
Efficacy of Poststratification in Complex Sample Designs  
 
 

Ismael Flores Cervantes1 and J. Michael Brick1 
1Westat, 1600 Research Blvd, Rockville, Maryland 20850 

 

 

 
Abstract 
Poststratification is a calibration estimation method that is often used to reduce the 
variance of the estimates and to reduce bias due to noncoverage or nonresponse. In this 
paper we examine the efficiency of poststratification in the full response and coverage 
situation. Virtually all results on the efficiency of poststratification in the literature 
assume a simple random sampling. We expand this and look at the efficiency in one 
complex design, a disproportionate stratified random sample. We provide an expression 
based on the coefficient of determination 2R  to assess the reduction or increase of 
variance due to poststratification in this type of sample design. 
 
Keywords: Calibration, stratification, poststratification 
 

1. Poststratification 
 
Poststratification is a method of estimation that is very popular among survey 
practitioners. The main motivation for its use is variance reduction although it has been 
also used to adjust for nonresponse and noncoverage errors (Kott, 2006). 
Poststratification is described in Holt and Smith (1979), for example, where after sample 
selection sampled units are classified into groups and the known total number of units in 
the population is used to estimate the group total for some variable of interest. The group 
totals are summed to produce an estimate for the whole population. Typically these 
groups or poststrata are formed so they contain at least a minimum number of sampled 
units. 
 
Poststratification or stratification after sampling is used because the information for the 
classification of the sampling units is not available prior data collection or is very 
expensive to use when creating sampling strata. The benefits of poststratification as 
reported in the literature are similar to those from stratification and proportional 
allocation for a design when these sampling methods are not initially used to select the 
sample. 
 
Although properties of poststratification and inferences of poststratified estimates have 
been studied extensively, except for few cases (Williams, 1962), its focus has been 
mainly on the simple random sample design. Furthermore, the same literature assumes 
100 percentage coverage and response (i.e., no biases), and large sample sizes.  
 
The objectives of this paper are to find expressions to evaluate the gains of 
poststratification in sample designs other than simple random sampling, in particular for 
stratified simple random designs, and for estimates other than totals such as means. 
Several authors have suggested that poststratification is disappointing in that it does not 
improve the efficiency of the estimates very much (e.g., Hartley, 1962; Holt and Smith, 
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1979). As part of the research we attempt to determine the conditions where there are 
gains in variance reduction due to poststratification. 
 
1.1 Poststratification Estimator 
Poststratification is a method from the class of estimators called calibration estimators 
(Deville and Särndal, 1992). The poststratified estimator for a total is computed as 
 
                                   ksk kgg gggg gps ydNNyNNy

g
∑∑∑ ∈

−− == 11 ˆˆˆˆ  (1) 

 
where is the inverse of the probability of selection , kd ( )′= GgG NNN ,...,,...,1N
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vector of known population totals that define the G poststrata, is the 

sample estimate of the total , and N is the total population size such that .  gN gN

 
1.2 Variance of the Poststratified Estimator 
In most textbooks the only estimate of variance for a poststratified estimator explicitly 
stated is for totals from simple random sampling designs. For example, Cochran (1977) 
shows that the variance can be computed as 
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where ( ) (∑ ∈

− −−=
gsk gkgg YyNS 12 1 )  is the population variance in poststrata g, 

. Expression (1) has two components (Cochran 1977, Kish 1995; Thompson 
1992); the first component corresponds to the value of 

Gg ,...,1=
( )styV ˆ

gnW
 for a design with a sample 

of size n proportionally allocated to G strata (i.e., ng =  where ). The 

second term, generally small when the sample size n is moderately large, reflects the 
increase in variance of the estimate due to variation of the sample in the poststrata. That 
is is random and only in expectation is distributed proportionally among the poststrata. 

