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Abstract 
With respect to commonly used PSπ sampling techniques, samplers are often interested 

in the reduction of the design variance of the Horvitz and Thompson (1952) estimator. 

We first describe the differences between mechanisms of conventional design-based 
PSπ sampling methods of Mizuno (1952) and Brewer (1963) and two model-based 
PSπ sampling methods developed by Kim, Heeringa, and Solenberger (2006). We also 

suggest two new model-based PSπ sampling methods, and empirically compare the 

efficiency of the new methods to the previous model-based sampling methods and 

design-based PSπ and non- PSπ sampling methods. The case where the sample size is 

two is of particular interest for empirical comparison. With respect to the design variance, 

model-based PSπ sampling methods are preferable to design-based PSπ sampling 

methods.  One of new methods performs best.  This new method is comparable to the 

method of Murthy (1957), which is a design-based non- PSπ sampling procedure. 

Moreover, model-based sampling methods are preferable to design-based sampling 

methods due to the flexibility in the choice of sampling design for a better stability of the 

variance estimator.  

 

Key Words: regression superpopulation model, average variance, optimization, design 

variance, stability of variance estimator, maximum likelihood, restricted maximum 

likelihood 

 

 

1. Introduction 

 
Since Hansen and Hurwitz (1943) first suggested the selection of primary sampling 

units from each stratum with probabilities proportional to size ( PPS ), a large number of 

techniques for sampling without replacement with unequal probabilities have been 

developed. 

As discussed by Brewer and Hanif (1983) and Särndal (1996), much research on 

sample selection has been focused on design-based inclusion probability proportional to 

size ( PSπ ) sampling procedures in which the second-order inclusion probabilities (or 

joint probabilities), which indicate the probabilities that any two units in a population are 

both included in a sample, have a key role in the variance reduction. For example, the 

methods of Mizuno (1952) and Brewer (1963) that are draw-by-draw procedures and 

Sampford’s (1967) method, a rejective procedure, are well known PSπ  sampling and 

commonly employed by samplers. The methods of Brewer (1963) and Sampford (1967) 

are available in software such as SAS or SPSS. See SAS/STAT (2009) and PASW 
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Statistics (formerly SPSS Statistics) (2009). Murthy’s (1957) method, a non- PSπ  draw-

by-draw procedure, was noted by Rao and Bayless (1969) and Cochran (1977). Murthy’s 

method is available in SAS or SPSS for selecting samples in “two per stratum” designs.  

The comparative efficiency of these techniques in actual population sampling 

applications is an open question. As seen in many empirical studies, this may be due to 

the fact that the variances of the estimates of interest calculated from a sample selected 

by any sampling method are sensitive to population characteristics, and hence the user 

may not be sure that the efficiency of a chosen method would be significantly better than 

other procedures. This is especially true when a small sample is selected from a 

population or population stratum.   In many national surveys deep stratification with a 

substantial number of strata is used, and only a small number of cluster units are sampled 

from each stratum. For example, two per stratum designs are common in national 

samples. Accordingly, a sampling method whose efficiency is robust in the case of small 

samples would be preferred. 

Although a sample is selected from a finite population, considering the concept of an 

infinite superpopulation may be useful in the sample selection stage. In fact, an infinite 

superpopulation model has been often used in the estimation procedures, such as model-

assisted estimation and model-dependent estimation. But with regard to sample selection 

the model has been used by many writers mainly for the theoretical comparisons among 

sampling procedures, not for the actual selection of a sample.  

The model may be used to ensure that the second-order inclusion probabilities 

involving sampling designs implemented by a PSπ sampling procedure would result in 

reasonable efficiency. Kim, Heeringa, and Solenberger (2006) developed a theory of 

model-based PSπ  sampling procedures as a specification of the selection method using 

the model. Their procedures to yield optimal sampling designs that reduce the variance of 

the Horvitz and Thompson (1952) estimator were based on fairly practical linear 

superpopulation models and optimization theory.  

