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Abstract 
Secondary data analysis of complex sample survey results is common among social 
scientists. Yet, the degree to which unbiased estimates and accurate inferences can be 
made from complex samples depends on the care researchers take when analyzing the 
data, including strategies for the treatment of missing data. Several studies have 
illustrated that the results of subpopulation analysis may diverge from those obtained 
through listwise deletion. However, given the paucity of simulation work in this area, it is 
not clear how frequently discernable discrepancies will arise. This Monte Carlo study 
focuses on the impact of listwise deletion versus a subpopulation analysis, when the data 
are MCAR and MAR, in the context of multiple regression analysis of complex sample 
data. Results are presented in terms of statistical bias in parameter estimates and both 
confidence interval width and coverage. 
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1. Complex Sample Survey Data 
 

Secondary data analysis of nationally representative surveys is commonly conducted by 
researchers and can be extremely useful when investigating a variety of social and 
behavioral outcomes. By providing access to a vast array of variables on large numbers 
of people and their environments such as schools or neighborhoods, the nature of large-
scale social science data is enticing to many researchers. The degree to which unbiased 
estimates and accurate inferences can be made from complex samples depends, however, 
on the care researchers take when analyzing the data.  
 
Data from complex sample surveys differ from those obtained via simple random 
sampling in several ways that impact how statistical analyses should be conducted. For 
example, the probabilities of selection of the observations are often not equal leading to 
the need to incorporate sample weights. Further, multi-stage sampling yields clustered 
observations in which the variance among units within each cluster is less than the 
variance among units in general (i.e., intraclass correlation), which complicates the 
estimation of sampling error. In addition, stratification in the sampling design (e.g., 
geographical stratification) insures appropriate sample representation on the stratification 
variable(s), but yields negatively biased estimates of the population variance when not 
considered in the analysis. Finally, adjustments can be applied to the sample for unit 
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nonresponse and other post-stratification to allow unbiased estimates of population 
characteristics (Brick & Kalton, 1996). 
 
1.1 Sample Weights  
Observations from complex sample surveys are typically weighted such that an 
observation’s weight is based on the reciprocal of the observation’s probability of being 
selected. That is, observations more likely to be selected (e.g., from oversampling) 
receive smaller weights than observations less likely to be selected. In data available from 
large-scale surveys, weights may be provided such that the sum of the weights equals the 
sample size (relative weights) 
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where ijkw  is the weight assigned to the ith individual in the jth primary sampling unit 
(PSU) of the kth strata in a study with s strata where the kth strata has pk PSUs and the jth 
PSU within the kth strata has a sample of njk individuals. Alternatively, weights may be 
provided such that the sum of the weights equals the population size (raw weights) 
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Sample weights are then applied in the computation of statistics from the sample 
observations. For example, the sample mean is computed as  
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where ijkX  is the value for the ith individual in the jth PSU of the kth strata, and other 
symbols are defined as they were previously. When researchers omit sample weights 
from the analysis of complex survey data, parameter estimates are typically biased and 
incorrect inferences can be drawn. Further, when sample weights are not used, findings 
are generally not representative of the larger population of interest.  
 
1.2 Estimation of Variances 
The estimation of sampling error is a critical component of survey analysis. Sampling 
error provides an index of the precision of point estimates (e.g., sample means or 
regression coefficients) and is used in the calculation of confidence intervals and 
hypothesis tests. For complex sample surveys (involving stratification, multi-stage 
sampling, and unequal probabilities of selection) the calculation of sampling error differs 
from the calculation used in simple random sampling. As an example of multi-stage 
sampling consider a context where schools are sampled within geographically defined 
strata, and then students are sampled within schools. In this sort of situation, the sampling 
variance of a statistic can be obtained by focusing on the between-cluster variance 
estimate of the statistic (Williams, 2000). Specific variance estimates can be obtained 
through Taylor series linearization, or through replication methods, such as balanced 
repeated replications, jackknife, and bootstrap methods (Skinner, Holt, & Smith, 1989). 
 
Taylor series linearization is used in many statistical applications to obtain approximate 
values of functions that are difficult to calculate precisely. Because most statistical 
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estimates from complex sample surveys are not simple linear functions of the 
observations, a Taylor series expansion may be used to obtain an approximation of the 
estimate based on the linear (first-order) part of the Taylor series. The variance of this 
approximation may then be used to estimate the variance of the original statistic of 
interest. The Taylor series approach tends to be computationally fast (in comparison with 
replication methods) but carries the limitation that a separate formula must be developed 
for each estimate of interest. 
 
