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Imputation of categorical variables using Gaussian-based routines

Recai M. Yucel* Yulei Hef Alan M. Zaslavsky?

Abstract

The multivariate normal (MVN) distribution is arguably the most popular parametric
model used in imputation and is available in commonly used software packages (e.g. SAS
PROC MI). When the incompletely-observed variables include nominal variables, practi-
tioners often apply techniques such as creating a distinct “missing” category or disregarding
the nominal variable from the imputation process, both of which may lead to biased results.
In this work, we propose practical rounding rules to be used with the existing MVN-based
imputation methods, allowing practitioners to obtain usable imputation with small biases.
These rules are calibrated in the sense that values re-imputed for observed data have dis-
tributions similar to those of the observed data. A simulation study demonstrating the
advantages of this approach is presented.
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1. Introduction to rounding in MI

With the growing availability of software, multiple imputation (MI) under multi-
variate normal (MVN) distribution has emerged as a popular inferential tool in the
analysis of incomplete data. Some of the most commonly used software include the
missing library of S-Plus (Schimert et al. 2000), the norm library of R (Schafer,
1997), and SAS PROC MI (SAS Institute 2001). These software commonly imple-
ment specialized computational techniques for sampling from the implied posterior
predictive distribution under MVN and a set of priors. Sampled data points are
regarded as multiple imputations as depicted in Figure 1.

One of the major concerns in adapting the software for MI under MVN assump-
tion is the plausibility of the normality. In many real-life problems with categorical
variables measured on nominal scale, the MVN assumption is clearly violated. In
the previous studies, two distinct solutions have been proposed to remedy this prob-
lem. First solution develops a strict categorical model used as a basis for imputation
(see Schafer, 1997, Ch. 6). Second solution has mostly been limited to a binary
case and pertains to modifying techniques used for continuous data to impute the
categorical variables (Bernaards et al. 2006; Yucel, Yulei and Zaslavsky, 2008). Be-
cause we focus on using the existing MVN-based procedures to impute larger class
of nominal variables (ordered or unordered), the following discussion is limited to
the latter approach.

In most practices of rounding, imputed values for binary or ordinal variables are
rounded off to the nearest observed values (Schafer 1997, Ch. 5). This approach
can lead to biased estimates (e.g. means or correlations) when the binary or ordinal
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Figure 1: Depiction of MI in practice

variables whose distributions are far from symmetry or oddly shaped (e.g., multi-
modal). The disadvantages of such methods are likely to worsen as the amount of
missing data increases. Horton et al. (2003) evaluated imputation of a Bernoulli
random variable by rounding a continuous imputation to the nearest value of 0 or
1 (i.e., by a cutoff value of 1/2). They found that this caused substantial bias and
suggested a normal imputation of the binary variable without rounding to obtain
an unbiased estimate of the mean (probability of success). Although unbiasedness
is an important property, the latter study’s strategy of no rounding does not im-
pute data of the original type as might be desired by practitioners whose intended
complete-data analysis is tailored to binomial data. Bernaards et al. (2006) eval-
uated the robustness of the multivariate normal approximation for imputation of
binary incomplete data and suggested a rule for calculating a cut-off value, based
on a normal approximation to the binomial distribution. They assumed that the
variance of the imputations equals the binomial variance, which might not be true
if there is a strong predictor that adds variance to the predictions.

How can one use the existing MVN-based procedures to imputed non-binary
variables? As in the binary case, naive rounding can lead to substantial biases,
and other methods suffer from the similar shortcomings stated above. Another sig-
nificant drawback of the current MVN-based methods is the inability of handling
nominal variables. Although not recommended (Little and Rubin, 2002), practi-
tioners are often forced to create qualitatively different category.

The goal of this work is to provide a widely-usable solution that facilitates the
current MVN-based MI software in developing rules for rounding nominal variables.
The principle of this solution is the one that extends our recent work (Yucel, Yulei
and Zaslavsky, 2008, from hereon referred as YYZ) where imputed values are cal-
ibrated to resemble the observed distribution. While the MVN is the underlying
assumption of the commonly-used software, the main assumption, here, is the exis-
tence of the working method to impute continuous values for the nominal variables,
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hence the methods described here do not assume a particular distribution.

The remainder of this article is organized as follows. Section 2 describes our
rounding strategy based on calibration of the marginal distribution and states how
it can be implemented in ordered nominal or ordinal and unordered nominal cases.
Section 3 summarizes our findings from a limited simulation study. Finally, Section
4 discusses the strengths and limitations of this approach.

2. Calibration-based rounding strategy

2.1 Models & assumptions

Let Y denote the nominal variable of interest subject to missingness, and let 1,2,..., G
denote the values assumed by Y. Further, let X denote the covariates (univariate
or multivariate) in the imputation model, where Y consists of observed and missing
values, Yyhs and Yy, respectively. We assume that X either is complete or has
been completed by a plausible imputation method. The goal in inference by mul-
tiple imputation is to replace Y5 by random draws from its posterior predictive
distribution P(Yiis | Yobs, X). Another set of notation that is necessary to introduce
pertains to the missingness mechanism. Following a standard notation, let R be the
indicator variable for observation of Y, with R = 1 for observed Y and R = 0 for
missing Y . Under a missing at random (MAR) missingness mechanism, the proba-
bility that any data value is missing may depend on quantities that are observed but
not on quantities that are missing: P(R | Yobs, Ymis; X) = P(R | Yobs, X). Under a
missing completely at random (MCAR) mechanism, missingness is independent of
both observed and missing values: P(R | Yops, Ymis, X ) = P(R).

