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Abstract

Aggregated Relational Data (ARD), originally introduced by Killworth et al. (1998) as
“How many X’s do you know” survey questions, are a common tool for observing social
networks indirectly. Previous methods for ARD estimate specific network features, such
as overdispersion. We suggest a more general approach to understanding social structure
using ARD based on a latent space framework. We first show ARD contain information
about latent structure by apply a primitive latent-space model to data from McCarty et al.
(2001). This example also demonstrates the utility of these models for understanding the
networks of individuals who are difficult to reach with traditional surveys, such as those
with HIV/AIDS, the homeless, or injection drug users. We then suggest using latent space
models as a unified framework for inference with ARD by demonstrating that the network
features estimated using previous methods can be represented as latent structure.
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1. Introduction

Network models are a broad class of models that describe the relationships between
individual actors or units. Network models have been applied to, among other
things, estimate the size of populations that are difficult to count directly (persons
with HIV/AIDS, commercial sex workers, etc.), describe the sexual behavior of
adolescents, and to estimate the spread of disease. Social networks are network
models where each actor is a person, or ego, and each tie or link in the network
represents a type of relationship (knowing, trusting, etc.) between the actor and
another member of the network, the alter.

The way that individuals form ties in a network depends on certain properties
of the individual and of the network. Many networks share common properties,
such as homophily of personal characteristics or clustering. Homophily of personal
attributes means that actors who are more similar are more likely to form ties
(males to know males, etc.). Homophily describes the structure of relationships
between dyads—pairs of actors. Identifying clusters of multiple actors is also a
common goal for network analysis, though there are few procedures to accomplish
this formally. Clustering can take place because of unobserved characteristics of
the ego, the alter, or of the network. Clustering can also develop because of the
structure of the network or the position of the ego in the network (a preference
for popular actors, for example). Network properties, or structure, impact the type
and frequency of interactions between individuals. Any estimation based on the ties
(the size of a particular population, for example) will be biased unless this structure
is modeled appropriately.

One recent attempt to learn about network structure is latent space models (Hoff
et al., 2002). The latent space model assumes that the actors in the network form

∗Department of Statistics, Columbia University, Room 1005 SSW, MC 4690, 1255 Amsterdam
Ave., New York, NY 10027

Section on Survey Research Methods – JSM 2009

4477



ties independently given their (latent) position in some unobservable ‘social space.’
More formally, say yij = 1 if there is a tie between individuals i and j and 0
otherwise. Then, assume i and j have positions ~zi and ~zj in an unobserved social
space. We can then model the propensity of a tie between the two individuals as a
function of how close they are in the social space:

P (yij = 1|d∗ij) ∝ f(d∗ij). (1)

f(·) is a nonlinear, non-increasing function of d∗ representing the distance between
i and j so that actors who are closer together in the unobserved ‘social space’ are
more likely to form a tie. The presence/absecence of a tie between i, j is then
independent of the other ties in the network given the positions of i and j in the
latent space. Hoff et al. (2002) pioneered the latent space approach which was
extended to include actor-specific attributes in Hoff (2005). Handcock et al. (2007)
extended the latent space approach to include clustering using multivariate normal
mixture models.

If a network consists of n actors, then the data required for one of these latent
space models would be a n× n matrix of relationships between each pair of actors
in the network. Constructing the data, therefore, requires that all members of the
network be included in the data1. Such specific data requirements limit the appli-
cation of these methods to a small number of highly specialized datasets collected
where the entire network of an actor is available (children in schools, etc.).

When data cannot be collected about every member in the network, aggregated
relational data are an informative option. Aggregated relational data questions ask
respondents “How many X’s do you know,” and are easily integrated into standard
surveys. Here, X, represents a subpopulation of interest. These subpopulations
often include first names (2006 GSS, McCarty et al. (2001)). First names are par-
ticularly useful in learning about network structure since many aggregate features
of alters with a given name are available from the Census Bureau and Social Se-
curity Administration. Other potential X ′s may be of interest in their own right.
McCarty et al. (2001) also asks about individuals who are HIV positive and the
UNDP currently sponsors several projects that ask about behaviors they deem risk
factors for contracting HIV/AIDS. Both McCarty et al. (2001) and the 2006 GSS
module also asked about particular occupations and life situations.

