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Abstract
Results are presented from a simulation study of alternative weighting class adjustments 
for nonresponse when estimating a population mean from complex sample survey data, in 
an effort to extend the previous work of Little and Vartivarian (2003, 2005) to a complex 
sample survey setting involving stratified cluster sampling from a finite target population. 
A total of 30 simulations were performed, varying based on five different parameters: 1) 
the relationship of an auxiliary variable X available for respondents and nonrespondents 
with the survey variable of interest Y in the population of interest; 2) the relationship of 
the auxiliary variable  X with the probability of unit nonresponse,  P; 3) the use of base 
sampling weights according to a complex sample design when estimating response rates 
within weighting classes defined by  X  and/or the sampling strata (vs. no nonresponse 
adjustment at all); 4) the expected response rate for each sample across repeated sampling 
(75% or 25%); and 5) the relationship of the design strata with the probability of unit 
nonresponse, P. Each simulation examines the empirical bias and the empirical root mean 
squared error (RMSE) of a particular weighted estimator of the population mean for  Y, 
with  nonresponse  adjustments  to  the  base  sampling  weights  computed  in  weighting 
classes  defined  by  the  auxiliary  variable  X  and  the  sampling  strata  in  selected 
simulations.  Results from the simulations suggest that the use of weighted response rates 
within weighting classes defined by an auxiliary variable X and the sampling strata can be 
beneficial  when  working  with  survey  data  collected  from  stratified  cluster  samples, 
particularly  when response  rates  are  low and the  auxiliary and  stratum variables  are 
correlated with both the survey variable of interest Y and response propensity.

Key Words: Complex Sample Survey Data, Unit Nonresponse, Nonresponse Weighting 
Adjustments, Missing Data  

1. Introduction

Unit nonresponse, or the failure to obtain any survey measures on a sampled unit in a 
survey research project, is a critical breakdown in the survey measurement process and a 
ubiquitous  problem  facing  survey  research  organizations  and  independent  survey 
researchers  worldwide.  Unit  nonresponse  can  arise  from  an  inability  to  contact  the 
sampled unit (non-contact) or a refusal on the part of the sampled unit to participate in the 
survey (Groves and Couper, 1998a), and recent work has shown that the rates of non-
contacts and refusals to official government surveys are steadily increasing over time in a 
uniform manner worldwide (de Leeuw and de Heer, 2002). Although additional recent 
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empirical work has shown that an increase in the nonresponse rate of a survey does not 
necessarily  imply  that  the  nonresponse  bias  of  estimates  based  on  that  survey  will 
increase (e.g., Groves, 2006; Groves and Peytcheva, 2008), unit nonresponse engenders 
the potential for estimates based on the respondents to a survey to be biased, especially if 
non-respondents have distinctive values on the survey variables of  interest.  Estimates 
based  on  survey  respondents  will  only  be  unbiased  if  unit  nonresponse  is  arising 
completely at random, making the respondents a random sample of all sample subjects. 

Although survey research organizations presumably take all possible steps to prevent unit 
nonresponse in the first place (Groves and Couper, 1998b), nonresponse error due to unit 
nonresponse  is  inevitable,  and  the  disturbing  worldwide  trend  of  increasing  survey 
nonresponse rates underscores the need for survey researchers to use statistically sound 
methods of post-survey adjustment for repairing nonresponse errors in surveys. A method 
commonly used in practice to adjust for nonresponse is the weighting class adjustment 
method. This method relies on a somewhat weaker assumption regarding the missing data 
mechanism relative to the missing completely at random (MCAR) assumption, or that 
unit non-respondents are missing at random (MAR). In this case, missing data arise as a 
function of other observed variables but not the survey variable being measured (e.g., a 
respondent is unable to recall an event due to older age, but not because of the event 
itself),  and  other  observed  variables  are  used  to  define  weighting  classes  that  are 
distinctive  in  terms  of  response  propensity.  The  missing  data  within  the  classes  are 
“ignorable”  (Rubin,  1976)  in  that  the  respondents  represent  a  random sample  of  all 
sample elements within the weighting class (i.e., the non-respondents within the class are 
only  randomly  different  from  the  respondents).  The  weighting  classes  are  generally 
formed based on auxiliary variables (possibly measured on the sampling frame) available 
for both respondents and non-respondents. Respondents within each weighting class have 
weights applied to their survey measures that are equal to their base sampling weight 
(according  to  a  complex  sample  design)  multiplied  by  the  inverse  of  either  the 
unweighted or  the  weighted  response rate (if  applicable,  given unequal  probability of 
selection arising from a complex sample design) within the weighting class, such that the 
respondents represent all of the non-respondents within each weighting class. The choice 
of using unweighted or weighted response rates when applying nonresponse adjustments 
within the weighting classes in the complex sample design setting is a central research 
question motivating the work in this paper.

