean and variance of s2i from this model framework are:

E(s2i ) = E(E(s2i |σ2
i )) = E(σ2

i ) = gi

V ar(s2i ) = V ar(E(s2i |σ2
i )) + E(V ar(s2i |σ2

i ))
= V ar(σ2

i ) + E(2(σ2)2/di)

=
g2
i

(α− 1)
+

2
di

(g2
i +

g2
i

(α− 1)
)

=
g2
i (di + 2α)
di(α− 1)

(7)

From (4) and (5), the conditional distribution of of σ2
i |s2i can be shown to be Inverse

Gamma(α+ di/2 + 1, dis2i /2 + αgi). This conditional distribution has expectation

E(σ2
i |s2i ) =

di
di + 2α

s2i +
2α

di + 2α
gi (8)

which is also the linear empirical Bayes estimate of σ2
i (using estimates for α and γ).

Our goal is to estimate the parameters (γ, α) through maximum likelihood, so that
we can generate estimates of σ2

i to replace the direct sampling variance estimates
s2i .

Similar forms of this framework have been suggested by Otto and Bell (1995)
and Arora and Lahiri (1997). Otto and Bell considered a multivariate version,
modeling sampling covariance matrices for multiple years of state age-group poverty
rate estimates from CPS. Their model was based on a Wishart distribution with
an estimated constant degrees of freedom for all states. Arora and Lahiri used a
chi-squared–inverse Gamma model in an application to data from the Consumer
Expenditure Survey. They assumed the degrees of freedom to be dfi = ni − 1.
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The appropriateness of such simple assumptions about the degrees of freedom is
questionable, as is suggested by simulation results in Huang and Bell (2009). For
our application we wanted to develop more refined assumptions about the precision
of the sampling variance estimator (i.e., its degrees of freedom). Thus, in the next
section we investigate the precision of the sampling variance estimator for ACS
estimates of log total poor using a bootstrap simulation. The results will guide us
in making model assumptions that specify the degrees of freedom as a function of
certain known quantities including sample size.

3. Bootstrap Simulation to Study the Precision of the Design-Based
Sampling Variance Estimator

One problem in the framework described in Section 2 is deciding what to use for
the degrees of freedom di for the variance estimator s2i ? If the sample design was a
simple random sample of size n, and the data were i.i.d. N(0, σ2), then the variance
of the total or mean would have di = n− 1 degrees of freedom. However, the ACS
is not a simple random sample, but instead has a complex design, and the county
point estimates we are modeling (of log total poor) are not just means of normally
distributed observations. Some relevant features of the ACS sample design and
estimation include differential sampling rates, systematic sampling, nonresponse
follow-up subsampling, various weight adjustments, and raking to population con-
trols (U.S. Census Bureau 2009). Additionally, we are estimating the variance of
the log total poor which is a nonlinear transformation.

To investigate the precision of the ACS sampling variance estimator for county
estimates of log total poor we did a bootstrap simulation study using 2005 ACS
microdata. Our goal was to simulate those parts of the ACS design and estimation
procedures that would be expected to have the largest effects on the variance esti-
mator. We did not attempt to completely replicate every detail of the ACS sample
design and estimation, something that would be extremely difficult. For our simula-
tion study, we generated 1000 independent bootstrap datasets for each county and
examined the precision of the sampling variance estimator across the simulations.
The outcome variable of interest is the log number of related children aged 5-17 in
poverty.

The first step in the bootstrap simulation for each county is to build the empirical
distribution of households. Each household in sample has a number of related
children aged 5-17 and a poverty status for that household. These are the only
two variables we will concern ourselves with for this simulation. The weights for
individuals within the same household are equal until the population controls are
applied, which is one of the last weight adjustment procedures. For our simulation
study, we will use the base weight (WSSF), after taking CAPI (computer assisted
person interview) subsampling into account. To explain, for housing units that
do not respond to the ACS by mail or telephone, a subsample is taken (for most
areas a 1 in 3 subsample) and sent to CAPI follow-up. The weights on the CAPI
cases are adjusted to reflect this subsampling procedure. The bootstrap sampling
of households is done with replacement where the probability of selection for the
household is proportional to the base sampling weight from the list of responding
housing units.