If X is ‘Rose’, for example, then this is similar to asking the respondent if they
know each person on a list of the one-half million Rose’s in the U.S. If knowing
someone named Rose were entirely random, then each respondent would be equally
likely to know each of the one-half million Rose’s on the hypothetical list; that is,
each respondent on each Rose is a Bernoulli trial with a fixed success probability.
Such independence assumptions are invalid because of network structure. For ex-
ample, since Rose is most common amongst older females and people are more likely
to know individuals of the same age and gender, older female respondents are more
likely to know a given Rose than older male respondents. Statistical models are
needed to understand how these responses change based on homophily, as in this
example, and on more complicated network properties.

Aggregated relational data are typically used to answer questions about specific
properties of the network, such as estimating the size of an individual respondent’s

1If a member of the network is not included in the sociomatrix, the result is a missing data
problem with highly dependent data. The data lack not only the potential ties that the missing
ego would form but also the missing ties that all of the other alters in the network could have
formed with the missing ego.
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network or estimating the size of a particular population2. In population research,
aggregated relational data are used to estimate the size of populations that are
difficult to count directly (commercial sex workers, individuals with HIV/AIDS for
example). The scale-up method, an early method for aggregated relational data,
is intuitive and accessible but does not account for network structure. As noted
above, assuming independent responses induces bias in the individuals’ responses.
Since estimates of hard-to-count populations are then constructed using responses
to aggregated relational data questions, the resulting estimates are also biased (Kill-
worth et al., 1998; Bernard et al., 1991). Considering again the example of Rose,
if a researcher wanted to estimate the size of a respondent’s network based on how
many people named Rose she/he knew, then the researcher would over-estimate the
network size of respondents who were older and female and under-estimate the size
of the network of young males.

Using observations from various applications of the scale-up method Zheng et al.
(2006) estimate overdisperson, or super-Poisson variance due to social structure, in
networks using aggregated relational data. Higher overdispersion indicates it is less
likely that an individual would be connected with only one member of a subpopula-
tion; rather, the ego likely has ties to either no members or to several. Estimating
overdispersion is also methodologically significant because it allows researchers to
learn about specific structural characteristics of the network using only a very small
subset of all of the information in the network captured in aggregated relational
data. McCormick et al. (2009) model the non-random mixing between different
groups of individuals by allowing the propensity of a tie to change based on ob-
served characteristics of the ego and the potential alters. McCormick et al. (2009)
use this information to more accurately estimate the size of an individual’s social
network. These more accurate estimates can be used to better estimate the size
of hard-to-count populations. As a byproduct, McCormick et al. (2009) estimates
the rate of social mixing between groups. A version of this model can also estimate
the rate of social mixing between hard-to-count groups and other fractions of the
population.

Despite recent progress, models for ARD lack the unified framework for repre-
senting social structure enjoyed by latent space models with complete network data.
Hoff et al. (2002) define the ‘social space’ in Equation (1) as “a space of unobserved
latent characteristics that represent potential transitive tendencies in network re-
lations.” This broad conceptualization allows multiple types of dependence to be
represented naturally though the geometry of the latent space.

We propose viewing the social structure captured using ARD through the lens
of the latent space described in Equation (1). When the entire network can be ob-
served, latent space models efficiently represent the network’s complicated depen-
dence structure as a much less complicated geometry of the latent space. Adopting
such a perspective for ARD would allow features estimated by current methods for
ARD, such as overdispersion and non-random mixing, to be represented simulta-
neously and alongside additional information regarding the relative social positions
of the respondents and subpopulations of interest. A latent space perspective for
ARD would also represent multiple subpopulations in the same space, facilitating
easy comparison of the underlying structure of these subpopulations and allowing
researchers to make inferences about multiple types of dependence and relational
structure using a single modeling framework.