As an example, consider estimating the variance of the sample mean. Graubard and Korn 
(1996) show that Taylor linearization leads to 
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  (4) 
where jkW  is the sum of the weights in the jth PSU in the kth strata, jkX  is the mean for 
the jth PSU in the kth strata, and the other symbols are as previously defined. 
  
1.2.1 Estimation of variances for subpopulations   
In many contexts, researchers are interested in obtaining variance estimates for sample 
statistics of a subpopulation. For example, a researcher may be examining predictors of 
academic achievement among English Language Learners. The researcher may do this by 
examination of data available from a complex national sample where schools were the 
primary sampling unit (PSU) and students were then sampled within each school. Not all 
sampled students would be in the subgroup of interest (English Language Learners), and 
thus the analysis is focused on a subgroup of the population that was originally sampled. 
 
One common approach for analyzing a subgroup is to listwise delete all participants that 
are not part of the subgroup. For our example this approach would lead to deleting all 
students who were not English Language Learners. The analyses would then be carried 
out using this reduced data set. An alternative, sometimes referred to as subpopulation 
analysis, is to make the sample weights zero for all participants outside the subgroup of 
interest. For our example, the weights of all students that were not English Language 
Learners would be changed to zero, and then the analysis would then be conducted using 
the modified, but complete, data set.  
 
If we consider Equation 3 for the sample mean, we see that these two approaches will 
lead to the same estimate for the sample mean. If we consider Equation 4 for the variance 
of the sample mean, we see that the two approaches lead to the same result as long as 
each PSU has multiple members of the subpopulation. There are instances, however, 
where this will not be the case. In our example, it is easy to imagine a sample of students 
from a school, which happens to contain no English Language Learners. Under these 
conditions, the variance estimates from these two approaches tend to differ. 
 
A closer examination of Equation 4 shows that the differences arise from several changes 
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deletion will be based on the number of PSUs in the kth strata that happen to have 
multiple members of the subpopulation, but for the subpopulation analysis these fractions 
will be based on the number of PSUs in the kth strata of the complex sampling plan. 
Furthermore, it can be seen that with listwise deletion empty PSUs provide no 
contribution to the sum-of-squared deviations, whereas subpopulation analysis gets a 
contribution from each PSU from the complex sample. More specifically, all empty PSUs 
(i.e., those with no members from the subpopulation) add to the sum-of-squared 
deviations an amount equal to  
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For simplicity, we have used the sample mean and its variance to illustrate differences 
between the two approaches for analyzing subgroups. Similar results could also be shown 
for regression coefficients (Graubard & Korn, 1996).  
 
It has been suggested that when PSUs exist with no members of a subpopulation, the 
subpopulation analysis is the more appropriate analysis because it is based on the full 
complex sampling design (Chantala, 2006; Graubard & Korn, 1996; West, Berglund, & 
Heeringa, 2007). Although a PSU may contain no members of the subpopulation in the 
realized sample, the subgroup theoretically could be represented in a different sample 
from that PSU. Thus, the subgroup sample size is conceptually a random variable and all 
PSUs should be represented in the variance estimates. 
 
Subpopulation analysis has also been suggested as an appropriate method for handling 
missing data (Chantala, 2006), although there is some question about how to best 
accommodate such analyses using current software packages (West, Berglund, & 
Heeringa, 2007). In the context of missing data, those with complete data can be 
considered the subpopulation of interest. Those with missing data, which are assumed to 
be missing at random, could then have their sample weights turned to zero. Doing so 
allows the full complex sampling design to be taken into account when conducting 
analyses on a subset of the sample that has complete data.  
 
Several studies have shown for a specific analysis of a particular data set that 
subpopulation analysis leads to results that diverge from those obtained through listwise 
deletion (Chantala, 2006; Graubard & Korn, 1996; West, Berglund, & Heeringa, 2007; 
West, Berglund, & Heeringa, 2008). It is not clear how frequently discernable 
discrepancies will arise, or when there are differences that the theoretical advantages of 
subpopulation analysis are being realized. Consequently, it is difficult for researchers to 
know how much caution to use when reading literature based on the listwise deletion 
approach to subgroup analysis, or how critical it is to obtain access to software that 
accommodates subpopulation analyses. The purpose of this study was to investigate the 
impact of using the listwise deletion method versus a subpopulation analysis, when the 
data are  missing completely at random (MCAR) and missing at random (MAR), in the 
context of multiple regression analysis of complex sample data (Little & Rubin, 1987; 
Rubin, 1987; Collins, Schafer, & Kam, 2001; Schafer & Graham, 2002). Data that are 
MCAR represent missingness that is related to neither the variable presenting missing 
data nor other variables in the analysis. In contrast, MAR represents missing data that are 
unrelated to value of the variable presenting missingness, but are related to other 
measured variables. 
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2. Method 
 

