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Abstract 
Calibration estimators, such as a poststratified estimate of a population proportion, use 
auxiliary data to improve the efficiency of survey estimates.  Traditionally, the control 
totals used in the poststratification are assumed to be population values with no sampling 
variance. Often, however, estimates from other surveys are used because the population 
controls either do not exist or are not readily accessible. In this situation, many 
researchers apply traditional variance estimators to cases where the control totals are 
estimated, thus assuming that any additional sampling variance associated with these 
controls is negligible. We compare the mean square error for linearization and replication 
variance estimators of proportions when the uncertainty in the control totals is either 
addressed or ignored. Illustrations are given of the effects of different levels of variability 
in the estimated controls on the overall variance estimates.  Comparisons are also made to 
previous work conducted in this area by the authors on estimated population totals. 
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1. Introduction 
 
Poststratified estimators, a specific type of calibration estimator (Deville & Särndal 
1992), are used in a variety of surveys as a method to reduce variances or to correct for 
frame deficiencies.  With this method, sampling weights are adjusted (i.e., benchmarked) 
so that they sum to a set of G (G ≥ 1) poststratum totals.  Gains in efficiency are best 
when the variables used to define the poststrata are associated with the set of key 
variables collected in the survey.   
 
Frame deficiencies such as undercoverage are of particular interest to the research 
presented here.  Undercoverage occurs when the sampling frame fails to contain all units 
for the population under study (e.g., Särndal, Swensson, & Wretman 1992; Kott 2006).  
For example, data collected from January to December 2007 through the U.S. National 
Health Interview Survey (NHIS) indicate that coverage rates for a landline telephone 
survey vary greatly by state, as well as region of the country.  Approximately five percent 
of Vermont households were estimated to have only wireless-phone usage in comparison 
to 26.2 percent of households in Oklahoma (Blumberg et al. 2009).  
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A primary assumption with poststratification is that the control totals used in the weight 
adjustments are either true population values known without error, or are estimated from 
an independent, highly precise survey that is much larger than the survey requiring 
poststratification.  In some cases, however, these controls are estimates obtained from 
other surveys which possess a non-negligible sampling variance.  For example, there are 
efforts to calibrate Web panel surveys to separate, higher-quality reference surveys that 
are not much larger than the panel surveys themselves (e.g., Terhanian, et al. 2000). 
 
Variance estimators have been developed for poststratification under the population 
control total assumption.  Many researchers apply this type of formula even though the 
controls are estimated.  The tacit assumption is that any additional variance associated 
with these controls is negligible and can be ignored.  Currently, this assumption can not 
be validated as reasonable.  We label the methodology which properly accounts for the 
estimated controls as estimated-control (EC) poststratification. 
 
The goal of our research is to develop and evaluate estimators for complex sampling 
designs under EC poststratification.  In this paper, we focus specifically on the estimated-
control poststratified (ECPS) estimator of a population mean calculated as the ratio of 
two estimated totals for a prototypical complex survey design.  The data for the survey 
requiring poststratification is assumed to be collected from a two-stage design where mAh 
first-stage sampling units are selected with replacement from within H design strata.  
Only a random sampling design is assumed for the source of the estimated poststratum 
totals.  We begin in section 2 with a brief summary of the research to date on 
poststratification and provide an explicit definition of the ECPS mean.  Through 
theoretical development (section 3) and a simulation study, we compare the properties for 
variance estimators developed for the ECPS with variance estimators chosen under the 
naïve “population control total” assumption.  Both linearization and replication variance 
estimators are examined.  Illustrations are given of the effects on variances of different 
levels of precision in the estimated control totals.  The set-up for the simulation study is 
provided in section 4, followed by a summary of the results (section 5).  We compare the 
results presented here with those derived from prior research on ECPS totals.  The paper 
is concluded with a summary of future research in this area.   
 