2Notice that both of these characteristics are easily determined if the entire network is observ-
able, yet this is rarely the case.
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We first provide evidence that latent structure can be extracted from ARD using
a latent space model which uses as a starting point the Latent Non-random Mixing
Model of McCormick et al. (2009) in Section 2. In Section 3 we further specify that
the latent structure observed in the model proposed in Section 2 captures previously
explored network features and can thus be conceptualized as a unified framework for
inference in ARD. Section 4 discusses possible extensions and model specification.

2. Estimating Hidden Profiles

In population studies, even basic demographic information about certain subpopu-
lations is unknown. The demographic make-up of individuals who are HIV positive
has been extensively studied in the U.S. but, despite its importance, remains an
open question in many places. This demographic information conveys social struc-
ture and can be used to form a simple latent space. We develop a two-dimensional
latent space model to estimate hidden gender and age profiles. We establish the
validity of the method by estimating the hidden profiles of four populations which
have known structure in the U.S. population.

In their Latent Non-random Mixing Model (LNRM Model), McCormick et al.
(2009) model the propensity for a respondent from an ego group, e to know a
member of an alter group a as:

yik ∼ Neg-Binom(µike, ωk)
where

µike = dif
(∑A

a=1 m(e, a)h(a, k)
)
.

(2)

and di is the degree of person i, e is the ego group that person i belongs to, h(a, k)
is the relative size of name k within alter group a (e.g., 4% of males between ages 21
and 40 are named Michael). McCormick et al. (2009) assume h(a, k) to be known
and is the number of individuals in alter group a who are also in subpopulation k,
Nak, divided by the number of people in alter group a, Na. The mixing coefficient,
m(e, a), between ego-group e and alter-group a is,

m(e, a) = E

(
dia

di =
∑A
a=1 dia

∣∣∣∣∣ i in ego group e

)
(3)

where dia is the number of person i’s acquaintances in alter group a. That is, m(e, a)
represents the expected fraction of the ties of someone in ego-group e that go to
people in alter-group a. For any group e,

∑A
a=1m(e, a) = 1.

Therefore, the number of people that person i knows with name k, given that
person i is in ego-group e, is based on person i’s degree (di), the proportion of people
in alter-group a that have name k, (h(a, k)), and the mixing rate between people
in group e and people in group a, (m(e, a)). Additionally, if we do not observe
non-random mixing, then m(e, a) = Na/N .

In addition to µike, the latent non-random mixing model also depends on the
overdispersion, ω′k, which represents the variation in the relative propensity of re-
spondents within an ego group to form ties with individuals in a particular sub-
population k. Using m(e, a) we model the variability in relative propensities that
can be explained by non-random mixing between the defined alter and ego groups.
Explicitly modeling this variation should cause a reduction in overdispersion when
compared to the Zheng et al. (2006) which does not include non-random mixing.
The term ω′k is still present in the latent non-random mixing model, however, since
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there is still residual overdispersion based on additional ego and alter characteristics
that could effect their propensity to form ties.

In Equation (2), the matrix h(a, k) is assumed known. We propose a method for
estimating this information, known as the “hidden profile” of a subpopulation, k,
when it is unknown. If the matrixNak/Na is known for at least some subpopulations,
then we can use this information and the LNRM to estimate the latent structure of
the unknown h(a, k).

2.1 MCMC Algorithm

We propose a two-stage estimation procedure to demonstrate the presence of la-
tent information in ARD. We first use a multilevel model and Bayesian inference
to estimate di, m(e, a), and ω′k using the latent non-random mixing model de-
scribed in McCormick et al. (2009) for the subpopulations where h(a, k) = Nak/Na

is known. Next, conditional on this information, we estimate the hidden profiles for
the remaining subpopulations.