Recent  work  has  provided  survey  researchers  with  sound  guidance  regarding  more 
appropriate  applications  of  this  relatively  simple  weighting  class  method.  Little  and 
Vartivarian (2003) empirically demonstrate that the use of weighted response rates within 
weighting  classes  is  either  incorrect  (resulting  in  biased  estimates  if  sample  design 
variables are related to survey nonresponse) or unnecessary (if design variables are not 
related to survey nonresponse).  They argue that  adjustment  classes should be formed 
based  on  variables  related  to  both  nonresponse  and  probability  of  selection  (design 
variables,  or  variables  related  to  differential  probability  of  selection),  and  that 
unweighted  nonresponse adjustments based on this weighting class method will reduce 
the bias and maintain the efficiency of weighted estimators computed using the survey 
data.  However,  the  authors  only  consider  the  case  of  stratified  sampling,  where 
probabilities  of  selection  differ  based  on  two  sampling  strata.  Further,  Little  and 
Vartivarian (2005) emphasize the need to choose auxiliary variables to form adjustment 
classes  that  are  predictive  of  both  response  propensity  and  the  outcome  variable  of 
interest  for  nonresponse  bias  reduction  (and  potentially  reduction  in  the  variance  of 
estimates as well).  In short,  the authors demonstrate that  choosing auxiliary variables 
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only predictive  of  response  propensity  and  not  predictive  of  the  survey measures  of 
interest  will  actually  increase  the  variance  of  survey  estimates  without  reducing  the 
nonresponse bias, which is an unfavorable situation. However, their empirical results are 
based on simple random sampling, and only unweighted response rates are considered for 
developing the weighting class adjustments (p. 162).

As suggested by Little and Vartivarian (2005, p. 167), “…It would be of interest to see to 
what extent the results can be generalized to complex sample designs involving clustering 
and stratification.” The present study aims to extend these results by using simulations to 
repeatedly select complex stratified cluster samples from simulated populations where 
survey variables of interest have known mean and covariance parameters (using stratified 
probability proportionate to estimated size, or PPeS, selection of clusters, to introduce 
unequal probability of selection). The simulations artificially introduce unit nonresponse 
in  each  sample  according  to  a  MAR  mechanism,  and  then  evaluate  the  alternative 
weighting class adjustments tested in Little and Vartivarian by applying the nonresponse 
adjustments  to  the  base  sampling  weights  reflecting  unequal  probability  of  selection 
according  to  the  complex  sample  design.  The  potential  results  are  extended  by 
considering both unweighted and weighted response rates based on the stratified cluster 
sampling when performing the adjustments, and evaluating the utility of using weighted 
response rates when the weighting classes are formed based on auxiliary variables  and 
design  variables  that  are  related  to  response  propensity.  Empirical  properties  of  the 
various weighted estimators for a population mean (bias and RMSE) are presented to 
evaluate the alternative approaches (in addition to an approach ignoring adjustments for 
nonresponse) and provide additional guidance on appropriate weighting class adjustments 
for unit nonresponse in the complex sample design setting. 

2. Methods

2.1 Overview
A total of 30 simulations were performed in this study, each involving 1,000 repeated 
random selections of 1,000 sample elements from a hypothetical population of elements 
with known mean and covariance parameters. In line with this study’s goal of extending 
previous theoretical results in this area, a complex multistage sampling scheme was used 
to  select  the  repeated  samples  of  size  1,000  for  each  simulation.  The  first  stage  of 
sampling involved the PPeS selection of two primary sampling units (PSUs) from each of 
50 strata defining the hypothetical population. The second stage of sampling involved the 
simple  random  sampling  (without  replacement)  of  10  elements  within  each  of  the 
sampled PSUs. Twenty-four (24) of the simulations varied according to four parameters:

• The relationship of an auxiliary variable  X, measured for both respondents and 
non-respondents,  with  the  survey  variable  of  interest  Y  in  the  hypothetical 
population of elements (high or low);

• The relationship of the auxiliary variable X with the probability P that the survey 
variable Y is not observed (assumed to be unit nonresponse) on a given sample 
element (high or low);

• The use of base sampling weights adjusting for unequal probability of selection 
into  the  sample  according  to  the  PPeS  design  when  computing  estimated 
response  rates  in  weighting  class  adjustment  cells  defined  by  the  auxiliary 
variable X (yes, no, or no adjustment for nonresponse);
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• The expected overall response rate for the samples (75% or 25% in expectation 
across repeated samples).