2. Estimated-Control Poststratified Estimator 
 
The general form of a poststratification estimator can be described as a linear weighting 
estimator (Estevao & Särndal 2000).  An estimated population total of a variable y is 
ˆy k kk st w y∈=∑ , where the poststratified weight (wk) for the kth unit in the random 

sample s is a function of the design weight 1
kπ
−  and a poststratification-adjustment factor 

ka , also known as a g-weight (Särndal, Swensson, & Wretman 1992).  Suppose that the 
finite population U from the sample s is randomly drawn can be divided into g =1, ..., G 
mutually exclusive and exhaustive poststrata.  Then, the 'ka s  are calculated to satisfy the 
following set of constraints:  

ˆ=N N     (1) 

where ( )1
ˆ ˆ ˆ, , GN N ′=N … , a vector of survey estimated poststratum counts; 

1ˆ
g

g k kk sN a π −
∈=∑ , the estimated count for poststratum g defined as the sum of the 
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poststratified weights for members of that poststratum, i.e., gk s∈ ; and 

( )1, , GN N ′=N … , a vector of population poststratum counts. 
 
The formula for a poststratified estimator of a population total of a variable y, under the 
potentially naïve population control total assumption, is defined as 
 1ˆ ˆˆyNP A Ayt −′= N N t  (2) 

where ( )1ˆ ˆ ˆ, ,Ay Ay AyGt t ′=t … , a G-length column vector of estimated totals for y by 

poststratum such that 1ˆ
Ag

Ayg k kk st yπ −
∈=∑ , and ( )1ˆ ˆ ˆ, ,A A AGdiag N N=N … , a G-

dimension diagonal matrix with 1ˆ
Ag

Ag kk sN π −
∈=∑ .  The subscript A identifies 

estimates calculated from the analytic survey, a term we reserve for the survey requiring 
poststratification.  The estimator of the population mean is thus defined as   

 
ˆ

ˆ yNP
NP

t
y

N
=  (3) 

where ggN N=∑ , the size of the finite population U. 

 
Sometimes, however, the population counts are unknown and must be estimated from a 
benchmark survey.  For these situations, we define the estimated-control poststratified 
(ECPS) estimator of a population total as 
 1ˆ ˆ ˆˆyP B A Ayt −′= N N t , (4) 

by substituting N in expression (2) with ( )1
ˆ ˆ ˆ, ,B B BGN N ′=N … , a vector of poststratum 

totals estimated from the benchmark survey, i.e., 1ˆ
Bg

Bg ll sN w−
∈=∑ .  Note that we may 

also express 1ˆ ˆA Ay
−N t  as ( )1 1

ˆ ˆ ˆˆ ˆ, ,A Ay A AyG AGt N t N ′=Y …  so that ˆˆˆyP B At ′= N Y .  The 

subscript B in expression (4) distinguishes the benchmark survey estimates from the 
analytic survey estimates (e.g., ˆAyt ).  The corresponding ECPS estimator of a population 
mean, the interest of our research presented here, is defined as 

 
ˆ

ˆ
ˆ
yP

P
B

t
y

N
= . (5) 

Note that the denominator in (5) is calculated by using expression (4) and yk=1 and 
reduces to ˆ ˆ

B B GN ′= N 1 , a function of the estimated benchmark poststratum counts and a 
G-length vector of ones ( G1 ). 
 

3. Variance Estimators for the ECPS 
 
Variance estimators have been developed for poststratification estimators that use 
population control totals.  The estimated standard errors are calculated using survey 
analysis packages including R® (R Development Core Team 2005); SAS® (2004), Stata® 
(2004), and SUDAAN® (2008).  Taylor series linearization, a variance technique 
available for any real-valued function with continuous first- and second-order partial 
derivatives, is discussed in, for example, Wolter (2007) and Binder (1995).   
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A poststratified estimator, a type of generalized regression estimator (GREG), can be 
expressed in terms of a group-mean regression model with model expectation equal to 

( )M k gE y y= , the mean for population units in poststratum g, and a poststratum-specific 

variance ( ) 2 M k gVar y σ=  (see., e.g., Särndal, Swensson, & Wretman 1992).  Särndal, 
Swensson, and Wretman (1989, 1992) developed an approximate linearization population 
variance for a population total as a function of the model residuals and the g-weights.  
Stukel, Hidiroglou, and Särndal (1996) discuss a g-weighted variance formula developed 
by Hidiroglou, Fuller, and Hickman (1980) for a stratified multi-stage design using the 
linear substitute (or ultimate cluster) method (Kalton 1979).  Replication methods, such 
as balanced repeated replication and jackknife, have been discussed for a variety of 
estimators in sources such as Valliant 1993, Canty and Davison 1999, and Demnati and 
Rao 2004.  However, limited work has been completed on variance estimation for EC 
poststratification. 
 