For the estimation of the LNRM model components, we assume that log(di)
follows a normal distribution with mean µd and standard deviation σd. Zheng
et al. (2006) postulate that this prior should be reasonable based on previous work,
specifically McCarty et al. (2001), and found that the prior worked well in their
case. We estimate a value of m(e, a) for all E ego groups and all A alter groups.
For each ego group, e, and each alter group, a, we assume that m(e, a) has a normal
prior distribution with mean µm(e,a) and standard deviation σm(e,a). For ω′k, we
use independent uniform(0,1) priors on the inverse scale, p(1/ω′k) ∝ 1. Since ω′k is
constrained to (1,∞), the inverse falls on (0,1). The Jacobian for the transformation
is ω′−2

k . For the hidden profiles, define 1Ih(a,k) as the indicator of the hidden profiles.
The matrix h(a, k) is defined as Nak/Na when population information is available
(1Ih(a,k) = 0) and entries to be estimated (1Ih(a,k) = 1) are given normal priors
with mean µh(a,k) and standard deviation σh(a,k). Finally, we give noninformative
uniform priors to the hyperparameters µd, µm(e,a), µh(a,k), σd and σm(e,a), σh(a,k).
The joint posterior density can then be expressed as

p(d,m(e, a), ω′, µd, µm(e,a), σd, σm(e,a)|y) ∝
K∏
k=1

N∏
i=1

(
yik + ξik − 1
ξik − 1

)(
1
ω′k

)ξik (
ω′k − 1
ω′k

)yik

×
N∏
i=1

(
1
ω′k

)2

N(log(di)|µd, σd)

×
E∏
e=1

N(m(e, a)|µm(e,a), σm(e,a)) (4)

×1Ih(a,k)
K∏
k=1

A∏
a=1

N(h(a, k)|µh(a,k), σh(a,k))

(5)

where ξik = dif
(∑A

a=1 m(e, a)h(a, k)
)
/(ω′k − 1).

Adapting Zheng et al. (2006) and McCormick et al. (2009), we use a Gibbs-
Metropolis algorithm in each iteration v.

1. For each i, update di using a Metropolis step with jumping distribution
log(d∗i ) ∼ N(d(v−1)

i ,(jumping scale of di)2).
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2. For each e, update the vector m(e, ·) using a Metropolis step. Define the
proposed value using a random direction and jumping rate. Each of the A ele-
ments ofm(e, ·) has a marginal jumping distributionm(e, a)∗ ∼ N(m(e, a)(v−1),(jumping
scale of m(e, ·))2). Then, rescale so that the row sum is one.

3. Update µd ∼ N(µ̂d, σ2
d/n) where µ̂d = 1

nΣn
i=1di.

4. Update σ2
d ∼ Inv-χ2(n− 1, σ̂2

d), where σ̂2
d = 1

n × Σn
i=1(di − µd)2.

5. Update µm(e,a) ∼ N(µ̂m(e,a), σ
2
m(e,a)/A) for each e where µ̂m(e,a) = 1

AΣA
a=1m(e, a).

6. Update σ2
m(e,a) ∼ Inv-χ2(A − 1, σ̂2

m(e,a)), for each e where σ̂2
m(e,a) = 1

A ×
ΣA
a=1(m(e, a)− µm(e,a))2.

7. For each k with a known profile, update ω′k using a Metropolis step with
jumping distribution ω′∗k ∼ N(ω′(v−1)

k ,(jumping scale of ω′k)
2).

We now proceed to estimate the hidden profiles:

8. For each element of h(a, k) where 1Ih(a,k) = 1, update h(a, k) using a Metropo-
lis step with jumping distribution h(a, k)∗ ∼ N(h(a, k)(v−1),(jumping scale of
h(a, k))2).

9. Update µh(a,k) ∼ N(µ̂h(a,k), σ2
h(a,k)/A) for each k where µ̂h(a,k) = 1

AΣA
a=1h(a, k).

10. Update σ2
h(a,k) ∼ Inv-χ2(A − 1, σ̂2

h(a,k)), for each k where σ̂2
h(a,k) = 1

A ×
ΣA
a=1(h(a, k)− µh(a,k))2.

11. For each k where h(a, k) is estimated, update ω′k using a Metropolis step with
jumping distribution ω′∗k ∼ N(ω′(v−1)

k ,(jumping scale of ω′k)
2).