The notation below builds upon the assumption that there is a working structure
that determines the form of this posterior predictive distribution. We let Y5 denote a
variable imputed under a continuous model P(Yys | Yobs, X ) which will be rounded
off to a variable that takes values in the desired scale (e.g. ordinal or unordered
nominal), which will be denoted by Y*. The rounding will proceed using a set of
rules determined by calibration.

2.2 Calibration idea

The main goal of the calibration is to create imputed values with similar distribu-
tion to that of the observed values. Employment of a multivariate distribution to
establish this goal can also establish the secondary goal: preserve the relationships
with other potentially important variables to the (post) analyses. To implement a
method with such properties, YYZ simply duplicated and appended the copy to the
original data, and intentionally set Y to missing in the second copy and then gener-
ated imputations Y* of the missing copy of Y. YYZ demonstrated this method on
a binary case and derived the asymptotic biases of the method, which are largely
tolerable in problems with modest missingness.

In the context of developing rounding rules, the motivation of duplication is
as follows. Under a given imputation model, the sampled or imputed values of
observed data, Y., conditional on the covariates, X, are seen as coming from
the same distribution generating Y,,s. Then the calibration proceeds with respect
to a statistic S(X,Yohs). In other words, we can develop rounding rules under
the assumption of S(X, Yyps) is a realization from the distribution of the statistic

evaluated under the imputation model, S(X, Y} ). A natural choice in the problem
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of imputation of a nominal variable is the probability of categories or its joint
distribution with X.

2.3 Marginal calibration for ordinal variables

The strategy for extending the methodology of YYZ into ordinal variables uses the
same principle: obtain the set of cut-off values that will be used in rounding the
imputed and calibrated Yr;klis,C in such a way that after rounding Yys will have a
marginal distribution consistent with the observed data Y,s. The algorithm that
implements this principle is given by

L. Xdup = {X7X} and Ydup = {Yob87Ymi57Yobs(dup)7Ymis(dup)} are the dupli-
cated datasets; Yops(qup) means Yops with observed values turned to missing

2. Impute the missing values in Yg,, under MVN (or any chosen continuous
distribution) and denote the imputed continuous values as Y5 ¢, Y s (dup), >

and Ynﬁis(dup),C

3. The cut-off values c1, co, ..., cq are determined so that the relative frequencies
of each category in Y;ios(dup) equals the relative frequency in Y.

4. Use ¢1,¢2,...,¢q toround Y5, o to Y7,
mis = g for cg1 <Vo 0 <, (1)
where ¢y = —o0 and ¢g = 00
Note that cq, s, ..., cg can be any value between the appropriate order statistics

of Yozs(dup) o- To reflect uncertainty in the practice of multiple imputation, one
can draw the cut-off values from a uniform distribution defined in the appropriate
interval given in (1).

2.4 Marginal calibration for nominal variables

When the variable of interest Y is an unordered nominal variable (e.g. race), even
approximately, current techniques assuming MVN can not be utilized. The calibra-
tion routine introduced above can be used with slight modifications to reflect the
unordered nature and proceeds with a set of dummy variables and rounding rules
are based on cumulative probabilities. Same algorithmic idea based on duplication,
imposition of missingness and calibration apply on each of the dummy variable:

1. First step of the algorithm given above differs slightly. Here we create a set
of dummy variables in Y5ps indicating the underlying category: Iy, =g = 1.
This will thus turn the input for the MVN-based imputation procedure into
a slightly different format:

copy
Xdupyon I

Copy
Yobs(i):17 Tt IYobs(i):g_l7 I

bs(i) =17 Yobsiy=9—1’

where the subscript “copy” indicates the duplicate copy of the indicator set
to missing in the second copy,

2. Impute the missing values in all of binary variables defining the nominal vari-
able Y,

3. Compute the cut-off value using YYZ method for each of the binary variable
sequentially and independently in such a way that the underlying ratio in the
first copy is same as in the second copy.
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2.5 Practical extensions

As noted by YYZ, calibration is a very general approach to validation of an im-
putation model and can be regarded as a version of the posterior predictive check
(Gelman et al. 2004, pp. 159172; Gelman et al. 1996), commonly used in assessing
the fit of Bayesian models. The use of calibration in the context of imputation
combines the model-based imputations with an ad hoc rounding step with ¢ — 1
free parameters (not included in the imputation model). Thus its use is bit restric-
tive and negligible biases are unavoidable in some statistics. However, the idea of
calibration is very attractive for practitioners with well-established tools such as
MVN-based imputation software.