An  additional  six  (6)  simulations  were  performed  in  the  setting  where  the  auxiliary 
variable X had a strong relationship with both the survey variable Y and the probability of 
unit nonresponse  P, given that this setting has the maximum potential for reduction of 
both bias and variance in the estimator of a mean through the nonresponse adjustments 
(Little  and  Vartivarian,  2005).  In  these  simulations,  response  propensity  varied  as  a 
function of both the auxiliary variable X and the strata used to select the complex sample, 
and  the  weighting  classes  were  formed  based  on  both  X and  groups  defined  by the 
sampling strata. These simulations were performed in an attempt to extend the work of 
Little and Vartivarian (2003) to a setting involving cluster sampling within strata.

All  simulations  were  programmed  and  performed  using  the  SAS  software  (Version 
9.1.3), and specifically the SURVEYSELECT and SURVEYMEANS procedures. SAS 
code used to implement the simulations is available from the author upon request.

2.2 Definitions of the Hypothetical Populations
Two  hypothetical  populations  of  elements  were  artificially  constructed  for  the 
simulations. Both populations were defined by the exact same number of strata (50), and 
the  exact  same  number  of  PSUs within  each  stratum.  Each  stratum had  a  randomly 
determined number of PSUs defined, with the number of PSUs in each stratum ranging 
from 2 to 51 (each population had the same number of PSUs within a given stratum; for 
example, in Stratum 1, there were 11 PSUs in both populations). Each population was 
defined to have exactly 76,918 elements. The number of population elements within each 
PSU was also randomly determined, such that there were at least 10 elements within each 
PSU. The number of population elements within the PSUs ranged from 10 to 109.

Values for the population elements on the survey variable of interest  Y were simulated 
from a superpopulation model according to the following two-step process. In the first 
step,  values  on  the  auxiliary  variable  X for  the  population  elements  were  randomly 
selected from a standard normal distribution with mean 0 and variance 1. In the second 
step, values on the survey variable of interest  Y were computed based on one of two 
superpopulation  models.  In  the  first  population,  the  superpopulation model  defined a 
relationship between the auxiliary variable X and the survey variable Y:

0 3ijk ijk k jk ijkY X S uβ ε= + + + +     (1)

In this notation, the index i refers to an element, the index j refers to a PSU, and the index 
k  refers to a sampling stratum.  The  Sk term is  a fixed effect  associated with a given 
stratum, equal to the integer code for the stratum (1, 2, …, 50) divided by 25. These fixed 
stratum effects were introduced to simulate the variance between strata that might  be 
observed  in  a  real-world  setting,  where  different  strata  (by  design)  tend  to  be 
homogeneous  within  and  heterogeneous  between  in  terms  of  the  survey  variable  of 
interest (Y). The ujk term is a random variable representing the random effect of PSU j  
nested within stratum k, and the εijk term is a random variable representing random error 
associated with the observation of Y for the i-th element in the j-th PSU within the k-th 
stratum. The values of the random PSU effects within a stratum and the random errors 
were randomly selected from the following distributions:

Section on Survey Research Methods – JSM 2009

4923



2

2

~ (0, )

~ (0, )

jk PSU

ijk

u N

N

σ

ε σ
(2)

In the superpopulation model used to define values for the first population, the variance 
of the random PSU effects within a stratum (σ2

PSU) was defined to be 0.1, and the variance 
of the random measurement errors (σ2) was defined to be 1 (corresponding to a marginal 
intra-PSU  correlation  of  approximately  0.09  for  the  Y  values).  Values  of  Y were 
computed for each element in the population after a value of X had first been randomly 
selected and values of ujk and εijk had been randomly (and independently) selected. Fixing 
the intercept parameter (β0) to be 10, the resulting population of values on the Y variable 
had a mean equal to 11.1286795, and a standard deviation equal to 3.2368377.

In the second population, values of  Y were computed using the same two-step process, 
only using a superpopulation model where X did not have a relationship with Y: 

0ijk k jk ijkY S uβ ε= + + + (3)

The variance of the random PSU effects was once again defined to be 0.1 in this model. 
To ensure that the marginal univariate distribution of Y was identical to that of the first 
population  (mean  equal  to  11.1286795,  standard  deviation  equal  to  3.2368377),  the 
variance  of  the  random measurement  errors  (σ2)  was  defined  to  be  10.014115.  This 
increase was necessary to introduce the variance in Y that was explained by the predictor 
variable X in the first population (approximately 89%). Further, the intercept parameter 
was fixed to be 9.9930072 so that the mean of the Y values would be equal to 11.1286795 
for this population as well. This approach is similar to that used by Little and Vartivarian 
(2005) in their simulation study, only extended to include complex design features that 
might be encountered in real-world survey research. 