In this paper, we first describe the mechanism of design-based PSπ sampling of 

Mizuno (1952) and Brewer (1963) and model-based PSπ sampling developed by Kim, 

Heeringa, and Solenberger (2006). Next, we describe new model-based PSπ sampling 

methods, and empirically compare their efficiency to that for the previous model-based 

sampling methods and the conventional design-based sampling methods of Mizuno 

(1952), Brewer (1963) and Murthy (1957). The case where the sample size is two is of 

particular interest for empirical comparison, both for simplicity and because it is the most 

important situation in practice. The model in model-based sampling is not be central to 

the selection problem and is just a means to the end of achieving higher efficiency.  

 

2. Mechanism of Design-Based PSπ Sampling 

 
Before presenting model-based PSπ  sampling procedures in the next section, we first 

describe design-based PSπ  sampling method of Mizuno (1952), Brewer (1963), and 

Sampford (1967).  

Consider a finite population of N units, denoted by { }1
, , , ,

i N
U u u u= ⋅⋅⋅ ⋅ ⋅⋅ . i

y  is the value 

of the variable of interest, y , for the i th unit i
u . In order to estimate the total

1

N

i

i

Y y
=

=∑ , a 

sample s of size n is selected from the finite population. Let ( )
d

p s be the sampling design 

(or sampling plan) indicating the probability of selecting a specified sample in design-

based PSπ  sampling. Let the i
π be the first-order inclusion probabilities, denoted 
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by ( )
i d

i s

p sπ
∈

=∑ , and let the ij
π be the second-order inclusion probabilities given by 

,

( )ij d

i j s

p sπ
∈

= ∑ . When 2n = , simply ( )
ij

p sπ = . 

For 2n = , the method of Mizuno (1952) gives  

 

1
(1 )

1
i i i

p p
N

π = + −
−

                                                      (2.1) 

and  

1
( ) ( )

1
ij d i j

p s p p
N

π = = +
−

                                              (2.2) 

 

which is a simple function of 
i

p and
j

p . 

The method of Brewer (1963), which is only for 2n = and every 1/ 2
i

p < , gives  

 

2
i i

pπ =                                                                            (2.3) 

and  

2 (1 )
( )

(1 2 )(1 2 )

i j i j

ij d

i j

p p p p
p s

Q p p
π

− −
= =

− −
,                               (2.4) 

where 
1

1
1

2 1 2

N
i

i i

p
Q

p=

 
= + 

− 
∑ .  

 

The method of Sampford (1967) is an extension of Brewer’s (1963) method to samples 

of any size, and gives i i
npπ = , which is called the PSπ  requirement. Like Brewer’s 

method, ( )
d

p s  is obtain according to the selection probability of each unit defined for 

each draw, and is a function of the relative sizes i
p . 

A sampler may prefer a PSπ sampling yielding a smaller design variance. But as 

described above, the ( )
d

p s in design-based PSπ  sampling is a certain function of the 

relative sizes i
p  depending on only the values of the auxiliary variable x , and there is no 

definite indication of the strength and direction of a linear relationship between the 

variables x and y . Thus, although ( )
d

p s plays a central role in the reduction of the design 

variance, it is not clear whether ( )
d

p s in any design-based PSπ  sampling procedure 

would yield a low variance for any population of interest.  

 

3. Mechanism of Model-Based PSπ  Sampling 

 
A generalized regression (GREG) estimator may be one of the useful estimators for the 

population total. But it is well-known that it might be appreciably biased for a small 

sample, although the bias is in modest for large samples. As an alternative, the Horvitz-

Thompson (H-T) estimator (1952) in (3.1), which is unbiased for the population total and 

highly efficient under a good PSπ sampling method, can be used. 

 

�

1

n
i

HT

i i

y
Y

π=

=∑                                                         (3.1) 

 

The H-T estimator is the only unbiased estimator in the subclass of linear estimators 

denoted by  
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�

1

n

i i

i

Y k y
=

=∑                                                         (3.2)  

where i
k  is a constant to be used as a weight for the i th unit whenever it selected for the 

sample, and hence the best linear estimator of the subclass (Horvitz and Thompson 

(1952), Godambe (1955)). Also, note that best linear estimate does not exist for the entire 

class of linear estimators (Godambe (1955)). 