For this Monte Carlo study, complex samples were generated from multivariate 
populations and each sample was analyzed using both listwise deletion and subpopulation 
approaches. The sample simulation included both stratification and cluster sampling. 
Specifically, observations from ten strata were simulated in which each stratum differed 
in population means on all variables, with the maximum difference in stratum means 
being twice as large as the between PSU standard deviation. From each stratum, the 
sampling of PSUs and subsequently, observations within PSUs was simulated, 
controlling the relative variance between and within PSUs to produce target values of 
intraclass correlation. 
 
The Monte Carlo study included four factors in the design. The number of PSUs sampled 
from each of the ten strata was linked with the number of observations sampled from 
each PSU to provide low density (100 PSUs per stratum with 10 – 30 observations per 
PSU) and high density (20 PSUs per stratum with 50 – 150 observations per PSU) 
samples. To obtain realistic samples in the Monte Carlo study, the number of 
observations per PSU was a random factor in the simulations. This combination of the 
number of PSUs with the average sample size per PSU provided consistent overall 
sample sizes across these two factors (i.e., a mean of 2000 observations per stratum for an 
average total sample size of 20,000 for each complex sample). In addition to the number 
of PSUs and the sample size per PSU, the intraclass correlation was manipulated to 
investigate the effects of different degrees of observation clustering. Three levels of 
intraclass correlation were simulated ( Iρ =  .00, .05, and .10) by controlling the ratio of 
the between PSU variance to the within PSU variance. Finally, four levels of missing data 
were simulated: 10%, 30%, 50%, and 70%. Within each of these levels, 50% of the 
missing data were selected at the observation level and 50% at the PSU level. Through 
this process, not only were entire PSUs completely removed from the simulated samples, 
but the structure of the remaining PSUs was also altered. For example, some of the 
remaining PSUs lost some, but not all, observations, thus resulting in a reduced clustering 
effect, while some PSUs retained their original structure and number of observations. 
Two missing data mechanisms were simulated to produce data that were either missing 
completely at random (MCAR) or missing at random (MAR; Little & Rubin, 1987; 
Schafer & Graham, 2002). 
 
Within each PSU, multivariate normal data were generated using a correlation matrix 
derived from an actual matrix obtained from the NELS-88 survey (National Center for 
Educational Statistics [NCES], 2007). Specifically, the intercorrelations between eight 
predictor variables were taken directly from the NELS-88 results. Zero-order correlations 
with a hypothetical criterion variable were calculated so that the predictors would provide 
a range of effect sizes in the eight predictor regression equation. Two predictors were 
generated to provide small (X7 and X8), medium (X1 and X2), and large (X3 and X4) 
effect sizes, respectively, as well as two predictors (X5 and X6) which were 
approximately null (i.e., regression coefficients were generated to be practically zero) in 
the multiple regression equation. The correlation matrix used in the simulations is 
provided in Table 1. Observations within each sample were weighted so that the sample 
weight was proportional to the inverse probability of selection (taking into account the 
probability of PSU selection from the stratum and observation selection from the PSU) 
and the sample weights were incorporated in subsequent analyses. 
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Table 1: Correlation Matrix Used as Template for Data Simulation 

 
 Y X1 X2 X3 X3 X5 X6 X7 X8 

Y 1.00000         
X1 0.29354 1.00000        
X2 0.28902 0.03716 1.00000       
X3 0.33003 -0.02342 -0.08097 1.00000      
X3 0.42926 0.02039 0.05139 -0.15033 1.00000     
X5 0.17179 0.04689 0.07601 -0.14001 0.40799 1.00000    
X6 0.05367 0.07268 0.11877 -0.21079 0.16350 0.25853 1.00000   
X7 0.10842 0.09224 -0.06382 0.11601 -0.05750 -0.10975 -0.20160 1.00000  
X8 0.15151 0.05810 0.21698 -0.13668 0.10849 0.17502 0.34115 -0.21985 1.00000 

 
 
For both the MCAR and MAR design factors, the data generation was conducted using 
SAS/IML version 9.1, and each sample for both missing data factors was analyzed 
separately, using the listwise deletion approach in SAS (SAS Institute, 2004) and the 
subpopulation strategy in SUDAAN SAS-Callable (Research Triangle Institute, 2004). 
The available packaged procedures for complex sample survey analysis (i.e., PROC 
SURVEYREG in SAS and PROC REGRESS in SUDAAN) used the Taylor Series 
approximation to estimate the sampling variances (Kiecolt & Nathan, 1985). Conditions 
for the study were run under Windows XP. Normally distributed random variables were 
generated using the RANNOR random number generator in SAS. A different seed value 
for the random number generator was used in each execution of the program. The 
program code was verified by hand-checking results from benchmark datasets. 
 