One potentially very useful extension of calibration is when the incomplete-data
problem is further complicated by clustering. Such complications occur in multi-
stage surveys conducted on subjects clustered within naturally occurring groups or
longitudinal studies of subjects. Similar to its cross-sectional counterparts, categori-
cal data imputation has often been done based on approximations using MVN-based
routines (Schafer and Yucel, 2002 and Carpenter and Kenward, 2008). As argued
above, in some instances, such approximations can be harmful to the inferences in
certain circumstances.

Extending the calibration-based rounding using the MVN-based imputation in
clustered designs is relatively straightforward. Consider, for example, imputing an
ordinal variable when it is realized under clustered data. The algorithm given in Sec-
tion 2.3 requires a working method sampling from the underlying P(Yiis | Yobs, 0),
where 6 is the set of unknown parameters of the imputation model. Such sampling
procedure is relatively easy under MVN, but complicated by the handling of clusters
via random-effects. One can visualize this as m—repetition of the algorithm given
in Section 2.1, leading to mean structure to be preserved across the clusters.

3. Simulation Study

We designed a limited simulation study to assess the performance of the suggested
calibration-based routines allowing the users to utilize MVN-based imputation tech-
niques. Here we report the ordinal case, more comprehensive results are currently
being developed. Our simulations consisted of the following specifications:

1. Simulate random variables X and Y:

X ~ N(0,1)
U|X ~ N(a+ X, 3 +4),

so that a continuous covariate X is used to obtain a continuous variable U.
Using the quantile of U leads to the simulation of Y given X. We specifically
chose a scenario where Y was highly skewed to emphasize the disadvantages
of the current practices.

2. On average 45% of the Y — values were set to missing under MAR mechanism:
R ~ Bernoulli(logit ! (ag + BrX)), (2)

Or varied to assess performance under MCAR and deviations from MCAR to
MAR. These varying missingness mechanism are shown in the x-axis of the
plots given in Figure 2 & 3.
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3. Total data points simulated was set to 10,000 to reduce the simulation error.
Similar performances were also seen in higher numbers.

MVN-based imputation routines as implemented in R package norm was used
to impute missing values in each incomplete data across the simulations, and three
different rounding methods were compared. First method uses no rounding leading
to unusable but unbiased estimates in the univariate analyses. This method was
first suggested by Horton et al. (2003) in the binary case. Second method pertains
to rounding to the nearest integer (Schafer, 1997). Final method is the calibration-
based rounding. The performance of these methods are presented in Figures 2 and
3.
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Figure 2: Performance of rounding rules with respect to mean and correlation.
Missingness scenario 1 through 10 on the x-axis represent deviations from MCAR
towards MAR. For example, scenario ‘1’ represents MCAR with Sz = 0 in equation
(2), scenario ‘2’ represents MCAR with g = 0.1. Sr was given values ranging from
0 to 2.

The results clearly indicate that there is a significant advantage of using calibration-
based rounding especially in applications where the missingness mechanism deviates
from MCAR towards MAR.

4. Discussion

The motivation of our work on rounding is to provide the practitioners with a
well-established, widely-available method for imputing categorical variables under
continuous models to usable imputations. By definition, our methods produce im-
putations with similar distributional properties to the observed data by rounding
imputed continuous values. Under a MCAR missingness mechanism, by construc-
tion, unbiased estimates are obtained. Relationships of imputed values to other
variables are biased, engendering biases in means under an MAR missingness mech-
anism, however, this bias is generally not much worse than its competitiors. Our
simulations as presented in Figure 2 suggest that with modest amounts of missing
data, these biases are likely to be tolerable.

The idea of calibration has been recently applied in other settings, particularly
on the diagnostics for multiple imputation inference or in Bayesian data analysis.
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For example, we can check the model fit by comparing the statistics of the observed
(or completed) data with their re-imputed copies under the model. Large differences
might suggest a lack of fit of the model (Gelman et al. 2005; Abayomi et al. 2008).

In the imputation of unordered nominal variables, the performance of the cali-
bration approach can be questionable. The method can be criticized for its incom-
patibility with any continuos model for the purposes of imputation. However, most
practitioners follow practices such as ignoring these variables or defining a quali-
tatively different category representing the missing values both of which can easily
lead to misleading results. Our proposal of calibration-based rounding should thus
be seen as “promising” starting point in the effort of employing a reliable imputa-
tion tool with solid properties in an effort for conducting inferences in datasets with
mixture of variable types.

Despite the attractive features of our methods, they should be used cautiously.
They are essentially approximate methods based on normal imputation methods and
are limited since they have few free parameters that can be used in post-imputation
calibration. When the validity of the imputations is critical, as when there are
substantial fractions of missing data, it becomes more worthwhile to impute under
joint models for categorical variables or combinations of categorical and continuous
variables (Schafer 1997, Ch. 9; Javaras and Van Dyk 2003). Alternatively, sequen-
tial imputation (Raghunathan et al. 2001; Van Buuren and Oudshoorn 2000) can
accommodate data of miscellaneous types by imputing under a collection of univari-
ate conditional models, at the risk of inconsistencies due to the absence of a single
joint model.
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