 

The variance of the H-T estimator is  

 

�
2

2

1 1

( ) 2
N N N

iji
HT i j

i i j ii i j

y
Var Y y y Y

π

π π π= = >

= + −∑ ∑∑                                  (3.3)  

 

Model-based PSπ  sampling method was first suggested by Raj (1956). This method 

for 2n = is a variance minimization sampling procedure, which first constructs an 

optimization problem consisting of an objective function and constraints on sampling 

design ( )
m

p s for minimizing (((( ))))ˆ
HTVar Y in (3.3) under the model m denoted 

by i i
y xα β= + reflecting a linear relationship between the variables x and y .  The model- 

based method then attempts to obtain an optimal set of ( )
m

p s . To find a solution, ( )
m

p s , 

linear programming (LP) is used.  

His model-based PSπ  sampling procedure has the properties: 

 

a) Prior the sample selection, the sampling design ( )
m ij

p s π= for all possible 

samples is determined by LP. It meets the PSπ  requirement, that is,  

( )
i m i

i s

p s npπ
∈

= =∑ .  

b) One selection using ( )
m

p s samples the whole sample s . This is a whole sample 

procedure. 

 

His sampling procedure is attractive with respect to the variance reduction achieved by 

using the model. But his model is unusual because there is no error term. Kim, Heeringa, 

and Solenberger (2006) developed a theory of model-based PSπ  sampling procedures 

using an infinite superpopulation model. They assume that a finite population of N units 

is drawn from an infinite superpopulation with the regression modelξ , given by 

 

i i i
y xα β ε= + + , 1, ,i N= ⋅⋅ ⋅ ,                                         (3.4) 

where ( ) 0
i i

E xξ ε = , ( )
i i i

Var x x
γ

ξ ε δ= ( 0δ > , 0γ ≥ ), and ( , , ) 0
i j i j

E x xξ ε ε = , i j≠ . Eξ and 

Varξ respectively denote the expected value and variance under the model ξ . It is also 

assumed that the i
ε are normally distributed.  

 

Note that many writers often prefer the model without the intercept for the purpose of 

the simplicity of theoretical comparison between sampling procedures, while the model 

in (3.4) has the intercept for the practical use.  

 

The variance of the H-T estimator, given by Horvitz and Thompson (1952), is  
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�( )
2

1 1 1

(1 )
2 2

N N N N N
iji i

HT i j i j

i i j i i j ii i j

y
Var Y y y y y

ππ

π π π= = > = >

−
= + −∑ ∑∑ ∑∑                         (3.5)  

 

A different expression on the variance of the H-T estimator, suggested by Yates and 

Grundy (1953), is 

 

�( ) ( )
2

1

N N
ji

HT i j ij

i j i i j

yy
Var Y π π π

π π= >

 
= − −  

 
∑∑                                      (3.6)  

 

With respect to inference, the anticipated variance (ANV), introduced by Isaki and 

Fuller (1982), is used as a measure describing the variability between the total and the 

estimator of the total under both the sampling design and superpopulation model. If the 

H-T estimator is used, it simply becomes the average variance (AV), that is, the model 

expectation of the design variance expressed as  

 

�( ) �( )
2

HT HTp
E E Y Y E Var Yξ ξ

   − =    
,                                      (3.7) 

where p
E denotes the expected value under the sampling design, and both Y and �HTY are 

random variables. 

 

Kim, Heeringa, and Solenberger (2006) showed that in cases of 2n = , an optimal 

sampling design ( )p sξ in a set of possible PSπ sampling designs that minimize the AV in 

(3.7) can be obtained by using one of the following optimization problems:   

 

 Minimize  
1

( )
( )

N N
i j

i j i i j

x x
p s

x x
ξ

α β

= >

+ +
∑∑ ,                                       (3.8) 

or  

    Minimize 
1

1 1 1
( )

N N

i j i j i i

p s
x x x

ξα β
= >

  
− +   

  
∑∑ ,                               (3.9) 

subject to  the linear equality constraints 

  

      ( )
i

i s

p sξ π
∈

=∑ , 1, ,i N= ⋅⋅ ⋅                                            (3.10) 

 

Note that the two objective functions in (3.8) and (3.9) are induced from the 

expressions of �(((( ))))HTVar Y  in (3.5) and (3.6), respectively, and hence a different form of 

�(((( ))))HTVar Y  may yield a different optimization problem. We call these two optimization 

problems composed of (3.8) and (3.10), and (3.9) and (3.10), OP1 and OP2, respectively.  