The second term of the variance is derived noticing that  follows a hypergeometric 

distribution with parameters 

NNW gg /=

g

gn
gn

( )NNn g ,, , where ∑= g gnn , and using the Taylor Series’ 

approximation of ( 1−
gnE )1. The order of this tem is ( )2n/1O . 

 
Although Cochran (1977) and Särndal, Swensson, and Wretman, (1992) mention the use 
of the poststratified estimator in a stratified design where the strata are created using a 
variable other than the poststrata, they do not provide an expression of the variance of 

 in this situation. psŷ
 
 

                                                 
1 In Cochran (1977), the binomial approximation to the hypegeometric distribution of   is used to derive the expression 

of the second term of the variance (2). The difference is the inclusion of the factor 1-n/N in the formula. 
gn
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1.3 Poststratification as a Regression Estimator 
As mentioned before, poststratification can be studied using different approaches. One of 
these approaches is regression theory applied to survey sampling (Fuller, 2009, Särndal, 
et al., 1992). Regression estimators incorporate supplementary (or auxiliary) information 
at the estimation stage to increase the precision of the estimator. This class of estimators 
uses a model for the relationship between the variable of interest and the auxiliary 
variables. Estimators from this class of estimators are model assisted and their efficiency 
compared with unadjusted estimators depends on the goodness of fit of the regression. 
 
The form of the regression estimator is  
 
  ( ) ∑∑ ∈

′=
sk kkkgr edy Bx ˆˆ , (3) 

 
where  is the vector of known auxiliary variables, kx ( ) ∑∑ ∈

−
′=

sk kkkkkk ydd xxxB
1ˆ , 

and  is the difference between the predicted value and the observed value 
in the sample called the residual.  

Bx ˆ
kkke −y=

 
The expression of the approximate variance of the regression estimator is computed using 
the general formula with the expansion of the residuals as  
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where kπ  is the inclusion probability of element k, klπ  is the probability that both 

elements k and l are included in the sample, and ( ) ∑∑ −
′= kkk yxxB

1
kx . 

 
The poststratification estimator is a special case of the regression estimator with a model 
that partitions the population in subgroups g (g = 1, ..., G). The model assumes a group 
mean where elements within the same group share the same mean and variance (i.e., 
( ) gkyE β=  and ). In particular, the auxiliary information matrix  consist of 

G - 1 indicators or dummy variables (values 1 or 0) that indicate the group membership 
of the elements ’s.  

( ) 2
gkyV σ=

ky

x

 
Särndal et al. (1992) provide an expression for the approximate variance of the 
poststratification estimator under simple random sample (SRS) that is equal to (2) except 
it excludes the factor  in the second term. In contrast, most of regression estimator 
literature presents the expression of the variance for the SRS case ignoring completely 
the second term in (2) (Fuller, 2009). We will show that this term may play a role later 
that is not reflected in the regression estimator approximation. 

f−1

 
The expression of the variance of poststratification estimates in more complex designs 
can be derived from (4) using different models; however, an expression for complex 
designs is not presented explicitly. Furthermore, in regression theory, regression 
estimators in designs other than SRS may incorporate more information other than the 
poststratum total and poststratum membership. This information may include information 
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such as sampling stratum that is not used in the classical poststratification approach. 
Since we focus on the properties of the poststratification estimator, all regression 
estimators with information other than the poststrata are out of the scope of the study 
even if they produce more efficient estimates in large samples. 
 
1.4 Poststratification and ANOVA decomposition 
In addition to the analysis of the poststratification estimator as a regression estimator with 
a group model, Särndal et al. (1992) provide an expression to evaluate the gains of 
precision of poststratification under simple random sampling using Analysis of Variance 
(ANOVA) methods. The reduction of variance when an estimate from a SRS design is 
poststratified is  
 
                 , (5) 21 R−≈γ
 
where R  is the correlation coefficient for the regression of ’s on the poststratum 
indicators g’s, and the coefficient of determination 

ky
2R  is a measure of the homogeneity 

of the poststrata corresponding to the proportion of the variance that is explained by the 
ANOVA model2. The reduction of variance of a poststratified estimate depends on how 
the variability of is explained by the poststrata. Large reduction of variance can be 
achieved when 

ky
2R  is large. Equation 5 ignores the increase of variance due to the fact 

that the realized sample in the poststrata is random. 
 