2.3 Complex Sample Design
Each simulation in this study involved 1,000 repeated selections of probability samples of 
size  n  =  1,000  from one  of  the  two  hypothetical  populations  described  above.  The 
probability samples were each selected according to a complex multistage sample design. 
In the first stage of selection, two PSUs were randomly selected from each of the 50 
design  strata  with  probability  proportionate  to  estimated  size  (PPeS).  Because  the 
population sizes of each PSU were known in the two hypothetical populations, a simpler 
probability  proportionate  to  size  (PPS)  design  (in  combination  with  proportionate 
allocation of the sample of size  n  = 1,000 across the strata) could have been used to 
achieve  an  equal  probability  of  selection  mechanism (epsem)  design.  In  an  effort  to 
simulate more realistic sample design settings, where PSU sizes are often estimated using 
more readily available measures of size (MOS) for the PSUs (e.g., MOS for U.S. counties 
based on Census 2000 data), a small amount of random noise was added to each true 
population size for the PSUs. Specifically, a random value was sampled from the N(0,1) 
distribution, multiplied by 5, rounded, and then added to the true population size of each 
PSU to compute an estimated MOS. Two PSUs were then selected from each stratum 
with probability proportionate to the estimated size represented by this MOS.

In the second stage of selection, it was assumed that once a PSU was randomly sampled 
within a stratum at the first stage, the true size of the PSU would be available. Exactly 10 
population elements were randomly selected from each PSU sampled at the first stage, 
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using simple random sampling without replacement (an equal allocation design, with 20 
sample elements allocated to each of the 50 strata). The second stage probabilities of 
selection for the population elements within each PSU were computed based on the true 
population sizes of each PSU assumed to be available at the second stage. For example, if 
there were actually 50 population elements in a given PSU, the probability of selection 
for elements within that PSU was 10/50 = 0.2. This design was used to introduce unequal 
probabilities of selection for sample elements across the different PSUs. Based on this 
two-stage  sample  design,  the  probability  of  selection  for  elements  from  randomly 
sampled PSU j within stratum k can be defined as follows:

2 10j
jk

j j
j k

MOS
f

MOS B
∈

= ×
∑        (4)

In this notation, Bj refers to the true population size of PSU j. The base sampling weight 
w1ijk for each of the 1,000 individual sample elements was then computed as the inverse 
of this probability of selection:

1

1
ijk

jk

w
f

=           (5)

2.4 Introduction of Missing Data
In the first 24 simulations, the sample elements were classified into deciles based on their 
values on the variable X after the selection of each sample. Values on the variable X were 
assumed  in  this  study  to  be  available  for  all  1,000  sampled  elements  regardless  of 
response  to  the  survey,  meaning  that  X  can  be  thought  of  as  an  auxiliary  variable 
available  on  the  sampling  frame  that  is  measured  for  the  entire  population  (e.g., 
Bethlehem,  2002).  Then,  depending  on  the  missing  data  parameters  defining  the 
simulation being studied (expected sample response rate: 75% or 25%; association of X 
with the probability of missing data on  Y: high or low), missing data were artificially 
introduced on the survey variable of interest Y within each of the 10 deciles according to 
a missing at random (MAR) mechanism.

In  each  simulated  sample,  each  of  the  1,000  sample  elements  first  had  a  value  U 
randomly sampled from the UNIFORM(0,1) distribution. The 100 sample elements in 
each of the 10 decile groups for X would therefore have a random sample of values for U, 
sampled  from  this  uniform  distribution.  Then,  depending  on  the  expected  sample 
response  rate  for  the  simulation  (75%  or  25%)  and  the  association  of  X with  the 
probability of having missing data on Y for the simulation (High or Low), missing values 
were assigned on the variable Y in each decile of X according to the rules in Table 1.

Table 1: Rules defining observation of Y for sample elements in the simulations 
(simulations defined by expected overall response rates of 75% or 25%, and associations 
of X with the probability of unit nonresponse P, denoted by “High” or “Low”). U refers 

to a random variable sampled from the UNIFORM(0,1) distribution.
75% Response Rate 25% Response Rate

Decile of X
High

X   P*
Low

X   P
High

X   P
Low

X   P
1 (Low) U > 0.475 U > 0.250 U > 0.975 U > 0.750
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2 U > 0.425 U > 0.250 U > 0.925 U > 0.750
3 U > 0.375 U > 0.250 U > 0.875 U > 0.750
4 U > 0.325 U > 0.250 U > 0.825 U > 0.750
5 U > 0.275 U > 0.250 U > 0.775 U > 0.750
6 U > 0.225 U > 0.250 U > 0.725 U > 0.750
7 U > 0.175 U > 0.250 U > 0.675 U > 0.750
8 U > 0.125 U > 0.250 U > 0.625 U > 0.750
9 U > 0.075 U > 0.250 U > 0.575 U > 0.750