For each condition investigated in this study, 1,000 samples were generated. The use of 
1,000 estimates provides adequate precision for the investigation of the sampling 
behavior of point and interval estimates of the regression coefficients. For example, 1,000 
samples provide a maximum 95% confidence interval width around an observed 
proportion that is ± .03 (Robey & Barcikowski, 1992).The outcomes of interest in this 
simulation study included both point estimates (the bias and sampling error of the 
regression coefficients) and interval estimates (confidence interval coverage and width 
for the coefficients).  

 
3. Results 

 
Because the individual design factors included in the current study explained minimal 
amounts of variability in the outcomes of interest, results are presented across conditions 
for both MCAR and MAR data structures. Across MCAR conditions, SAS (i.e., listwise 
deletion) and SUDAAN (i.e., subpopulation analysis) point estimates were identical, very 
low levels of statistical bias were evident (Figure 1), and differences between standard 
errors were trivial (Figure 2). As shown in Figure 2, a standard error ratio equal to one 
represented identical standard errors from the SAS and SUDAAN analyses; a standard 
error ratio greater than one occurred when a SAS standard error was larger than a 
SUDAAN standard error; and a standard error ratio less than one occurred when a SAS 
standard error was less than a SUDAAN standard error.  
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Figure 1:  Box-and-Whisker Plots for Statistical Bias for SAS and SUDAAN (MCAR) 
 
 

Figure 2: Box-and-Whisker Plots for Standard Error Ratios [SAS/SUDAAN] (MCAR) 
 
 
Similarly, as shown in Figures 3 and 4, although confidence interval coverage and width 
varied across the eight parameters included in the model, differences between SAS and 
SUDAAN were trivial.  Thus, when one approach over or undercovered on a particular 
parameter, so did the other.  Also, except for the two parameters that were approximately 
null in the OLS model, average statistical power for each parameter was nearly perfect 
( x = .997 for both SAS and SUDAAN) with miniscule differences between the two 
analytic approaches (i.e., minimum value for SAS was .789 and the minimum value for 
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SUDAAN was .797). Furthermore, even with the two nearly null effects, the average 
statistical power was still above the desired .80 for both programs.  
 
 

Figure 3:  Box-and-Whisker Plots for 95% CI Coverage for SAS and SUDAAN 
(MCAR) 
 
 

Figure 4: Box-and-Whisker Plots for 95% CI Width for SAS and SUDAAN (MCAR) 
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Similar results were evident when data were MAR. SAS and SUDAAN point estimates 
were identical, very little statistical bias was evident (Figure 5), and differences between 
standard errors were trivial (Figure 6), with the most variability in X1, the variable that 
was systematically missing.  
 

 
Figure 5:  Box-and-Whisker Plots for Statistical Bias for SAS and SUDAAN (MAR) 
 

Figure 6:  Box-and-Whisker Plots for Standard Error Ratios [SAS/SUDAAN] (MAR) 
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Moreover, although the nature of the confidence interval coverage and widths varied 
across parameters and, X1 had noticeably worst coverage and larger widths than the other 
parameters, differences between SAS and SUDAAN estimates were trivial (Figures 7 and 
8). Also, except for the two parameters that were approximately null in the OLS model, 
average statistical power for each parameter was nearly perfect ( x = .997 for both SAS 
and SUDAAN) with miniscule differences between the two analytic approaches (i.e., 
minimum value for SAS was .806 and the minimum value for SUDAAN was .818). 
Furthermore, even with the two nearly null effects, the average statistical power was still 
above the desired .80 for both programs. Moreover, unlike the other outcomes presented 
above, even though X1 was the variable that was systematically missing, the statistical 
power for X1 did not vary more than the other parameters.  
 
 
 

 
Figure 7: Box-and-Whisker Plots for 95% CI Coverage for SAS and SUDAAN (MAR) 
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Figure 8:  Box-and-Whisker Plots for 95% CI Width for SAS and SUDAAN (MAR) 
 

4. Conclusions  
 

As the mathematical formulas suggest, listwise deletion and subpopulation analysis 
techniques yielded different standard errors. However, the differences were so slight that 
hypothesis test results did not substantially vary between the two approaches. These 
findings were consistent for both the MCAR and MAR data structures. Thus, even 
though the standard errors were not always identical across the two methods, when data 
were MCAR and MAR, listwise deletion for conducting subpopulation analyses on 
observations with complete data did not lead to incorrect inferences.  
 