1.5 Poststratification and Unequal Probability Sampling 
Knottnerus (2003) takes a different approach to poststratification with a special case of 
unequal probability design. In this design, the inclusion probability kπ  proportional to a 
discrete variable kX  that assumes G mutually different values. This design resembles a 
stratified sample from a population with G strata where all elements within the same 
strata have the same inclusion of probability. Furthermore, for n each individual 

stratum is treated as a SRS sample of fixed size . Knottnerus provides the expression 
of the variance for this case as 
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This result is important because it opens the doors for the concept of an equivalent 
design. Although this concept is described in more detail in Section 3, under certain 
conditions, this unequal probability design has the same variance as that of a 
proportionately allocated stratified sample. 
 

                                                 
2 The intraclass correlation ρ  (Cocharn, 1977) that measures the homogeneity of elements within clusters is related to 

coefficient of determination 2R  when the poststrata are seen as clusters. 
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2. Poststratified Estimates of Totals in Stratified Designs 
 
2.1 Poststratification of Totals in Simple Random Sample Designs 
One way of expressing the effect of poststratification for the estimator of a total under 
simple random sampling is as the difference between the approximate variances of the 
unadjusted estimator and the poststratified estimator. This difference is computed as 
 

 ( ) ( ) ( 22
ˆˆ ∑ −≈−

g gg
srs
ps

srs YYW
n

NyVyV ) . (7) 

 
Equation 7 assumes that the observed sample in the poststrata is large so the increase of 
variance due to the fact that the sample size in the strata is random is negligible. This 
result shows that the difference of the variance is a function of the squared differences on 
the mean of the poststrata and the total mean. The difference is always positive or zero 
(when the poststratum means are equal to the overall mean). In other words, the variance 
of the poststratified estimator is always lower than the variance of the unadjusted 
estimator if there are differences in poststratum means.  
 
As example using the PUMA population for this study (see Appendix A for a description 
of the characteristics of the population), we evaluate the difference of the variance of the 
poststratified estimate of total income when we poststratify to variables in three cases: 1) 
ethnicity: Hispanic and Non-Hispanic, 2) household tenure categories: own and 
rent/other, and 3) the combination of ethnicity and household tenure. In this example, the 
sample size is 3,000 persons. We also compute the ratio of variances of a poststratified 
total relative to the variance of the total from a SRS design as  
 

 
( )
( )

( ) ( )
( )yV

yVyV
yV

yV psps

ˆ
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1
ˆ

ˆ −
−==γ . (8) 

 
Table 1 shows the variance and the ratio of variances, γ . When the sample size is large 
the reduction in variance of a poststratified estimate of total does not depend on the 
sample size. In this example, there is no reduction in variance in total income if the 
estimate is poststratified to ethnicity. There is a 7 percent reduction when the sample is 
poststratified to household tenure, and the marginal gain of poststratifying to both 
ethnicity and household tenure is negligible. 
 

Table 1: Difference in Variance and Reduction of Variance of a Poststratified Estimate 
of Total and the Unadjusted Estimate for a Simple Random Sample Design for the 

PUMA Population 
 

Poststrata 

Difference of variance  
(in millions) 
( ) ( )psyVyV ˆˆ −  

Ratio of variance of 
poststratified total to 
unadjusted total (γ ) 

Ethnicity 59,601,364,323 0.9951 
Household tenure 803,110,081,192 0.9341 
Ethnicity * household tenure 821,319,039,353 0.9326 
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2.2 Poststratified Totals in Stratified Simple Random Samples 
We begin by examining stratified simple random sampling, where the strata are identified 
by h = 1, .., H. The poststratified estimator is computed as 
 