Four ECPS variance estimators that incorporate the variability in the estimated control 
totals were compared for this study.  They include one linearization estimator and three 
delete-one jackknife variance estimators.  With the delete-one jackknife, replicates are 
created by deleting one primary sampling unit (PSU) and adjusting the weights for the 
remaining PSUs within the corresponding design stratum.  This results in a total of 

1
H

A Ahhm m==∑  replicates calculated by summing the number of PSUs per stratum (mh) 

across the H design strata.  We additionally compare the properties of these estimators 
with the “usual”  linearization variance estimator that does not account for the estimated 
control totals (see, e.g., section 6.6 in Särndal, Swensson, & Wretman 1992).   
 
An effective variance estimator will reproduce the corresponding population sampling 
variance in expectation.  To derive the asymptotic population sampling variance for the 
estimated mean ˆ

Py  defined in (5), we first derive the variance for ˆˆˆyP B At ′= N Y  by 
applying the unconditional variance formula given in, e.g., Casella & Berger (2002, 
Theorem 4.4.7):  
 ( )ˆyP B A B A B AAV t ′ ′= +N V N Y V Y  (6) 

where BN  is a vector of population counts within the G poststrata defined by the 

benchmark survey target population such that ( )ˆ
B B BE =N N , the expectation with 

respect to the benchmark survey design; ( )1 1 , ,A Ay A AyG AGt N t N ′=Y …  with 

( )ˆA Ayg AygE t t=  and ( )ˆ
A Ag AgE N N= , the expectation with respect to the analytic 

survey design; AV  is the covariance matrix of the estimated components of the vector 

AY ; and BV  is the covariance matrix of the G poststratum benchmark estimates given in  
ˆ

BN . The first term in expression (6) is the approximate variance for the standard 
poststratified estimator where the benchmark estimates are treated as fixed, i.e., 

( )ˆyNP B A BAV t ′= N V N .  The second term in expression (6), A B A′Y V Y , is variance 

component associated only with the variation in the benchmark poststratum estimates, 
i.e., the analytic estimates are treated as fixed.   
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Using equation (6) and ˆ ˆ
B B GN ′= N 1 , the asymptotic variance of ˆ

Py  (5) is defined as: 

 ( ) ( ) ( ) ( )
2

21 ˆ ˆˆ ˆ ˆˆ ˆ2 ,ˆP yP P B P yP B
B

AV y AV t y AV N y ACov t N
N

⎛ ⎞ ⎡ ⎤= + −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠
 (7)      

where ( )ˆ
B BAV N ′= G G1 V 1 , the asymptotic variance of the benchmark estimated total, 

and ( ) ( ) ( )ˆˆ ,yP B A P G B A P GACov t N y y′= − −Y 1 V Y 1 , the asymptotic covariance of two 

estimators used to define ˆ
Py .   

 
Having defined the population sampling variance for the estimated mean, we next define 
the set sample variance estimators included in our research.  We begin with two first-
order Taylor linearization variance estimators followed by three formulae for a jackknife 
variance estimator. 
 
3.1 Linearization Variance Estimation for Standard Poststratification 

Variance Estimator (Naïve) 
The sample variance estimator defined for a standard poststratification adjustment is 
found is many sampling textbooks and is expressed in matrix form as 

 ( ) ( )
2

1ˆ ˆ
ˆNaive P Naive yP

B
var y var t

N
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (8)      

with ( ) ˆ ˆ ˆˆNaive yP B A Bvar t ′= N V N .  Note that the second and third components of 

expression (7) are not estimated.  If (i) the benchmark estimates are precise so that the 
estimated covariance matrix ( )ˆ ˆ

B Bvar=V N  is negligible and (ii) the estimates in ˆ
Py  are 

positively correlated, then expression (8) could overestimate the population sampling 
variance.  Other conditions may suggest that estimates obtained with this formula will not 
be noticeably different from those generated with the ECPS variance estimators described 
next.  We make this comparison with our simulation study described in Section 4. 
 