 

4. New Model-Based PSπ  Sampling 

 
We continue to focus on the design stage for the actual selection of a sample from a 

finite population, rather than the estimation stage. In other words, although the H-T 

estimator does not involve the superpopulation modelξ , we assume the model, and seek 
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to find ( )p sξ
to reduce �(((( ))))HTVar Y  for the finite population as well as �( )HTE Var Yξ

 
 

 for 

the infinite population. 

Here we first derive objective functions different from those in (3.8) or (3.9), and then 

construct different optimization problems by adding (3.10) and additional constraints, as 

seen later.   

 

Theorem 4.1. With the variance formula in (3.5), the AV on the H-T estimator under the 

superpopulation model in (3.4) is  

 

(((( )))) (((( ))))( / ) ( )
N N N

i i i i i j i j

i i j i

X nx x x x x x x x
γδ α αβ β α αβ β2 2 2 2 2

1

1 2 2
= >= >= >= >

− + + + − + + +− + + + − + + +− + + + − + + +− + + + − + + +∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑  

N N

ij

i j i i j

X n n
X N X

x x n nn

α
π αβ β

2 2

2 2

2
1

2 1 1 1
2

= >= >= >= >

− −− −− −− −
+ + ++ + ++ + ++ + +∑∑∑∑∑∑∑∑                       (4.1) 

 

Proof.  Consider the form of the variance of the H-T estimator in (3.5). Since it is 

PSπ sampling, 
i i

npπ = . Then from the first and third terms in (3.5) under the 

superpopulation model, we have  

 

( )N N N
i i

i j

i i j ii

y
E y yξ

π

π

2

1 1

1
2

= = >= = >= = >= = >

    −−−−
−−−−    

    
∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑  

( / ) ( ) ( )
N N N

i i i j

i i j i

X nx E y E y yξ ξ
2

1 1

1 2
= = >= = >= = >= = >

= − −= − −= − −= − −∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑  

(((( )))) (((( ))))( / ) ( )
N N N

i i i i i j i j

i i j i

X nx x x x x x x x
γδ α αβ β α αβ β2 2 2 2 2

1

1 2 2
= >= >= >= >

= − + + + − + + += − + + + − + + += − + + + − + + += − + + + − + + +∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑    (4.2) 

 

For the second term in (3.5), we have 

 
N N

ij

i j

i j i i j

E y yξ

π

π π1

2
= >= >= >= >

    
    
        
∑∑∑∑∑∑∑∑  

( )N N
i j

ij

i j i i j

E y yX

x xn

ξ
π

2

2
1

2

= >= >= >= >

==== ∑∑∑∑∑∑∑∑                                      

( )N N
i j i j

ij

i j i i j

x x x xX

x xn

α αβ β
π

2 22

2
1

2

= >= >= >= >

+ + ++ + ++ + ++ + +
==== ∑∑∑∑∑∑∑∑  

2 2 2
2 2

2 2

2 1 2 1N N N N
i j

ij ij

i j i i j ii j i j

x xX X n
X

x x x x nn n

α αβ
π π β

> >

+ −
= + +∑∑ ∑∑   (4.3) 

 

When the second term in (4.3) is expanded, it gives 

 
2

2

2 1 1N N N N

ij ij

i j i i j ij i

X

x xn

αβ
π π

> >

 
+ 

  
∑∑ ∑∑

2

2

1 1N N N N

ij ij

j i j i j ij i

X

x xn

αβ
π π

≠ ≠

 
= + 

  
∑ ∑ ∑ ∑  

2

2

1 1
( 1) ( 1)

N N

j i

j ij i

X
n n

x xn

αβ
π π

 
= − + − 

  
∑ ∑  

 
1

2
n

X N
n

αβ
−

=                                                   (4.4) 

 