Having h(a, k) for some subpopulations is critical to estimating latent struc-
ture through hidden profiles. Often, h(a, k) can be obtained from publicly available
sources (Census Bureau, Social Security Administration, etc.) for subpopulations
such as first names. McCormick et al. (2009) suggest using first names since they
represent the minimum conceivable possibility of transmission error, when a respon-
dent knows a member of a subpopulation but is unaware of the alter’s membership.
The alter groups where information is available for known h(a, k) also limits the
type of latent structure that can be estimated. McCormick et al. (2009) create alter
groups based on age and gender but note that separating alters based on other fac-
tors (such as race) would provide valuable information. The Census Bureau collects
the information required to conduct such an analysis; however, McCormick et al.
(2009) report that their efforts to obtain the data were ultimately unsuccessful.

2.2 Results

We use data from McCarty et al. (2001) with 1375 respondents and twelve names
with known demographic profiles. These data have been analyzed in several previ-
ous studies and are typical ARD which are becoming increasingly common. The age
and gender profiles of the names are available from the Social Security Administra-
tion. We considered four subpopulation where h(a, k) was not readily available from
public sources: Women who have adopted a child in the past 12 months, members

Section on Survey Research Methods – JSM 2009

4482



Estimating Hidden Profiles
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Figure 1: Estimates of hidden profiles for four subpopulations. The red text
represents males and the blue text females. The estimated profiles are consistent
with contemporary understanding of the profiles of these groups, indicating that
the ARD questions have captured information about this latent strucure

of the Jaycees3, individuals who have HIV/AIDS, and individuals who died in an
auto accident. For some of these subpopulations, we anticipate a particular type of
latent profile. The Jaycee’s for example, should be comprised of mostly of younger
individuals because of the nature of the organization. The goal is thus not to esti-
mate the properties of these particular groups but to demonstrate that ARD contain
information about this latent structure. Figure 1 presents the results for these four
subpopulations. Overall our estimates of hidden profiles correspond to the known
profiles for the U.S. population. For example, a higher proportion of individuals
in the middle age group are Jaycees than in either of the other groups, which is
consistent with the primary age group targeted by the organization. HIV/AIDs
is also most commonly found amongst males in the middle age group, indicating
that this method could also be valuable tool to help epidemiologists and social sci-
ences learn about less frequently studied populations that are typically difficult to
reach using standard surveys. The similarity between previous knowledge about the
profiles of these populations and our estimates indicates that ARD contain a signifi-
cant amount of information about the latent structure of these subpopulations. We
now relate the latent structure contained in ARD to network features previously
estimated using ARD.

3. Latent space representations of network features

Zheng et al. (2006) and McCormick et al. (2009) both use aggregated relational
data to explore specific aspects of network structure that impact the ties formed

3The United States Junior Chamber, or Jaycees, is a professional development and civic en-
gagement organization for individuals 18 to 41 years old.
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by actors. We demonstrate how network features estimated by current models for
ARD can be expressed as manifestations of latent structure using simulation studies.
These simulation results also yield insights into additional informative features of
inference based on latent structure. Conceptualizing social structure in ARD from a
latent space perspective provides a single framework for inference for multiple types
of network features and structure.

3.1 Simulation Studies

In this section we consider various simulated representations of latent structure and
explore both how that structure impacts existing estimates of network features and
the additional information the latent space perspective provides. In the following
simulation studies we simulate at the population level. Rather than simulating
ARD directly using a model such as Zheng et al. (2006) or McCormick et al. (2009),
we first simulate the latent positions of the entire population. We then allow the
propensity of two members to form a tie to depend on their distance in this latent
space, consistent with Hoff (2005). After simulating the relationships of the entire
population we tally the appropriate ties for ARD.

Specifically, we use the following algorithm for simulation:

1. Simulate a population of N individuals on the unit box (2-dimensional latent
space) and K subpopulations

2. For each individual, set member/non-member status in subpopulation k ran-
domly based on the proximity of the individual to the group’s center and the
group’s variance

3. Sample n individuals

(a) For each individual in the sample compute d∗i,j∈Gk

(b) yi,j∈Gk
is a Bernoulli trial with success probability proportional to d∗i,j∈Gk

(c) ARD data is
∑
j∈Gk

= yi,j∈Gk

4. Use McCormick et al. (2009) or Zheng et al. (2006) to estimate properties of
the simulated network

Throughout we simulate populations with one-million members and sample 1000
individuals to compute ARD.