3.2 Taylor Series Linearization (ECTS) 
The form of the first-order Taylor linearization sample variance that accounts for the 
variation in the benchmark poststratification totals can be described as a method-of-
moments estimator:  

 ( ) ( ) ( ) ( )
2

21 ˆ ˆˆ ˆ ˆˆ ˆ2 ,ˆECTS P EC yP P EC B P EC yP B
B

var y var t y var N y cov t N
N

⎛ ⎞ ⎡ ⎤= + −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠
    (9)  

where ( ) ˆ ˆˆ ˆ ˆ ˆˆEC yP B A B A B Avar t ′ ′= +N V N Y V Y  with ( )ˆ ˆ
A Avar=V N , the estimated 

covariance of the poststratum totals estimated from the analytic survey; 

( )ˆ ˆ
EC B G B Gvar N ′= 1 V 1  for G1  defined as a G-length vector of ones; and 

( ) ( ) ( )ˆ ˆˆ ˆˆ ˆˆ ,EC yP B A P G B A P Gcov t N y y
′

= − −Y 1 V Y 1 .  Expression (9) can be recast as a 

standard poststratification sample variance estimator plus terms that account for the 
variation in the benchmark poststratum totals. 
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3.3 Fuller Two-Phase Jackknife Method (ECF2m) 
Isaki, Tsay, and Fuller (2004) applied a two-phase delete-one jackknife variance 
estimator developed by Fuller (1998) to a survey with estimated control totals.  The 
jackknife sample variance estimator takes the form 

 ( ) ( )( )22
2

1 1

ˆ ˆ
AhmH

ECF P h PP r
h r

var y c y y−

= =
= −∑ ∑ ��  (10) 

The rth replicate estimator for the population mean is defined as:  

 ( )
( )

( )

( ) ( ) ( )

( )

1ˆ ˆ
yP r B r A r Ay r

P r
GB r B r

t
y

N

−′
= =

′

N N t

N 1

����
��

�� ��  (11) 

where ( )
1ˆ

A r
−N  and ( )ˆ

Ay rt  are calculated with the formula given for expression (2)  after 

the rth PSU has been removed from the sample.  The Fuller’s approach relies on a spectral 
(eigenvalue) decomposition of the benchmark covariance matrix ( BV ) to provide the 
vector of estimators ( )B rN�� .  Adjustments, defined as functions of the resulting 

eigenvalues and eigenvectors, are added to the estimated controls ˆ
BN  to create a set of 

replicate controls.  Namely, 
 ( ) ( )

ˆ ˆB hB r B rc= +N N z��  (12) 

where ( )1h Ah Ahc m m= − , a constant associated with the delete-one jackknife; 

( ) ( ) ( )1ˆ ˆG
gr r g rgδ δ== ∑z z ; ( )rδ  is a zero/one indicator that identifies the G out of mA 

randomly chosen replicates to receive an adjustment; ( ) 1g rδ =  if the gth component of 

the benchmark covariance decomposition is randomly chosen for the assignment given 

that replicate r is selected for adjustment; and ˆˆˆ g g gλ=z q , a function of an eigenvector 

ˆ gq  and the associated eigenvalue ˆ
gλ  such that 1

ˆ ˆ ˆG
B g gg=

′=∑V z z .  Thus, given ( ) 1rδ =  

for a particular replicate, a single indicator ( )g rδ  must also equal one; however, if 

( ) 0rδ = , then all indicators ( )g rδ  equal zero.  Details to construct the computer code for 

( )B rN��  are provided in Dever and Valliant (2007).   