This completes the proof. 
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Corollary 4.1. With the variance formula in (3.5), the AV on the H-T estimator under the 

superpopulation model with 0α = in (3.4) does not depend on
ij

π , and is fixed as  

 

(((( ))))( / )
N N N

i i i i j

i i j i

n
X nx x x x x X

n

γδ β β β2 2 2 2 2

1

1
1 2

= >= >= >= >

−−−−
− + − +− + − +− + − +− + − +∑ ∑∑∑ ∑∑∑ ∑∑∑ ∑∑                        (4.5) 

 

Corollary 4.2. If the superpopulation model in (3.4) is assumed, the minimization of the 

AV on the H-T estimator given in (4.1) is equivalent to minimizing  

 

,

1
( )

N N

i j i i j si j

p s
x x

ξ
> ∈

∑∑ ∑                                                   (4.6) 

 

Proof. In (4.1) only the third term depends on 
ij

π , while the other terms do not depend on 

ij
π , and are fixed. Thus, the minimization of the AV amounts to minimizing (4.5).  

 

Remark 4.1. (4.6) does not depend onα , β , δ , and γ , and it is a linear function of 

( )p sξ . 

 

 Corollary 4.3.  In cases of 2n = , the minimization of the AV on the H-T estimator is 

equivalent to minimizing 

 

1
( )

N N

i j i i j

p s
x x

ξ
>

∑∑                                                   (4.7) 

 

Remark 4.2. As given in (4.7), in cases of 2n = , the minimization of the AV on the H-T 

estimator is reduced to minimizing a simple linear function of ( )p sξ
. (4.7) is the same 

function as Raj (1956) induced to minimize (((( ))))ˆ
HTVar Y under the assumption that 

i i
y xα β= + without the error term. See page 198, Raj (1956). 

 

Result 4.1. Based on (4.7), in cases of 2n = , a simple optimization problem to find 

model-based PSπ sampling design ( )p sξ
, called OP3, can be given by: 

 

Minimize
1

( )
N N

i j i i j

p s
x x

ξ
>

∑∑                                            (4.8) 

 

subject to the linear equality constraints 

 

        ( )
i

i s

p sξ π
∈∈∈∈

====∑∑∑∑ , 1, ,i N= ⋅⋅ ⋅                                              (4.9) 

 

Now we obtain a different AV by using a variance form different from (3.5). 

 

Theorem 4.2. Using the variance expression in (3.6), the AV on the H-T estimator under 

the superpopulation model in (3.4) is  
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(((( )))) (((( ))))
N N N N

i i i j i

i i i j i

X
x x x x x

n

γ γδ
δ α α β1 1

1 1 1

2− −− −− −− −

= = = >= = = >= = = >= = = >

    
− − − +− − − +− − − +− − − +    

    
∑ ∑ ∑∑∑ ∑ ∑∑∑ ∑ ∑∑∑ ∑ ∑∑            

( )N N N N N N

ij ij ij

i j i i j i i j ii j ii

X Nn n

x x X xn x

α β
α π α π β π

2

2 2
1 1 1

2 1 1 1 1
2

= > = > = >= > = > = >= > = > = >= > = > = >

    −−−−
+ − + −+ − + −+ − + −+ − + −    

        
∑∑ ∑∑ ∑∑∑∑ ∑∑ ∑∑∑∑ ∑∑ ∑∑∑∑ ∑∑ ∑∑               (4.10) 

 

Proof.  For (3.6), we may write  

 

�(((( ))))
N N

ij ji
HT i j

i j i i j

yy
Var Y p p

p pn

π
2

2
1= >= >= >= >

        
= − −= − −= − −= − −                      
∑∑∑∑∑∑∑∑                                (4.11) 

 

Since  

ji

i j

yy
E

p p
ξ

2

    
−−−−    

        
( )i i i

i

x x x
p

γδ α β αβ2 2 2

2

2
2= + + += + + += + + += + + + ( ( ) )i j i j

i j

x x x x
p p

α αβ β2 22
− + + +− + + +− + + +− + + +  

(((( ))))j i

i i

i j

x x
X p X x

x x

γ γδ α α β2 2 12 2− −− −− −− −
−−−−

= + += + += + += + + ,                                            (4.12) 

 

we have 

N N
ij ji

i j

i j i i j

yy
E p p

p pn
ξ

π
2

2
1= >= >= >= >

            
    − −− −− −− −                              
∑∑∑∑∑∑∑∑  

N N
ij

i i j

i j i
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The last term in (4.13) can be written in the form 
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(4.14) 

 

Also,     
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This completes the proof. 