                              
ˆ ˆˆ ˆ g

h g h gst
ps hg k kg h g h k s

h g h g

N N N N
y y

n N n N ∈
= =∑ ∑ ∑ ∑ ∑ d y

 (9) 
 
This estimator is a linear function of separate ratio estimators. Using the general 
expression of variance of the regression estimator with a stratified design, the 
approximate variance is  
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where  is the proportion of the population in poststratum g in stratum h, 

and 

1−= hghgh NNW

( )( 1)1
−

−ghgh NY2
∈∑ −=

ghk kgh yS  the population variance in the cell for the 

intersection of poststratum g and stratum h. 
 
The variance of a stratified estimate of a total has two components. The first component 
is the population variance in the cell of the intersection of the sampling stratum and 
poststratum. The second component includes the squared difference of the means in the 
cell for intersection of sampling stratum and poststratum and, the mean of the poststratum 
within the sampling strata. 
 
Using (10) we can compute an expression of the difference of the variances of the 
poststratified total from a stratified design and the variance of the unadjusted estimator as 
 

            ( ) ( ){ }
2 2 2

ˆ ˆ( ) ( )st st h
ps gh gh h gh gg h

h

NVar y Var y W Y Y Y Y
n

− −∑ ∑ − −                (11) 

 
In contrast with simple random sampling, with stratified simple random sampling 
poststratification can either increase or decrease the variance of the estimated total. The 
effectiveness depends largely on the relationship between the strata and poststrata means.  
 
As example using the PUMA population, we evaluate the difference of the variance of 
the poststratified estimate of total income for a stratified total with strata created using 
ethnicity (Hispanic and Non-Hispanic) and poststratifying to household tenure (own and 
rent/other). The sample size is 2,000 from the non-Hispanic stratum and 1,000 from the 
Hispanic for a total of 3,000 persons in the sample. The difference in variance is 
888,407,324,997 and the ratio of variances is 0.9381. In this example, there is a reduction 
of variance of the total of 6.2%. 
 

3. Functions, Transformations, and Identities 
 
Although the results presented in the previous sections are informative, they do not 
provide insights for rules of thumb for evaluating gains (or losses) of variance when 
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poststratification is used. The main difficulty is finding simple mathematical expressions; 
and the mathematical complexity increases for estimators other than totals or when other 
complex designs are studied. In order to overcome this difficulty we introduce two 
concepts: 1) functional identities and 2) transformations. The objective of these tools is to 
simplify the complexity of the mathematical operations so we can arrive to simplified 
expressions or approximations for the variances and reduction of variance when 
poststratification is used. 
 
3.1 Functions and Transformations of an Estimator 
The first tool we introduce is the concept of a transformation. Mathematically, a 
transformation is a function that establishes a relationship between a given set of 
elements (i.e., domain) and another set of elements (i.e., range). In survey sampling there 
are functions that use (transform) the observed data drawn from using a particular design 
to produce an estimate (i.e., total, mean, proportion, etc.). In other words, estimators such 
as totals, means, proportions are themselves functions of the observed data3.  
 
With transformations we need distinguish among elements of the estimate such as the 
sample design, sample size, etc.; hence we depart from the conventional notation used to 
describe an estimator. For example, we first define the notation for a total for a SRS 
sample as  
 
                                                      ( )nsrsTy ,,ˆ y= ,                                                         (12) 
 
where T is the function that takes the observed data y  and expands it by the factors 
and sums it from a SRS design with replacement.  In another example, the estimate of the 
mean for the stratified design in the proposed notation is defined as a function as 

nN /  

  
                                                 ( )hh

str HstrMy ny ,.,ˆ =                                                   (13) 
 
where M is the mean function for a stratified design with H strata and with a vector  
with the stratum sample sizes. 