10 (High) U > 0.025 U > 0.250 U > 0.525 U > 0.750
Number of 

Respondents
Mean** 750.17 749.94 249.55 250.20

SD** 13.06 13.91 13.02 13.59
* P = Probability of unit nonresponse.
** Computed based on 4,000 samples selected under the specified simulation conditions (four 
simulated  sets of  1,000 samples  of  size  n  = 1,000 under the conditions  specified in Table  1, 
varying based on the relationship of X with Y and whether or not estimated response rates within 
the deciles were weighted).

An indicator variable Rih was also defined according to this process, equal to 1 if a sample 
element  i  within weighting class  h responded on  Y and 0 otherwise; this variable was 
used  for  the  various  weighting  class  adjustments  (see  Weighting  Class  Adjustments). 
Note that this process of artificially introducing missing data by first randomly generating 
a sample of 1,000 values from a UNIFORM(0,1) distribution introduces random variance 
in the response rates around the overall expectations for the sample. For example, in the 
“Low” settings for  the 25% Response Rate condition above,  response rates in the 10 
deciles will  randomly vary around 25%, with the  overall  expectation across repeated 
sampling being 25%. This introduces some slight variance between the deciles in terms 
of the response rates in the “Low” condition, and also introduces slight variance in the 
response rates for each sample around the overall expectation, reflecting expected real-
world variance in response rates across hypothetical repeated sampling.   

In  the  remaining  six  simulations,  missing  data  were  introduced  as  a  function  of  the 
sample  design  strata  as  well  as  the  auxiliary variable  X  in  a  similar  manner.  These 
simulations  only  considered  the  setting  where  the  auxiliary  variable  X had  a  strong 
relationship  with  both  the  survey  variable  of  interest  Y and  the  probability  of  unit 
nonresponse  P, given that this setting has the strongest potential for reduction of both 
bias and variance in the estimator of the mean. These additional simulations allowed for 
an examination of the behavior of the alternative estimators when the sampling strata 
were associated with the probability of selection (by definition), the survey variable of 
interest Y (via the superpopulation model), and the probability of unit nonresponse P. To 
maintain the same number of weighting classes (10) given the samples of size 1,000, the 
weighting classes were defined by combinations of two groups based on the median of X 
and five groups of design strata (strata 1 through 10, strata 11 through 20, etc.). The 10 
resulting groups were therefore distinct in terms of values on Y and response propensity, 
and  this  was  verified  by  fitting  logistic  regression  models  to  the  resulting  response 
indicator with the group based on X and the stratum group as two independent categorical 
predictors.

2.5 Weighting Class Adjustments
In 20 of the 30 simulations, the base sampling weights w1ijk for cases responding on the 
survey  variable  of  interest  Y were  adjusted  to  account  for  the  nonresponse  of  other 
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sampled cases in their respective weighting classes defined by the auxiliary variable  X 
and the  sampling  strata.  These  adjustments  to  the  base  sampling  weights  in  a  given 
weighting class were defined in one of two ways,  depending on the simulation being 
considered. Weighted estimates of the response rates within a given weighting class  h 
were computed as follows, using the response indicator variable Rih defined above:

1

2 ,
1

ijk ih
i h

h weighted
ijk

i h

w R
r

w
∈

∈

=
∑
∑    (6)

Unweighted  estimates  of  the  response  rates  within  a  given  weighting  class  h were 
computed as follows:

2 ,

ih
i h

h unweighted
h

R
r

n
∈=
∑

   (7)

Then, given the 10 estimated response rates for each weighting class based on (6) or (7), 
depending on the simulation, the base sampling weights for the sampled cases in a given 
weighting class  h were adjusted as follows, to compute a final analysis weight  wijk for 
each respondent:

1
2 ,

1
2 ,

1

1

ijk ijk
h weighted

ijk ijk
h unweighted

w w
r

or

w w
r

= ×

= ×

   (8)

These  final  sampling  weights  were  then  used  to  compute  weighted  estimates  of  the 
population mean based on the data collected for the respondents:

ijk ijk
k j k i j

w
ijk

k j k i j

w y

y
w

∈ ∈

∈ ∈

=
∑∑∑
∑∑∑    (9)

In  10  of  the  simulations,  no  adjustments  for  nonresponse  were  applied  to  the  base 
sampling weights, and weighted estimates of the population mean were computed using 
the base sampling weights for the respondents only:

1

0
1

ijk ijk
k j k i j

ijk
k j k i j

w y

y
w

∈ ∈

∈ ∈

=
∑∑∑
∑∑∑   (10)
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Given prior knowledge of the true population means, the empirical properties of these 
alternative weighted estimators were evaluated based on the simulations by computing 
the empirical bias, variance, and root mean squared error for each of the estimators as 
described in the following section. 