 

Corollary 4.4. Under the superpopulation model with 0α = in (3.4), (4.10) reduces to  
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X
x x

n

γ γδ
δ1
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−−−−

= == == == =

−−−−∑ ∑∑ ∑∑ ∑∑ ∑                                               (4.16) 

 

Remark 4.3. (4.16) is different from (4.5), due to the different expressions for the 

variance of the H-T estimator. 

 

Corollary 4.5. Under the superpopulation model in (3.4), minimizing the AV on the H-T 

estimator given in (4.10) amounts to minimizing  
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where 
,

( )ij

i j s

p sξπ
∈

= ∑ . 

 

Remark 4.4. (4.17) depends on α and β , and it is a linear function of ( )p sξ
. 

 

Corollary 4.6. In cases of 2n = ,  the minimization of (4.17) reduces to minimizing   

 

2

1 1 1
2 ( )
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>
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∑∑                                  (4.18) 

 

Result 4.2. The different optimization problem, called OP4, to obtain a model-based 

PSπ sampling design ( )p sξ
, for the case of 2n = , is given by:   
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2

1 1 1
2 ( )

N N

i j i i j ii

p s
x x xx

ξα β
>

  
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∑∑                                 (4.19) 

 

subject to  

 

         ( )
i

i s

p sξ π
∈∈∈∈

====∑∑∑∑ , 1, ,i N= ⋅⋅ ⋅ .                                               (4.20) 

 

 

Remark 4.5. In addition to (4.20), the linear inequality constraints (4.21) can be basically 

added  
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0 ( )
i j

p sξ π π< ≤ , 1, ,j i N> = ⋅⋅ ⋅ ,                                      (4.21) 

 

since the well-known variance estimator � �(((( ))))HTVar Y  in (4.22), given by Yates and Grundy 

(1953) and by Sen (1953) from (3.6), is defined if 
ij

π 0>>>> , and nonnegative if 
i j ij

π π π≥≥≥≥ . 
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∑∑∑∑∑∑∑∑ ,                                (4.22) 

 

Also, (4.23) can replace (4.21).  

 

( )
i j i j

c p sξπ π π π≤ ≤ , 1, ,j i N> = ⋅⋅ ⋅ ,                                     (4.23) 

where 0 1c< < . 

 

Note that the stability of the variance estimator in (4.22) may be improved if c  in 

(4.23) is sufficiently far from 0, as discussed by Hanurav (1967), Nigam, Kumar and 

Gupta (1984), and Rao and Nigam (1992). Thus, the larger value of c is preferred. 

Since 2
i i

pπ = , (4.21) and (4.23) can be respectively expressed in forms 

 

2

4
0 ( ) i jp s x x

X
ξ< ≤ , 1, ,j i N> = ⋅⋅ ⋅                                (4.24) 

 

2 2

4 4
( )i j i j

c
x x p s x x

X X
ξ≤ ≤ , 1, ,j i N> = ⋅⋅ ⋅                                (4.25) 

 

The constraints in (4.24) or (4.25) can be added to OP1, OP2, and OP3, as in OP4.  

 

 

5. Empirical Study 

 
The previous model-based PSπ sampling methods, OP1 and OP2, the suggested 

model-based PSπ sampling methods, OP3 and OP4, and the conventional design-based 

sampling methods of Mizuno (1952), Brewer (1963) and Murthy (1957) were compared 

for the case of n=2. The comparison used 18 small natural populations described in the 

paper of Rao and Bayless (1969). There were originally 20 populations in their paper, but 

2 populations (numbered 6 and 8 in their paper) were excluded because the model in (3.4) 

was not successfully applied. For estimation of the parameters of the superpopulation 

model in model-based approaches, maximum likelihood (ML) estimation and restricted 

maximum likelihood (REML) estimation were used. 