hn

 
Another transformation we introduce is useful for the estimation of means (although it 
can be generalized to other ratio statistics). For example, the estimate of a domain mean 
is computed as  

                                                            
d

d
d N

yy ˆ
ˆˆ = .                                                            (14) 

 
Since this is not a linear estimator but a ratio estimator, in order to compute the variance 
of this estimate, we use the Taylor series approximation to obtain the linearized 

approximation of dŷ , 
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δ  (Särndal, et al., 1992), where ( ) 1=dkδ  if 

, dyk ∈ ( ) 0=dkδ , otherwise. With the expanded notation, we can rewrite the estimator 

                                                 
3 A formal framework for the concept of transformation is out of the scope if this paper and will be the topic of a future 
paper 
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of the domain mean ( )nsrsMy dd ,,ˆ y= ,  is the vector of observed data where dy
( ){ kkkd ydy }δ= . It is easy to verify that the approximate variance of dŷ  can be written as  

 
 ( ) ( )( ) ( )( )nsrsTVnsrsd ,MVyV d ,,,ˆ ey ≈=                           (15) 
 
In other words, the variance of the domain mean is approximated by the variance of the 
residuals. Notice that the transformation in this example maintains the same design but 
the form of the estimate and the data used to compute the estimate are not the same as the 
original estimate. This result is not new (Tepping, 1968). The main motivation for a 
transformation like this one is that the complexities of the nonlinear estimate are replaced 
by a linear estimate that is mathematically easier to study. 
 
Although the transformation functions discussed in this section looks like a mere 
notational convenience, the usability of this notation will be more evident in the 
following sections. 
 
3.2 Equivalent designs 
The second concept we introduce is mathematical functional equivalency. The motivation 
is that is there are some problems that are difficult to solve or are algebraically un-
tractable in their original representations. Through the use of functional identities (or 
substitutions) we can replace expressions by equivalents that are easier to manipulate and 
solve. Identities have been used in sampling theory before but without a formal 
framework. Most of these identities are not generally used in estimation but as tools for 
evaluation of sample designs. Some examples are the use of concepts such as design 
effect and effective sample size. The design effect is defined as the ratio of the variance 
of estimate of the complex design to the variance of a simple random sample design with 
the same sample size. The effective sample size is defined as the ratio of the nominal 
sample size of the complex design and the design effect. An implication of these concepts 
is that there is a SRS design with a sample size with the same value as the effective 
sample size that produces the same variance as the complex design (Kish, 1995). In other 
words, this hypothetical SRS sample design and the complex designs are functional 
equivalent with respect to the variance of the estimate. 
 
There are many designs that are equivalent at different levels (i.e., with respect to means, 
variances, etc.); however, we will focus on a class of equivalent designs centered on a 
proportionally allocated design. The reason for reducing any design to a proportionally 
allocated design will become evident in the following section. 
 
Theorem 1. Let y  be the sample vector of observed values drawn using a stratified 
design with a sample size 1p ∑= h hnn

2p

. Another sample  is drawn using a stratified 

proportionally allocated design from the same strata with a total sample  such as  

*y
*n

 
 ( )( ) ( ( ))*

2
*

1 ,,,, npnpTV yy = TV                                          (16) 
 
These two designs are equivalent with respect to the variance of y  for an estimated total. 
 
Proof: The variance of the estimate of total of the fist design is computed as 
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and the variance of the second  design is computed as 
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Substituting expressions (16) and (17) in (15) and solving for , we find that the sample 
size of the second design that produce the same variance as the first design with a sample 
n is 
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This expression is a generalization of effective sample size. If we compute the design 
effect as , and we assume , N is large, and the stratum variance is 
constant, it is easy to verify that 

*/ nnDEFF = nN >>
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where  is the stratum sampling rate. As shown by Theorem 1, Kish’s DEFF 
defined in (20) correspond to the ratio of the variance of a stratified design to a 
proportionally allocated design, and not to a simple random sample design. 