For counties with small sample size, we were worried that the empirical distri-
bution would not be a good approximation of the true population distribution of
households. Therefore, for these counties we pool their data with data from the
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other counties that are within the same ACS Estimation Group. The ACS design
had already grouped counties together (within the same state) by poverty rate, race
and ethnicity distribution, distance from each other, etc., into estimation strata that
are guaranteed to have a minimum of 400 person interviews. Additionally, these
strata are the groups of counties in which the population controls are applied (rather
than in each county individually). There were 2006 estimation groups in the 2005
ACS data for the 3141 counties. For bootstrap sampling we also conditioned on
whether the data came from the subsampled CAPI cases, because the distribution
of poverty is different between the CAPI and non-CAPI cases.

We draw a bootstrap sample for all counties in an estimation group using sep-
arate empirical distributions for the CAPI and non-CAPI households, and keeping
fixed the number of CAPI and non-CAPI households. For the estimation group we
compute the sample-based population estimate and use a constant ratio adjustment
to all of the weights so that the sample-based population estimate equals the pop-
ulation estimate seen in the 2005 ACS. With this set of data and weights, we can
then produce the design-based log total poor estimate and its estimated sampling
variance using the successive difference replication variance method. We repeat this
for 1000 samples. From these 1000 variance estimates, we can compute the mean,
variance, and relative variance of the variance estimators. Since the assumed dis-
tribution of the variance estimator, given the true variance, is chi-squared with di
degrees of freedom, and since the chi-squared distribution has a relative variance of
2/di, we can approximate the degrees of freedom for the county from the simulation
results. Figure 2 plots the estimated d̂i as a function of sample size for the counties.
Note the graph is on the log-log scale. This scale was chosen due to the strong linear
association in addition to a nearly constant variance about the regression line.

A least-squares regression of the estimated degrees of freedom on sample size
(on the log-log scale) indicates that the optimal power of sample size (where sample
size equals number of responding households) is .43. We will use the square root of
sample size as a reasonable approximation (since .5 is close to .43 and square root
has an easier interpretation), and regress the estimated degrees of freedom on

√
ni.

This results in d̂f i = .36×√ni. We will assess how well this approximation works
in the next section.

4. Variance Modeling for the ACS Log Poverty Estimates

The modeling of the variance is composed of two parts: selection of the predictors,
Zi, for the GVF and estimation of the parameters. Model fitting will be done by
maximizing the observed data log likelihood based on (6). The dependent variable,
s2i , is the estimated sampling variance of the log number of related children aged
5-17 in poverty from the 2005 ACS.

There are two main types of covariates that we consider: covariates that explain
the mean number of poor (or poverty rate) and covariates that explain the survey
design. The former covariates we take from the SAIPE production model of the log
number of related children aged 5-17 in poverty:

1. lfoodstamp: log number of foodstamp participants

2. lirschildp: log number of IRS child exemptions in households in poverty

3. lirschild: log number of IRS child exemptions
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4. lrpop017: log number of children aged 0-17 from demographic population
estimates

5. lcenpoor: log number of related children aged 5-17 in poverty from Census
2000

The following are covariates based on the design and estimation procedures of the
ACS:

1. lhhct: log number of responding households

2. rrate: percent of households in sample that gave a response (responding
households / original sample size)

3. capirate: percent of responding households that are CAPI cases

4. xpopcontrol: percent of population the county contributes to its population
control group

5. persample: aggregate sampling faction (of households) for county

A special variable called lsaipemodelest is the predicted log number of related
children aged 5-17 in poverty from the 2005 SAIPE production model. This model
uses the direct sampling variance estimates of the sampling error variances. It has
the form:

lsaipemodelest = −.421 + .173 lfoodstamp + .548 lirschildp− 1.037 lirschild
+1.050 lrpop017 + .268 lcenpoor (9)

Note that all of the predictor variables for lsaipemodelest are on a same scale
as the population size of the county and thus are highly correlated with each other.
A model-based estimate of poverty rate, lsaipemodelrate, uses the covariates
listed above for the log number of children in poverty plus two more covariates
(demographic population estimates for all ages and Census 2000 poverty universe
for related 5-17 year olds) that become denominators for predictor rates. The
modeled rate has the form:

lsaipemodelrate = .372 + .556 log(Child Tax Poor Rate)
+.167 log(Food stamp rate)
−.414 Child Tax filing rate
+.289 log(Census 2000 poverty rate)
−.02 log(Pop 0-17) (10)

In selecting predictors for the the GVF, we do not want to fit the error term
in the direct sampling error variance. This can happen if a predictor, one of the
variables in Zi, is a survey response variable that has an error which is correlated
with the error in the direct sampling error variance estimate. For example, rather
than using the direct survey estimate, log(yi), we can use the model regression
estimate, lregmodelest. This issue also came up with another potential predictor,
the number of households in poverty that contain at least one related child aged
5-17. This variable was more predictive in preliminary analyses of the estimated
sampling variance than the number of responding households but we were concerned
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that there would be high correlation between the errors in the variance estimate and
this version of ’sample size’.