2.6 Computation of Empirical Root Mean Squared Error (RMSE)
Each simulation involved the selection of 1,000 complex samples of size n = 1,000 from 
one of the hypothetical populations described earlier. The empirical root mean squared 
error (RMSE) for a weighted estimator of the known population mean defined by one of 
the 30 simulations  (denoted here  using the  general  notation of  y )  was computed as 
follows, based on the 1,000 samples (where t represents a sample index):

2

2

2 2

( )
1000

[ ( )]
[ ( )]

1000

[ ]

t
t

t
t

y
BIAS E y Y Y

y E y
VARIANCE E y E y

MSE E y Y BIAS VARIANCE

RMSE MSE

= − = −

−
= − =

= − = +

=

∑

∑
(11)

Results presenting empirical estimates of the bias and the RMSE of each estimator based 
on the parameters defining each of the 30 simulations follow.

3. Results

Table 2 presents results from the 12 simulations where the expected response rate for the 
samples  was 75% and the probability of  unit  nonresponse  P was independent  of  the 
sample design strata.

Table 2: Simulation results, with expected sample response rate = 75%. Results in this 
table are based on 12 simulations, each defined by a particular combination of the three 

parameters defining the table. In each simulation, 1,000 complex samples of size n = 
1,000 were selected from a population with properties defined by the far left column of 

the table.
Weighting 

Class 
Adjustments 



Base Weights 
Only (None)

Unweighted 
Response Rates

Weighted 
Response Rates

Association 
of Y with X

Association 
of P with X

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

High High 0.5570 0.5747 -0.0060 0.1319 0.0024 0.1279
High Low 0.0012 0.1469 0.0040 0.1256 0.0024 0.1283
Low High 0.0036 0.1471 -0.0046 0.1390 0.0021 0.1455
Low Low 0.0093 0.1448 -0.0073 0.1452 -0.0003 0.1456

The results in the first row of Table 2 clearly indicate the substantial reductions in bias 
and variance for the estimator of a population mean that are possible when the auxiliary 
variable used to define weighting classes for nonresponse adjustments is strongly related 
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to  both  the  survey  variable  of  interest  and  response  propensity,  supporting  results 
reported by Little  and Vartivarian  (2005).  These results  also  provide support  for  the 
“common cause model” described by Groves (2006), where a common correlate of both 
the  survey  variable  of  interest  and  response  propensity  can  introduce  a  substantial 
covariance between the survey variable and response propensity,  leading to increased 
nonresponse bias. A failure on the part of a survey organization or an analyst to consider 
a weighting class adjustment that corrects for this type of nonresponse error will result in 
an estimator with substantially increased bias and variance. This is clearly illustrated by 
the simulation results in the first row for the weighted estimator without any nonresponse 
adjustments applied to the base sampling weights. 

Further,  the  results  in  Table  2  suggest  that  the  use  of  weighted  response  rates  for 
computing  the  weighting  class  adjustments  for  nonresponse  can  reduce  the  bias  and 
variance of the estimator  even further,  in the setting where the weighting classes are 
correlated  with  both  the  survey  variable  of  interest  and  response  propensity.  The 
additional reductions in bias and variance are not substantial in the first row of Table 2, 
but these results are replicated below for the simulations with lower expected response 
rates.  In  addition,  as  reported by Little  and Vartivarian (2005),  the  use  of  weighting 
classes related to the survey variable of interest but not response propensity (the results in 
the second row of Table 2) does not tend to reduce bias, but does reduce the variance of 
the estimator. The results in the final two rows suggest that the use of weighting classes 
unrelated to the survey variable of interest is not entirely beneficial in terms of reductions 
in bias or variance in this high response rate setting.

Table 3 presents results from the 12 simulations where the expected response rate for the 
samples was 25% and the probability of unit nonresponse was independent of the sample 
design strata.