For example, OP3 consists of (5.1), (5.2) and (5.3) or (5.4), and “LP procedure” in 

SAS/OR (2008) was used to find the solution to the model-based sampling design ( )p sξ .  

 

Minimize
1

( )
N N

i j i i j

p s
x x

ξ
>

∑∑                                              (5.1) 

subject to  
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        ( )
i

i s

p s pξ 2
∈∈∈∈

====∑∑∑∑ , 1, ,i N= ⋅⋅ ⋅                                                (5.2) 

and for 0 1c< < , 

2 2

4 4
( )i j i j

c
x x p s x x

X X
ξ≤ ≤ , 1, ,j i N> = ⋅⋅ ⋅                                (5.3) 

 

or for 0c = , 

2

4
0 ( ) i jp s x x

X
ξ< ≤ , 1, ,j i N> = ⋅⋅ ⋅                                (5.4) 

 

 

OP1, OP2, and OP4 denote that only (5.1) in OP3 is replaced by (3.8), (3.9), and (4.19), 

respectively.  

The design-based sampling design ( )
d

p s  for the methods of Mizuno and Brewer was 

calculated by (2.2) and (2.4), respectively. The ( )
d

p s  for Murthy’s method were 

computed as: 

 

(2 )
( )

(1 )(1 )

i j i j

d

i j

p p p p
p s

p p

− −
=

− −
                                              (5.5) 

 

As an illustration, when plotting sampling designs from OP3 and the three design-

based methods by the values of the auxiliary variable (e.g.,
i

x and 
j

x ) for population 11 in 

their paper on a three-dimensional graph, we can know that there is a clear difference 

between the model-based and design-based sampling methods. The sampling designs 

from model-based sampling using OP3 with c = 0 are scattered, while those from the 

methods of Mizuno, Brewer, and Murthy tend to concentrate. This causes a smaller 

variance for model-based sampling and a larger variance for design-based sampling. In 

contrast, the spread of sampling design from model-based sampling using OP3 with 

c = 0.5 and that from the design-based sampling methods are more similar, yielding more 

equal variances under the different methods. Also, it seems that there is a trade-off 

between the reduction of the variance and the stability of the variance estimator. The 

larger value of c indicates the larger stability of the variance estimator in (4.23). When 

the value of c is relatively low, sampling designs obtained from model-based sampling 

method using OP3 tend to be dispersed, resulting in a large reduction in variance, 

compared to the cases where c = 0.4 or c = 0.5.  Moreover, with respect to any value of c , 

model-based sampling using OP3 gives a smaller variance than the three design-based 

sampling methods. In addition, it is flexible in terms of c . If one pursues the larger 

variance reduction rather than the stability of the variance estimator, using a lower value 

of c may be appropriate. But if we prefer the stability of the variance estimator, a higher 

value of c can be used, but for the price is the larger variance. Anyway, it would offer an 

optimal sampling design under the chosen constraints on the value of c .      

Table 1 shows the summary on results of empirical comparison on the relative 

efficiency (RE) for 18 populations for model-based sampling methods using OP1, OP2, 

OP3, and OP4 with c = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and the three design-based sampling 

methods. Note that those optimization problems were infeasible for the cases with c = 0.6, 

0.7, 0.8, and 0.9. The details on Table 1 are illustrated as follows:  

For example, “OP1 M” in the table denotes OP1 consisting of the estimates of the 

model from ML estimation, while “OP1 R” indicates OP1 by the estimates from REML 

estimation.  Here, the RE for model-based PSπ sampling is denoted by  
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∑∑∑∑∑∑∑∑  , which is the variance of the estimate of the 

population total under the probability proportional to size (PPS) sampling with 

replacement.  

 

The REs for the design-based PSπ sampling methods of Mizuno or Brewer are also 

computed by (5.6), and with a distinction, the REs are denoted by
,d PS

RE π
 instead 

of
, PS

REξ π
. The RE for Murthy’s method, which is a non- PSπ sampling method, is 

calculated by: 
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    According to the empirical study of Rao and Bayless (1969), for 18 populations, 

PPS sampling with replacement always had a larger variance than Brewer’s method. Also, 

it is theoretically clear that (((( )))) (((( ))))ˆ ˆ
M PPSVar Y Var Y<<<< .  