hhh Nnr /=

 
3.3 Poststratification of a proportionally allocated design 
The next the expression is for the variance for a proportionally allocated stratified design.  
This expression is just a generalization of the simple random design case and the variance 
is derived in the same way, conditioning first on the expected sample size in the 
poststrata and the computing the variance of this expected sample. The vector of the 
sample size in the poststrata is ( )′= GgG nnn ,...,,...,1n

ghn

 where  is the sample size in the 

poststratum g is  where  is the sample size in the intersection of sampling 

stratum h and poststratum g.  
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∑
=

=
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h
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Since the sample n is proportionally allocated across the strata and poststrata, it is easy to 
verify that the expected value  is gn
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As in the SRS case, the first component of the expression of the variance of poststratified 
total from a proportionally design is derived conditioned on the sample 

 as ( )′= GgG nnn ,...,,...,1n
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The unconditional variance is computed using an approximation to ⎟
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unlike in the simple random case,   is the sum of random variates  each one with a 

hypergeometric distribution with parameters 
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Since the samples are selected independently within sampling stratum, 
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). The expression of the variance is 
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As in (2), the variance has two components. The first component is the expression of the 
variance as if the sample had been drawn proportionally by poststratum. Although the 
second component is more complex, it still reflects the increase of variance due to the 
variability of the sample in the cell formed by the intersection of the sampling stratum 
and poststratum. 
 
Using the expanded notation, we can rewrite (24) as the following identity that links the 
variances of proportionally allocated stratified design with and without poststratification: 
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where ∑ ∑= = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ −=Δ

H

h gh
G

g
h

gh S
N
N

n
N

N
n

1
2

12

2

11 . We will use these results in the 

following section. 
 

4. Gains of poststratification in stratified designs 
 
4.1 Poststratified totals from a stratified design 
In this section we compute the gains of poststratification for totals when the sample is 
drawn from a stratified design. In particular, we are interested in the ratio of variances as 
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defined in (8) but with the variance of the estimated total from the stratified design in the 
denominator. Using the previous results the ratio γ of variances becomes 
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As in Särndal et al. (1992), we can express the variances in terms of the coefficient of 
determination 2R . We modify the notation of 2R  to indicate if the coefficient is 
computed using the strata or poststrata. Since  
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the ratio γ  reduces to 
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when  is large.  Equation (26) shows that the reduction of variance when a stratified 
estimate is poststratified depends on how well the sampling strata or poststrata explain 
the variability of y . For example, if the sampling strata produce a larger 

*n

2R  than the 
poststrata, then poststratifying the estimate increases the variance. 
 
As a numerical example using the PUMA data, Table 2 shows the gains in 
poststratification for the estimate of total income when the sample of 3,000 persons is 
drawn disproportionally from a frame stratified by ethnicity. In the table, the first column 
shows the relative sampling rate of the Hispanic stratum with respect to the non-Hispanic 
stratum. The second column shows the gains in poststratification, γ , as computed in (26) 
when the estimates of total income are poststratified to totals by household tenure (own, 
rent/other). The third column shows the estimated value of γ  using repeated sampling 
(i.e., simulation) with 5,000 runs. These results show that the gains achieved using 
poststratification do not depend on the sample allocation as long the effective sample size 
in the cell for the sampling stratum/poststratum is large. However, poststratification will 
not recover the gains of proportional allocation sample as in the SRS case if the sample is 
drawn from a stratified design. 
 