Given the common use (among many social science researchers) of listwise deletion for 
handing missing data, these findings are encouraging when analyzing the data through 
OLS regression. First, based on the findings from the current study, it does not seem 
imperative for researchers who use complex sample data to obtain software that 
accommodates subpopulation analyses. Second, researchers do not need to be overly 
skeptical of complex sample survey findings in the literature based on the listwise 
deletion approach to subgroup analysis. Third, researchers who have conducted 
secondary analyses of complex sample survey data using a listwise deletion approach 
should feel no guilt about employing such a strategy. Furthermore, although the findings 
from the current study contradict the literature that suggests that listwise deletion 
methods for complex sample data are inappropriate, it is important to note that the results 
from this study are based on a controlled Monte Carlo simulation study of the two 
analytic methods, whereas much of the literature in this area is based on case studies of 
the two methods (e.g., comparisons between the listwise deletion and subpopulation 
analysis have been conducted on various national data sources such as the National 
Longitudinal Survey of Adolescent Health, National Health and Nutrition Examination 
Survey, and National Hospital Ambulatory Medical Care Survey; Chantala, 2006; West 
et al., 2007; West et al., 2008). Thus, the results of this study help fill an important gap in 
the methodological literature related to complex sample survey data analysis.  
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Because education, public health, and other social policies are often informed by analyses 
based on nationally representative complex sample data, it is important to understand 
how various analytic methods (i.e., listwise deletion vs. subpopulation analysis) impact 
resulting point estimates, standard errors, and hypothesis testing. Without this knowledge, 
inaccurate conclusions could be drawn from biased results. Methodological research on 
analysis options with complex sample data provides much-needed guidance for applied 
researchers who use such data to address substantive issues in the social and behavioral 
sciences. However, it is also important to note that the findings presented here are limited 
to complex data structures that have at least 20 PSUs per strata. Differences between 
listwise deletion and subpopulation analysis would likely be different for data structures 
that only include a few PSUs per strata.  
 

References 
 

Brick, J. M.,  & Kalton, G. (1996). Handling missing data in survey research. Statistical 
Methods in Medical Research, 5, 215 – 238.  

Chantala, K. (2006). Guidelines for analyzing Add Health data. Retrieved June 6, 2007, 
from http://www.cpc.unc.edu/projects/addhealth/files/wt_guidelines.pdf 

Collins, L. M., Schafer, J. L., & Kam, C. M (2001). A comparison of inclusive and 
restrictive strategies in modern missing data procedures. Psychological Methods, 
6, 330-351. 

Graubard, B. I., & Korn, E. L. (1996). Survey inference for subpopulations. American 
Journal of Epidemiology, 144, 102-106. 

Kiecolt, K.J. and Nathan, L.E. 1985. Secondary Data Analysis of Survey Data. Beverly 
Hills, CA: Sage.  

Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: 
John Wiley & Sons. 

National Center for Education Statistics. n.d. “Surveys and Programs”. Retrieved January 
15, 2007, from http://nces.ed.gov/surveys/nels88/ 

Research Triangle Institute. (2004). SUDAAN Example Manual, Release 9.0. Research 
Triangle Park, NC: Research Triangle Institute. 

Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in 
Monte Carlo studies of robustness. British Journal of Mathematical and 
Statistical Psychology, 45, 283-288. 

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: John 
Wiley & Sons, Inc. 

SAS Institute. (2004). SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.  
Schafer, J. L. & Graham, J.W. (2002). Missing data: Our view of the state of the art. 

Psychological Methods, 7, 147-177. 
Skinner, C. J., Holt, D., & Smith, T. M. F. (1989). Analysis of Complex Surveys: Wiley 

Series in Probability and Mathematical Statistics. New York: John Wiley & 
Sons. 

West, B. T., Berglund, P., Heeringa, S.G. (2007). Alternative approaches to subclass 
analysis of complex sample survey data. Proceedings of the 2007 JSM 
Proceedings, Survey Research Methods Section.  

West, B. T., Berglund, P., Heeringa, S.G. (2008). A closer examination of subpopulation 
analysis of complex-sample survey data. The Stata Journal, 8, 520-531.  

Williams, R. L. (2000). A note on robust variance estimation for cluster-correlated data. 
Biometrics, 56, 645-646. 

Section on Survey Research Methods – JSM 2009

4770