 
Fuller (1998) demonstrated that the delete-one jackknife sample variance of the replicate 
controls reproduces the estimated benchmark covariance matrix, i.e., ( )2

ˆ ˆ
ECF B Bvar =N V  

with ˆ
BN  defined by solving equation (12), for every sample.  Using this and a geometric 

approximation, it can be shown that the design expectation of the resulting jackknife 
variance estimator is asymptotically equivalent to ( )ˆPAV y  in (7) only if the respective 

components are calculated with values from design-consistent estimators. 
 
The two additional jackknife variance estimators included in our research follow the 
same pattern as the ECF2m where the vector of benchmark poststratification totals ˆ

BN  
are adjusted for the replicate estimates.  We continue with another variance estimator also 
presented in 2004. 
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3.4 Nadimpalli-Judkins-Chu Jackknife Method (ECNJCm) 
Nadimpalli, Judkins, and Chu (2004) developed a jackknife variance estimator by 
randomly perturbing all instead of a subsample of the replicate controls in the following 
way: 
 ( ) ( )

ˆˆ
B h h BB r rc R= +N N S�� η  (13) 

where 1h AhR Hm=  is a function of the number of population PSUs estimated from 

stratum h; ( )ˆ ˆ
B Bdiag=S V , the diagonal matrix of dimension G  containing the 

estimated standard errors from the benchmark covariance matrix; and ( )rη  is a G-length 

vector of standard normal values independently generated for each replicate.  The 
remaining terms are specified for the ECF2m following expression (12).   
 
Unlike the ECF2m, the sample variance of the ECNJCm replicate controls given in (13) 
reproduces the benchmark covariance matrix BV  in expectation only if the off-diagonal 
terms are truly zero.  In most cases, BV  will not be diagonal which suggests that 

ECNJCvar  may not be an effective estimator for the population sampling variance.  The 
magnitude of the over- or under-estimation is related to the sign of the missing off-
diagonal terms in BV , as well as the association between the y variable and the variables 
used to define the poststrata. 
 
3.5 Multivariate Normal Jackknife Method (ECMV) 
The multivariate normal method (ECMV) is a generalization of the ECNJCm and to our 
knowledge is first developed for our research.  The ECMV incorporates the complete 
covariance matrix ˆ

BV  and relies on large-sample theory so that the poststratum 
adjustments may be modeled as coming from a G-dimensional multivariate normal 
distribution with a mean vector of zeros and estimated covariance matrix ˆ

BV .  The 
replicate controls for the ECMV take the form 
 ( ) ( )

ˆ ˆB h hB r rc R= +N N�� ε  (14) 

where ( )ˆ rε  is a G-length vector of values such that ( )( )
ˆˆ ~ ,r G BMVN 0 Vε .  The remaining 

terms were defined previously for the ECF2m with expression (12) and for the ECNJCm 
with expression (13).  
 
Unlike the Fuller method, ( )ˆ ˆ

ECMV B Bvar ≠N V . The ECMV methodology relies on the 

design-and model-based properties of the estimator to show that 

( ) ( )ˆ ˆ
ECMV B BE var E⎡ ⎤ =⎣ ⎦N V .  Thus, in expectation, the ECF2m and ECMV variance 

estimators are asymptotically equivalent and both should perform reasonably in the 
empirical study detailed in the next section.  However, because ( )ˆ ˆ

ECMV B Bvar ≠N V , we 

hypothesized that ECMV variance estimates will less stable than the ECF2m as examined 
through the variability of the estimates across the simulation samples.   
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4. Simulation Study 
 
4.1 Simulation Parameters 
We complement the theoretical evaluation of the five variance estimators presented in the 
previous section with an empirical evaluation through a simulation study.  The simulation 
population is a random subset of the 2003 National Health Interview Survey (NHIS) 
public-use file containing records for 21,664 adults.  These “population” records were 
divided into H=25 strata, each containing six PSUs.  We selected 4,000 samples of size 
2,000 to estimate the population totals and associated variances for two NHIS analysis 
variables: NOTCOV=1 indicates that an adult did not have health insurance coverage in 
the 12 months prior to the NHIS interview (approximately 17 percent of the population); 
and PDMED12M=1 indicates that an adult delayed medical care because of cost in the 12 
months prior to the interview (approximately 7 percent of the population).  For brevity 
and because the results are similar, we only present the results for NOTCOV in the 
subsequent discussion. Samples were selected in two stages – a with-replacement 
probability proportional to size sample of two PSUs per stratum and a simple random 
sample of 40 persons within each sampled PSU.  Nonresponse is not included in the 
simulation study presented here but will be addressed in future research.  
 