The frequencies in column “f” in the table denote the number of populations where   

  

, ,PS d PS
RE REξ π π>                                                      (5.9) 

or   

 

, PS M
RE REξ π >                                                        (5.10) 

 

For example, the first “16” in terms of “OP1 M” and “Mizuno” in the column of “f” in 

the table indicates that of 18 populations, 16 populations satisfy (6.9). More specifically, 

for 16 populations, the REs for model-based sampling using “OP1 M” are larger than in 

design-based sampling of Mizuno, whereas for 2 populations they are smaller. 

The frequencies in “f1,” “f2,” and “f3” in the table respectively denote the number of 

populations that are   

 

       
, ,

0 10
PS d PS

RE REξ π π< − ≤                                               (5.11)  

or   

,
0 10

PS M
RE REξ π< − ≤ ,                                                (5.12) 

 

, ,
11 20

PS d PS
RE REξ π π≤ − ≤                                              (5.13)  

or   

,
11 20

PS M
RE REξ π≤ − ≤ ,                                                (5.14) 

and  

, ,
21

PS d PS
RE REξ π π− ≥                                                 (5.15) 
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or   

,
21

PS M
RE REξ π − ≥ .                                                (5.16) 

 

Here, (5.11) or (5.12), (5.13) or (5.14), and (5.15) or (5.16) denote that the REs on 

model-based sampling are respectively “slightly better,” “much better,” and “very much 

better,” than those on design-based sampling.  Note that f = f1 + f2 + f3. For example, the 

first “2” in the column of “f1,” the first “3” in “f2,” and the first “11” in “f3” in the table 

indicates that of 16 populations in “f,” 2 populations satisfy (5.11), 3 populations do 

(5.13), and 11 populations do (5.15).  

The findings from Table 1 are summarized as follows: 

 

(1) Model-based sampling methods (using OP1 M, OP1 R, OP2 M, OP2 R, OP3, OP4 M, 

and OP4 R) are consistently more efficient than Mizuno’s method, regardless of the value 

of c . For at least half of 18 populations, they show “very much better” efficiency.   

 

(2) When the value of c is low, model-based sampling methods are overall more efficient 

relative to Brewer’s method. For some populations, when the value of c is low, the 

methods using OP1 or OP3 show “very much better” efficiency. Model-based sampling 

using OP3 consistently shows a better efficiency than the other model-based methods.  .      

 

(3) Model-based sampling method using OP3 compares favorably with the method of 

Murthy, when the value of c is low, and for some populations, it has “very much better” 

efficiency as well as “much better” efficiency. Other model-based sampling methods are 

less efficient than the one of Murthy. 

 

(4) ML estimation and REML estimation give different estimates of the model in (4.3), 

and it seems that model-based methods using optimization problems involving these 

different estimates of the model may yield different efficiencies.  

 

(5) For model-based sampling methods, there is a trade-off between the reduction of 

variance and the stability of the variance estimator because the REs tend to be reduced as 

the value of c is increased. 

 

7. Conclusion Remarks 

 
We have suggested two model-based PSπ sampling strategies using the optimization 

problems of OP3 and OP4. The method using OP3 is empirically preferable to the 

method using OP4, as well as the previous methods using OP1 and OP2. Compared to 

others, OP3 is the simpler optimization problem, and it does not depend on the 

parameters in the superpopulation model.  

Those four model-based PSπ sampling methods are flexible in terms of the choice of 

sampling design because one may choose the value of c , which is related to the stability 

of variance estimator. But one should be careful in choosing the value, since there is a 

trade-off between the variance reduction and the stability of the variance estimator. With 

regard to the efficiency, regardless of the value of c , the model-based methods are shown 

empirically to be superior to design-based PSπ sampling of Mizuno, and when the value 

of c is low, they are preferable to the one of Brewer. Also, in such a case, the method 

using OP3 is comparable to the method of Murthy. 
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