Table 3: Simulation results, with expected sample response rate = 25%. Results in this 
table are based on 12 simulations, each defined by a particular combination of the three 

parameters defining the table. In each simulation, 1,000 complex samples of size n = 
1,000 were selected from a population with properties defined by the far left column of 

the table.
Weighting 

Class 
Adjustments 



Base Weights 
Only (None)

Unweighted 
Response Rates

Weighted 
Response Rates

Association 
of Y with X

Association 
of P with X

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

High High 1.6619 1.6765 0.0535 0.3650 0.0341 0.2483
High Low 0.0003 0.2531 0.0062 0.1873 -0.0011 0.1518
Low High 0.0096 0.2412 -0.0030 0.3580 -0.0071 0.3654
Low Low -0.0026 0.2326 0.0048 0.2412 -0.0006 0.2449

The results in Table 3 deserve special consideration, given the declining trends in survey 
response rates worldwide and recently published evidence of consistently lower response 
rates in web surveys  relative to other survey data collection modes  (Manfreda et  al., 
2008). Of primary note is the tremendous reduction in both the bias and the variance of 
the weighted estimator once again found when the weighting classes are related to both 
the survey variable of interest and response propensity, and the additional reduction in 
both bias and variance possible when using weighted response rates within the weighting 
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classes  for  the  nonresponse  adjustments.  The  use  of  weighted  response  rates  for  the 
nonresponse adjustments appears to once again reduce the variance of the estimators in 
both cases where the weighting classes are related to the survey variable of interest; in 
this  setting,  with  an  expected  25%  response  rate,  the  estimators  with  base  weights 
adjusted by weighted estimates of the response rates within the weighting classes have 
the lowest RMSE. 

Readers should also note in this lower response rate setting that the use of weighting 
classes related to response propensity but not the survey variable of interest (row 3 of 
Table 3) can actually increase the variance of the estimators, a result that was noted by 
Little and Vartivarian (2005). Finally, the use of weighting classes unrelated to both the 
survey variable of interest and response propensity provides little benefit, but also does 
not significantly harm the bias or variance properties of the estimator.

Collectively,  the results  of  the simulations in Tables 2 and 3 provide support for  the 
emerging awareness in the survey nonresponse literature that lower response rates do not 
necessarily  correlate  with  increased  nonresponse  bias.  Weighted  estimators  of  the 
population  mean  with  no  adjustments  applied  to  the  base  sampling  weights  for 
nonresponse have very little bias in all settings except for the case where an auxiliary 
variable is correlated with the survey variable of interest and response propensity (i.e., 
the “common cause model” setting where response propensity and the survey variable of 
interest are correlated). For all other cases, these results demonstrate that the precision of 
the weighted estimators can be improved by choosing weighting classes associated with 
the survey variable of interest,  and by using weighted estimates of the response rates 
within the weighting classes for the nonresponse adjustments.

Table 4 presents results from the six simulations where the auxiliary variable  X  had a 
strong association with both  Y  and  P,  and the probability of  unit  nonresponse  P was 
defined to be a function of the sample design strata in addition to the auxiliary variable X.

Table 4: Simulation results, where X had a strong association with both Y and P, and the 
probability of unit nonresponse P was defined to be a function of the sample design strata 

in addition to the auxiliary variable X. Results in this table are based on 6 simulations, 
each defined by a particular combination of the two parameters defining the table 

(application of nonresponse adjustments and expected response rate). In each simulation, 
1,000 complex samples of size n = 1,000 were selected from the population where X had 

a ‘strong’ relationship with Y.
Weighting 

Class 
Adjustments 

Base Weights 
Only (None)

Unweighted 
Response Rates

Weighted 
Response Rates

Expected
Response Rate

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

Emp. 
Bias

Emp. 
RMSE

75% 0.1828 0.2311 0.0048 0.1303 -0.0063 0.1329
25% 0.4958 0.5475 0.0150 0.2690 0.0221 0.2321

The results in Table 4 suggest that the use of weighted response rates in this setting may 
result in more bias than the use of unweighted response rates, confirming the findings of 
Little  and Vartivarian (2003).  However,  there was evidence that  the  use of  weighted 
response rates may lead to an additional reduction in the variance of the estimator, in 
addition to the overall RMSE. In the setting of a 25% expected response rate, the RMSE 
was  substantially  reduced  when  applying  the  weighting  class  adjustments  for 
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nonresponse, and even more so when using weighted response rates within the weighting 
classes.  The  empirical  RMSE  values  for  estimators  using  weighted  and  unweighted 
response rates were roughly similar in the 75% expected response rate setting.