To help with construction of the GVF, we look at Taylor’s approximation of
some known variance structures. If we assume the variance of the original (non-log)
data is proportional to a power of the mean,

V ar(yi) = kµc

V ar(log(yi)) ≈ kµc−2 = exp(γ0 + γ1 log(µ)) (11)

where γ0 = log(k) and γ1 = c − 2. Allowing the γ’s to be freely estimated yields
model-based class of possible GVF’s. The γ parameters will be estimated by max-
imizing the observed data distribution for s2i given by (6). Suppose we instead
assume a binomial type variance of the original data, then

V ar(yi) =
kπ(1− π)

n

V ar(log(yi)) ≈
k(1− π)
nπ

= exp(γ0 + γ1 log(π) + γ2 log(1− π) + γ3 log(n))(12)

where γ0 = k, γ1 = γ3 = −1 and γ2 = 1 generalizes the binomial type variance.
Variables such as sample size, response rate, percent of households in CAPI, and
percent of households in sample can be viewed as predicting the design effect, k,
the constant part of the variance function. For the variables that are rates, we can
examine whether a transformation is needed (e.g. log rate) linear predictor Ziγ of
the GVF.

Recall in the previous section, our bootstrap simulation suggested that the
square root of sample size gave a reasonable approximation to the degrees of free-
dom, as computed from the empirical relative variance. In preliminary runs of the
model, we noticed that the GVF model precision parameter α was unreasonable
large thus putting very little weight on the direct estimate for the shrinkage estima-
tor (median weight was 9%). One possible reason for this was that the simulation
uniformly underestimated the precision of the direct variance estimator. Thus, we
allow the degrees of freedom to be proportional, up to a scalar multiple, to the
estimated degrees of freedom from the simulation or the approximation using the
square root. This is now similar to fitting the fixed precision parameter for the di-
rect variance estimator from Otto and Bell. In terms of parameters, we are adding a
multiplicative scalar that must be estimated to the fixed degrees of freedom part of
the model, i.e. instead of known di we now have κdi. This factor will correct for any
overall level of discrepancy in the variance which may be due to assumptions made
in the simulation (systematic over or under estimation of the variance). Addition-
ally, since the replication method uses 80 replicates, we limit the maximum value of
the degrees of freedom to be 80 before evaluating the likelihood function (estimates
of κdi larger than 80 are set to 80 for likelihood function evaluation). This limit
is imposed because the replicates ideally represent 80 orthogonal contrasts of the
data, thus there are at most 80 ’independent’ sums of squares which translates to
an upper bound of 80 for the degrees of freedom.

We will consider eighteen (3 x 3 x 2) variations of the GVF model for comparison
based on three components. The first component is the GVF variance style: power-
mean [mean], power-mean using the SAIPE predictors in (9) [mean-x] or binomial
[bin]. The second component is the design variables: sample size [ss], sample size
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Table 1: Log Likelihood, AIC and Parameter Estimates of GVF models

Df = Sim Df = sqrt n
Model loglike AIC α scale loglike AIC α scale

mean: ss 2527.34 -2517.34 4.29 2.77 2540.44 -2530.44 4.26 2.88
ss+rates 2776.87a -2758.87 5.65 2.92 2766.40 -2758.40 5.43 3.08

ss+log rates 2769.25 -2751.25 5.65 2.89 2768.28 -2750.28 5.44 3.05
mean-x: ss 2682.52b -2664.52 5.21 2.78 2689.15b -2671.15 5.29 2.80

ss+rates 2811.47c -2785.47 6.05 2.85 2808.49c -2782.49 5.83 3.00
ss+log rates 2792.83 -2766.83 5.91 2.85 2790.31 -2764.31 5.69 3.00

bin: ss 2511.41 -2487.41 4.06 2.89 2515.59 -2491.59 4.17 2.83
ss+rates 2637.38d -2617.37 4.77 2.88 2641.00d -2621.00 4.82 2.88

ss+log rates 2648.35d -2628.35 4.79 2.99 2652.27d -2632.27 4.85 2.91

a percapi not significant
b lrpop017 not significant
c percapi and lhhct not significant
d percapi and rrate not significant

and rates, or sample size and log rates. The final component is the degrees of
freedom: proportional to the estimated degrees of freedom from the simulation
[sim] or proportional to the square root of number of responding households in
sample [sqrt n].