Poststratification may reduce variances slightly but in household surveys is mainly used 
to correct for sampling frame undercoverage, as well as other problems inherent with 
surveys.  The 4,000 simulation samples were selected to mimic a sampling frame that 
suffers from differential undercoverage, i.e., telephone survey frames.  Sixteen (G=16) 
poststratification cells were defined by an eight-level age variable crossed with gender.  
The coverage rates for the 16 cells ranged, for example, from 50 percent for females 18-
24 years of age to 90 percent for males ages 65-69.  No cells were defined as having 
complete coverage, i.e., 100 percent.  Before each sample was selected, the frame was 
randomly generated by selected a stratified random subsample from the full population of 
21,664 using the associated coverage rates.  For example, 90 percent of the male 
population 65-69 years of age was randomly sampled to be in the sampling frame for 
NOTCOV.  The sampling frames were randomly generated prior to selecting the 2,000 
analytic survey sample units. 
 
The decision for researchers to use either the standard or the estimated-control (EC) 
poststratification variance estimator should depend on the precision of the poststratum 
control totals.  The vector of benchmark totals ˆ

BN  and the associated covariance matrix 
ˆ

BV  were estimated from the complete NHIS public-use data file (92,148 records) and 
ratio adjusted to reflect a sample of size comparable with our simulation population 
(N=21,664).  To address varying levels of precision in the benchmark estimates, we 
calculated four covariance matrices.  The first corresponds to an effective survey size of 
21,644.  The remaining three were generated by dividing this first matrix by 3.6, 18, and 
72 to reflect approximate effective sample sizes of 6,000 (≈ 21,700/3.6), 1,200, and less 
than 500, respectively. 
 
The simulation was conducted in R (Lumley 2005, R Development Core Team 2005) 
because of its extensive capabilities for analyzing survey data and efficiency with 
simulated analyses.  Code was developed to calculate the linearization and replicate 
variance estimates for the EC poststratified estimator discussed above because to date the 
relevant code did not exist. 
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4.2 Evaluation Criteria 
The empirical results for the five variance estimators were compared using three 
measures across the 4,000 simulation samples:  
(i) the estimated percent relative bias of the variance estimator,  

 ( )( )( )1
4000

ˆ
P jj var y mse mse−∑  (15) 

where ( )( )ˆ
P jvar y  is one of the five variance estimates evaluated for sample j and mse is 

the mean square error of ( )
ˆ
P jy  defined below;  

(ii) the 95% confidence interval  coverage rate,  
 ( )1

1 / 24000
ˆ| |jj I z z α−≤∑  (16) 

where ( )( ) ( )( )ˆ ˆˆ j P j P jz y y var y= − ; and,  

(iii) the standard deviation of the estimated standard errors, calculated as the square root 
of  

 ( )( ) ( )( )
2

1 1
3999 4000

ˆ ˆ
P j P jj jvar y var y⎛ ⎞−⎜ ⎟

⎝ ⎠
∑ ∑ . (17)  

The relative bias and empirical mean square error of our point estimators are calculated 

as ( )( )1
4000

ˆ ˆ ˆ
P jj y y y−∑  and ( )( )21

4000
ˆ
P js y y−∑ , respectively. 

 
5. Simulation Results 

 
We first examine the results of our point estimators to justify the need for calibration, and 
move on to a comparison of empirical results for our set of variance estimators. 
 
5.1 Point Estimator 
To justify the need for poststratification, we initially compared the percent relative bias 
for the two estimated means as a function of only the design weights, i.e., 

1ˆˆ ˆHT A Ayy −= N t , against those that included the poststratification adjustment, i.e., ˆ
Py  

given in expression (5).  Relative biases of zero are ideal; however, values near zero are 
more reasonable with simulation studies.  The unadjusted weights resulted in point 
estimates that underestimate the population value by as much as 9 percent.  The ECPS 
adjustment corrects for undercoverage resulting in a slight overestimate of the population 
means by approximately one percent.  Therefore, poststratification with estimated control 
totals is justified over the use of only the design weights.  This same conclusion was 
drawn from a similar analysis using estimated totals in our previous research. 
 