In exploring network features commonly estimated from ARD, consider first
overdispersion. Overdispersion is the frequency of people who know no members
of the subpopulation compared to the frequency who know exactly one. Increasing
overdispersion means respondents are less likely to know only a single member of a
subpopulation and mathematically corresponds to super-Poisson variation.

Figure 3.1 displays the simulated latent space and histogram of ARD for sub-
populations with three variances. In the top panel the light blue cloud representing
members of the subpopulation is tightly packed around the dark point which rep-
resents the subpopulation center. Thus, individuals who are near the center of the
subpopulation are close to virtually every member of the subpopulation, indicat-
ing a high likelihood of a tie with many members of the subpopulation. The vast
majority of population members are far from the center, and hence virtually every
member, of the subpopulation, making a tie unlikely. The histogram of ARD is
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Figure 2: Simulated latent spaces and histograms of ARD for subpopulations with
different latent variances. The light blue shading represents members of the subpop-
ulation with center at the dark point. As the latent variance of the subpopulation
grows larger the histogram of ARD responses are less concentrated at zero and
extremely high counts, indicating lower overdispersion.
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consistent with this patern with a large mass at zero and additional mass far to the
extreme end of the number of population members known. In the bottom panel,
in contrast, the subpopulation members are scattered throughout the latent space.
The increased scatter means that more members of the population are likely to
be close to members of the subpopulation and, thus, form ties. The histogram of
the ARD reflect the difference and have less mass at the extremes and more values
between two and five.

The perceived differences in the histograms of ARD also yield differences in
estimated overdispersion. Figure 3 presents estimated overdispersion as a function
of the variance of the subpopulation of interest. As predicted by observing the
structure of relationships in the latent space, overdispersion increases as a function
of the variance of the subpopulation in the latent space.

We next consider non-random mixing or unequal propensity of a tie based
on characteristics of the ego and alter groups. McCormick et al. (2009) explore
non-random mixing based on observed characteristics of the ego and alter groups,
yet posit that additional information about mixing could be unobserved. We also
demonstrated how ARD holds information about these latent profiles in Section 2.

Age and gender are two natural dimensions for our simulated two-dimensional
latent space. Suppose age is increasing from bottom to top along the y-axis and
gender is split from male on the left of 0.5 and female to the right on the x-axis.
The position of the centers of the groups in Figure 3.1 are spaced equally along
the grid with variances that are equal and small. Respondents who are near one
of the subpopulations are in the same age and gender group as the respondents in
the population and are likely to know many members of the subpopulation because
of the small variance. They are also unlikely to know members of subpopulations
corresponding to vastly different ages or the different genders since those subpopu-
lations are comparatively farther away. There is also little ambiguity amongst the
subpopultations with each being tightly packed and spaced to ensure subpopulation
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Figure 4: Simulated latent space and non-random mixing. Age is increasing from
bottom to top along the y-axis and gender is split from male on the left of 0.5 and
female to the right on the x-axis.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simulated Latent Space

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Male AltersFemale Alters
Fraction of Network

0.8 0.4 0 0.4 0.8

61+

41−60

21−40

Under 20

Alter Groups

Female Egos

Male AltersFemale Alters
Fraction of Network

0.8 0.4 0 0.4 0.8

Youth

Adult

Senior

Male Egos

Figure 5: Simulated latent space and non-random mixing. Age is increasing from
bottom to top along the y-axis and gender is split from male on the left of 0.5 and
female to the right on the x-axis.

members unambiguously fall into a single age range and gender.
The right panel in Figure 3.1 represents the mixing matrix from Equation 2.