Table 1 compares the fits of the various models. A few major trends are apparent
when comparing the likelihood and AIC values. First, variables (rates) related to
the design and operations of the ACS significantly added explanatory power to
the model. Second, the Binomial variance form did worse than using the mean
or the variables that predict the mean. Third, using the rates in the GVF rather
than the log rates consistently gave better fitting models. Finally, compared to the
first two points, the differences between the likelihoods were small when switching
the estimated degrees of freedom from the simulation result to the square root
approximation.

The precision parameter α is highly correlated with the likelihood of the model
(ρ = .98). The better models (higher likelihood) have higher precision / lower GVF
model error variance (higher α). The scale parameters were consistent across the
different GVF models. For the degrees of freedom estimated from the simulation,
an inflation factor in the 2.8 to 3.0 range was suggested by the data. This means
that the assumptions in the simulation ended up understating the precision of the
survey variance estimator by a factor of almost 3.

The model [mean-x, ss + rates] was the best model GVF specification of the
ones examined in Table 1. While the model using the square root of sample size did
slightly worse, it is much simpler and does not require a large bootstrap simulation
of a complex survey to obtain. Also, using the predictors of the SAIPE county model
rather than the model prediction keeps the variance small area model uncoupled
from the production small area model – not requiring simultaneous estimation or
iterating between the SAIPE county and variance models.
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5. Empirical Bayes Shrinkage of the Variance Estimates

After selecting our model [mean-x, ss + rates, Df = sqrt n], we can make the
empirical Bayes estimates of σ̂2

i |s2 from (8) using our parameter estimates for α
and gi = exp(Ziγ). Since the number of replicates in the sampling variance es-
timator is 80, we limited the model-based estimate of degrees of freedom to 80.
There are 40 counties with sample size larger than 5487 that reach this hard cap.
Thus, the largest weight that will be given to a direct sampling variance estimate
is 80/(80+2*5.83) = 87%. Figure 3 shows the distribution of weights on the direct
variance estimator.

A comparison of the ratio of the empirical bayes estimate to the direct vari-
ance estimate is given in Figure 4. The smoothed variance estimates for some of
the smaller counties show large underestimation of the true design variances by the
direct variance estimator. This has two implications for the SAIPE county pro-
duction model when treating the estimated variances as the true variance. First,
the variances determine the relative weights given when fitting the model regression
parameters. Second, the variances determine the weights that are given to the di-
rect estimates versus the model-based estimates in the Empirical Bayes smoothing.
Underestimating the variance for the small sample size counties could give them
undue influence on the model fitting and pull the smoothed estimate too close to
the direct estimate when the sample size perhaps does not warrant it.

6. Discussion

In this paper we have presented a small area model framework for estimates of
sampling variance from complex surveys. Variance estimates for the number of re-
lated children aged 5-17 in poverty from the 2005 ACS were fitted using the model.
We found that our approximation to the precision of the sampling variance esti-
mator worked nearly as well as our degrees of freedom estimated from a bootstrap
simulation of the ACS (see Table 1).

There is more research needed to understand the properties of the successive
difference replication variance estimator, especially when applied to non-linear func-
tions of the data. There were several limitation in the bootstrap simulation design.
First, the simulation did not preserve the serial correlation in the sample list of
housing units. Second, the weight adjustment procedure used in the simulation
only incorporated a single cell population control, rather than the multiple weight
adjustments including a multi-cell weight control. Despite the limitations of the
simulation design, the bootstrap simulation of the ACS provided valuable insight
as well as greater understanding of the different aspects of the design that could
potentially influence the sampling variance. We plan to investigate the assumption
of unbiasedness of the variance estimator for small sample sizes. Finally, we must
understand the implication to the SAIPE county production model when replacing
the direct variance estimates with the empirical Bayes estimates from the small area
variance model.
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Figure 1: Sampling Variance Estimate by Number of Responding Households
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Figure 2: Estimated Degrees of Freedom by Number of Responding Households

Section on Survey Research Methods – JSM 2009

5066



Histogram of weights
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Figure 3: Histogram of Weights on Direct Estimate
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Figure 4: Ratio of Empirical Bayes to Direct Variance Estimates
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