4. Discussion

This simulation study sought to extend previous work regarding optimal weighting class 
adjustments  for  repair  of  nonresponse  errors  associated  with  sample  estimates  of 
population means. Specifically, the study considered extensions of previous work in this 
area  to  the  case  of  complex  sample  designs,  involving  stratified  cluster  sampling  of 
elements  from  a  finite  target  population  of  interest.  The  results  support  findings 
previously reported by Little and Vartivarian (2005): when defining weighting classes for 
post-survey nonresponse adjustment, the most important auxiliary variables measured for 
respondents  and  non-respondents  are  those  that  are  related  to  the  survey variable  of 
interest  (for  which  a  mean  is  being  estimated).  More  importantly,  the  results  of  the 
simulations suggest that the use of weighted response rates within the weighting classes 
used to form nonresponse adjustments can offer improvements in terms of the precision 
and bias of estimators of population means in the complex sample setting (relative to the 
use of unweighted response rates), provided that the weighting classes are defined by 
auxiliary variables related to both the survey variable of interest and response propensity. 

These results are only partially consistent with those presented by Little and Vartivarian 
(2003), who only considered a stratified sample design with no cluster sampling. In the 
first  set  of  simulations  performed  in  this  study,  the  probability  of  responding  (or 
providing a value on the survey variable of interest  Y) was by design unrelated to the 
design variables (the strata and PSUs), and Little and Vartivarian suggested that the use 
of weighted response rates for nonresponse adjustments was unnecessary in this case. 
The results presented in this study suggest that the use of weighted response rates within 
adjustment cells may be beneficial when stratified cluster samples are selected and the 
adjustment cells are defined based on auxiliary variables correlated with both the survey 
variable of interest and response propensity. The largest benefits in terms of reduced bias 
and increased precision were found in the case of low response rates (25%), which are 
unfortunately becoming more commonplace in survey research. 

This study also found that when weighting classes are defined by auxiliary variables and 
sample design variables related to both the survey variable of interest  Y and response 
propensity,  the use of weighted response rates for computing nonresponse adjustments 
within the weighting classes resulted in slightly increased bias of the estimators (relative 
to  the  use  of  unweighted  response  rates).  These  findings  are  consistent  with  those 
reported  by  Little  and  Vartivarian  (2003),  but  this  study  also  found  evidence  of  an 
additional reduction in the overall RMSE of a weighted estimator in this setting when the 
expected response rate is low (25%). Collectively, these results suggest that the use of 
weighted response rates to define nonresponse adjustments within weighting classes can 
be beneficial in complex sample surveys with lower response rates,  provided that the 
auxiliary and design variables used to form the weighting classes are correlated with the 
survey variable of interest and response propensity. 

There are certainly important limitations of this study worth mentioning. These results 
apply to  a  single  survey variable  of  interest,  and many surveys  are  multi-purpose in 
nature,  with  analytic  interest  directed  toward  the  estimation  of  multiple  descriptive 
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parameters,  including  means  and  proportions,  and  analytic  parameters,  including 
regression coefficients and odds ratios. As suggested by Little and Vartivarian (2005), an 
appropriate approach in practice would be to estimate the MSEs of alternative weighted 
estimators of a population mean, and use the estimator shown to have a lower MSE (a 
“composite” estimator). This study did not develop sample-based estimators of the MSE 
for a given estimator of  a population mean in the complex sample setting, and those 
developments would be an important extension of this work. Further, the extension of 
these results to analytic statistics such as regression coefficients is still an open area of 
research. All of these extensions present the possibility that different analyses of public-
use survey data sets may require different sets of survey weights, which could complicate 
matters  for  users  of  the  data.  The development  of  both technical  documentation  and 
computer  software  that  simplifies  this  process  of  determining  optimal  nonresponse 
weighting adjustments for a given analytic objective should therefore be a top priority for 
survey organizations and developers of statistical software.

Regarding survey practice, the results  of  this  study suggest that those responsible for 
performing  post-survey  adjustments  to  base  sampling  weights  in  an  effort  to  repair 
nonresponse errors should form weighting classes based on auxiliary and sample design 
variables related to both the survey variables of interest and the propensity of responding, 
which is  not  a new finding in this  literature.  The results  of  the present  study further 
underscore the  need to collect  more auxiliary variables  for  all  elements  in  the target 
population,  possibly  by  assembling  rich  frames  or  collecting  observations  of  field 
researchers during listing operations. Important correlates of survey variables of interest 
reported in previous survey research on a particular topic would seem to be the most 
important measures to collect prior to actual sample selection. Analysts generally do not 
know what variables will tend to correlate with survey variables of interest and response 
propensity,  but  having  more  variables  to  choose  from  will  be  helpful  in  making  a 
decision  about  how to  determine  nonresponse  adjustments.  The  results  of  this  study 
provide new evidence that the use of weighted response rates can be beneficial when 
performing  weighting  class  adjustments  for  nonresponse  in  complex  sample  design 
settings involving stratified cluster sampling.
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