Each tree in the figure represents a gender of egos with each gender broken into
three age categories. Within each ego category we have a block of alter groups
where the length of each bar represents the fraction of the network and the total
length of the bars sums to one. We see that nearly the egos’ networks are comprised
entirely of alters of their age and gender. Thus, the nearly perfect segregation we
observe in the mixing matrix is a manifestation of the structure created in the
latent space. A model which estimated such a latent space would have provided
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Figure 6: Simulated latent space and non-random mixing. Age is increasing from
bottom to top along the y-axis and gender is split from male on the left of 0.5 and
female to the right on the x-axis.

similar information to that obtained from estimating the mixing matrix as well as
provided additional information about which subpopulations are similar based the
latent positions of their centers.

To further understand the implications of latent structure for non-random mix-
ing, Figure 3.1 maintains much of the separation of Figure 3.1 for young individuals
but with subpopulations having increasingly similar latent positions as age increases.
The similar latent positions of the groups indicates that some older respondents will
have latent positions similar to members of multiple subpopulations. Further, these
subpopulations no longer reside entirely within one gender with members of the
three subpopulations for the most senior individuals having latent positions which
are neither definitively male or female. Individuals with a latent position near a
subpopulation, therefore, are no longer near members of only a single age or gender
group, resulting in less segregated estimates of mixing. This latent structure man-
ifests as larger estimates of mixing between individuals of different genders in the
right panel of Figure 3.1.

As a final example, Figure 3.1 contains the same number of subpopulations as the
previous two examples but vastly different latent structure. These subpopulations
form two distinct groups where subopupulations within each group have very similar
latent position and very dissimilar positions between groups. The two segregated
groups are most similar to young males and senior females. Thus, young male
respondents have very high propensity to know members of the subpopulations in
their corner and low propensity to know respondents in the predominantly senior
female cluster. In the block for young male ego’s in Figure 3.1, the mass for younger
alters is entirely on the male side of the figure. For senior alters, in contrast, the mass
shifts entirely to the female side, demonstrating again that the non-random mixing
estimated by McCormick et al. (2009) can be conceptualized as a manifestation of
a particular type of latent structure.

In addition to encompassing previously estimated network features, a latent
space representation also gives information about the relationship between groups.
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Neither previous models using ARD nor other network sampling techniques, such
as Respondent-Driven Sampling (Salganik and Heckathorn, 2004), provide such in-
formation. Comparing the relative shape and position of the alter groups gives
information about the latent characteristics of the alters. Groups with more com-
pact latent representations, for example would be more homogenous than groups
with larger ellipses. Ellipses with similar position also have similar latent profiles.
The subpopulations with similar latent position near the top of the latent space in
Figure 3.1 are more similar than the groups along the bottom whose latent positions
are farther apart.

4. Conclusion

We propose a unified framework to conceptualize social structure using aggregated
relational data. The method offers the flexibility of fielding questions on standard
surveys but provide detailed information about clustering and social structure that
previously required observing the entire network. For a given ego, we say that the
propensity for this individual to form ties with members of a particular alter group
is independent given the position of the ego and the alter group in a d dimensional
latent social space. Here, the alter groups are the X ′s from the aggregated relational
data questions. We model the expected number of ties to alter group a for a given
respondent as a function of the size the respondent’s network, the size of the alter
group a and the distance between the respondent and the center of the alter group
in the unobserved social space.

A latent space framework for ARD would express information about network
features previously estimated for ARD (such as overdispersion or non-random mix-
ing) and provide additional information. An appealing characteristic of the latent
space approach is that this additional information comes from the structure of the
geometry of the latent space. The position of individuals and the position and shape
of groups in the latent space gives us information about underlying social structure.
Since we only observe members of the alter groups indirectly we must adapt the
standard latent space representation. Instead of considering the position and dis-
tance between individuals, we suggest focusing on the distance between individual
respondents and a group of alters, as in Section 3.