Table 2: Gains from Poststratification to Household Tenure of Estimates of Total Income 

in the PUMA Population Stratified by Ethnicity 
 
Relative sampling rate γ Simulation 

4.00 0.9387 0.9366 
1.00 0.9387 0.9418 
0.25 0.9387 0.9454 

 
We now take a look at the increase of variance in poststratified totals from stratified 
designs ( )( )( ) ( )( ) Δ+= *,,.,,,., nGstrpropTVGnHstrTPV yy  due to, Δ , that is generally 
ignored. In the stratified case we can compute this term. If we assume a constant 
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population variance across strata and poststrata and negligible finite population factors, 
the increase of variance can be expressed as 
 

             *
1

ghnGH
GH −

=Δ′ ,                                                          (27) 

 
where (GHnngh /** = )  is the average number of effective sampled units per 
stratum/poststratum. This expression is a generalization of the expression for 
poststratification in the SRS case (i.e., one stratum) given in Cochran (1970), with for the 
inclusion of the number of poststrata and the effective sample. The conditions for large 
increases of variance are also generalizations of those in Cochran. However, it is often 
overlooked in practice that the variability depends on the effective sample size of the cell 
for the intersection of sampling stratum/poststratum. Practitioners often examine the 
nominal sample in the poststratum as in the SRS case. In the stratified case, this practice 
may not be a problem because this term is only important when *

ghn  is less than one, 
which is very rare in stratified designs. However, this situation may be true in other 
design such as cluster sampling. 
 
4.2 Poststratification of means and domains in a stratified design 
In the stratified case, the estimate of the mean Y  is the estimate of total Y  divided by 

. Therefore the results of the gain/losses due to poststratification for stratified totals 
apply to stratified means. Since  the  appears in the numerator and denominator in 
the expression for 

N
2/1 N

γ , the gains or losses due to poststratification in stratified means are 
the same as those achieved in totals.  This is also true for estimates of domain totals. 
 
4.3 Poststratification of domain means in a stratified design 
A more interesting case is the case of poststratified domain means from stratified 
samples. Using previous results, we can compute the reduction of variance of the domain 
mean from a SRS design as 
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If the sample n is large, then the ratio of variances is ( )GR ,1 2 e−≈γ . This result is 
similar to (5) (also see Särndal et al., 1992) but in terms of the residuals. This result 
shows that there is always a reduction of variance in a poststratified domain mean from a 
SRS design; the reduction of variance due to poststratification depends on how well the 
variability of the residuals is explained by the poststrata. 
 
The results can be generalized to compute the gain or loss due to poststratification for 
stratified domain estimates. The ratio of variances is 
 

              ( )
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2

2

e
e

−
−

=γ                                                     (28) 

 
This result is similar to (5) but the in terms of residuals instead of the variable y.  
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5. Conclusions and Further Research 
 
Simple rules of thumb to evaluate the gains due to poststratification for estimates from 
complex designs are difficult to derive due to the mathematical complexity. However, 
with the introduction of simple concepts we generalize results already described in the 
literature to the stratified simple random design. These results show that poststratification 
does not always reduce the variances, and the gains or losses of efficiency depends on 
how well the sampling strata and poststrata explain the variability of the variable of 
interest. These results also show that for gain (or losses) due to poststratification for 
domains totals and domains means are not necessarily the same.  
 
The current rules of thumb used by sampling practitioners when poststratification is 
implemented may not applicable in estimates from stratified designs. Although this will 
be examined more detail in a future study, the conditions where the increase of variance 
due to the second term are not very likely to occur in practice for most stratified designs. 
This may not hold for other complex designs. 
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Appendix 
 
The source of the data is the 5 percent Public Use Mircodata Sample (PUMS) from the 
2000 U.S. Decennial Census for the West and South. The PUMS data consist of 
information located geographinc areas designated Public Use Microdata Area (PUMA) 
code. Table A shows the characteristics of this population for the variables used in this 
study. 
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Table A: Distribution of Income Population  
 
Categorical variable Number of persons Mean Standard deviation 
All ethnicity 5,360,596 52,436 35,669 

Hispanic    776,738 46,376 31,859 
Non-Hispanic 4,583,858 53,463 36,175 

Household tenure    
Own 3,751,226 58,434 36,561 
Other 1,609,370 38,456 29,032 
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