When we estimate these distances for all of the respondents, they give two types
of information. First, we can estimate the position of the center, represented by the
dark dots in the figures in Section 3, and the spread of each of the subpopulations. In
our examples we have considered only the diagonal covariance matrices, leading ot
our circular representation. In practice, however, there could be correlation between
the latent dimensions and thus the shape would likely be ellipses. Comparing the
relative shape and position of the alter groups gives information about the latent
characteristics of the alters. Groups with smaller ellipses, for example would be
more homogenous than groups with larger ellipses. Ellipses with similar position
also have similar latent profiles. This would provide a much more detailed version
of the latent information described in Section 2. In Figure 1 the HIV/AIDS group
represents a higher proportion or males, indicting that the center of the group in a
more fully featured latent space would be located closer to the group of alters named
Michael than to the group named Stephanie, if names were used as subpopulations
for example. Since individuals with HIV/AIDS are predominantly male the latent
profiles of individuals with HIV/AIDS should be more similar to that of Michaels
than that of Stephanies.
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Applying a latent space approach to aggregated relational data would make
information about more complicated network structure, such as clustering, available
to the multitude of researchers who wish to answer questions related to networks
but cannot practically or financially collect data from the entire network. Among
these researchers would be individuals interested in estimating the size of hard-to-
count populations or in learning about how these populations interact with other
groups. Models generated under a properly specified latent space framework can
also be used to generate null distributions for empirical tests of hypotheses about
specific network features. Using the latent space for model inference using network
data is a novel contribution of our work since previous applications of the latent
space approach (such as Hoff et al. (2002); Hoff (2005); Handcock et al. (2007))
used the latent space as an exploratory tool, not for modeling or inference.

This method would contribute to sociologists’ understanding of how particular
groups interact and how characteristics of an ego’s network influence the types of
people the individual interacts with. The framework we present here is not specific
to a particular type of relationship. The method could be applied to networks based
on acquaintanceship, trust, or specific a action or behavior (sexual contact, etc.).

Our framework also holds potential for researchers in other disciplines who seek
to learn about properties of a network using standard surveys. Since our method
will produce estimates of individual network size that have less bias than previous
methods, we can use our method to develop more accurate estimates of the sizes of
hard-to-count populations. Further, estimating the latent position of these groups
will give information about how the characteristics of these groups compare with
others, information that is not available from any previous methods.

A natural extension of this paper is the explicit modeling of latent structure
in ARD. We have presented evidence of latent structure and hypotheses about
the relationship between latent structure and specific network features. In doing
so, we have suggested the latent space to unify inference in ARD; yet, we have not
presented a formal model. Developing this model presents the familiar identifiability
and model specification challenges associated with latent space modeling but is
essential for the framework presented here to be of practical value to the social
science community.

References

Bernard, H. R., Johnsen, E. C., Killworth, P., and Robinson, S. (1991). Estimating
the size of an average personal network and of an event subpopulation: Some
empirical results. Social Science Research, 20:109–121.

Handcock, M., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering
for social networks. Journal of the Royal Statistical Society, A, 170:301–354.

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the
American Statistical Association, 100:286–295.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to
social network analysis. Journal of the American Statistical Association, 97:1090–
1098.

Killworth, P. D., McCarty, C., Bernard, H. R., Shelly, G. A., and Johnsen, E. C.
(1998). Estimation of seroprevalence, rape, and homelessness in the U.S. using a
social network approach. Evaluation Review, 22:289–308.

Section on Survey Research Methods – JSM 2009

4490



McCarty, C., Killworth, P. D., Bernard, H. R., Johnsen, E., and Shelley, G. A.
(2001). Comparing two methods for estimating network size. Human Organiza-
tion, 60:28–39.

McCormick, T. H., Salganik, M. J., and Zheng, T. (2009). How many people do
you know? : Efficiently estimating personal network size. To Applear, Journal
of the American Statistical Association.

Salganik, M. J. and Heckathorn, D. D. (2004). Sampling and estimation in hidden
populations using respondent-driven sampling. Sociological Methodology, 34:193–
239.

Zheng, T., Salganik, M. J., and Gelman, A. (2006). How many people do you know
in prison?: Using overdispersion in count data to estiamte social structure in
networks. Journal of the American Statistical Association, 101:409–423.

Section on Survey Research Methods – JSM 2009

4491