5.2 Relative Bias in Variance Estimators 
Adding to the brief theoretical discussion in Section 3, the empirical results for a 
desirable variance estimator should show a percent relative bias (15) either near zero or 
somewhat positive for a conservative measure.  Figure 1 shows the percent relative bias 
(y axis) for the five of the six variance estimators using the NOTCOV variable and 
benchmark estimates with increasing levels of efficiency (left to right on the x axis).  The 
horizontal line represents zero bias. The vertical line represents studies for which the        
. 
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Figure 1: Percent Bias Relative to Empirical MSE for Five Variance Estimators by the 
Relative Size of the Benchmark Survey to the Analytic Survey 
 
 
 
analytic and benchmark surveys are equal in effective size.  Again, a similar pattern was 
displayed for the variable PDMED12M. 
 
The standard poststratified variance estimator (naïve), shown in red in Figure 1, assumes 
that the benchmark estimates are true population values.  The average bias indicates that 
this estimator is most negatively biased among the variance estimators examined in our 
research.  This finding is consistent with the theoretical evaluation briefly discussed in 
Section 3.  The relative bias is smallest when the benchmark survey is approximately 
three times larger than the analytic survey.  The bias increases dramatically when the 
benchmark controls are estimated from a much smaller survey.  This general pattern was 
also displayed for estimated totals in the authors previous research (Dever and Valliant 
2007), though the levels of bias were much more pronounced for the previous point 
estimator.   
 
The levels of bias for the EC variance estimators are similar and all show an 
improvement over the naïve estimator.  The relative contribution of the benchmark 
estimates to the estimated variance is negatively related to the relative size of the 
benchmark survey to the analytic survey.  As the benchmark contribution increases, the 
bias in the EC variance estimators is reduced to levels that are somewhat conservative (3 
percent overestimate).  The ECNJCm variance estimator has slightly higher levels of bias 
than the other EC variance estimators under our simulation study.  This is a marked 
improvement over the comparative levels of bias than was shown for totals (Dever and 
Valliant 2007).   
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Table 1: Percent Bias Relative to Empirical MSE for Five Variance Estimators by  
the Relative Size of the Benchmark Survey and Type of Point Estimator 

 
Relative Size of Benchmark to Analytic Survey Point 

Estimator 
Variance 
Estimator      0.2      0.6      3.0      10.8 

Mean Naïve -7.9 -5.1 -4.5 -5.6 
 ECTS 2.3 -2.1 -3.4 -4.9 
 ECF2m 3.1 -1.9 -3.3 -4.7 
 ECNJCm 0.3 -2.4 -3.5 -4.8 
 ECMV 2.5 -2.0 -3.4 -4.7 

Total Naïve -56.0 -31.0 -14.2 -12.2 
 ECTS -0.2 -8.4 -8.2 -10.1 
 ECF2m 0.1 -8.2 -8.3 -10.1 
 ECNJCm -40.0 -24.2 -11.9 -11.1 
 ECMV -0.2 -8.1 -8.1 -10.0 

 
 
Table 1 provides a comparison of the percent relative biases for the estimated mean of 
NOTCOV displayed in Figure 1 against the levels for the estimated total used in the 
numerator of the mean.  The levels of bias are noticeably larger for totals than means 
with the naïve and ECTS variance estimators.  The difference is similar though less stark 
with the remaining EC variance estimators.   
 
5.3 Confidence Interval Coverage 
The next criterion used to compare the variance estimators was the empirical coverage 
rates (16) for the 95 percent confidence intervals associated with the two outcome 
variables. Coverage rates for the estimated means under all simulation conditions were 
fairly stable and had at least a 94 percent coverage rate. We additionally did not detect a 
linear trend with the increasing size of the benchmark survey. The confidence intervals 
for the naïve variance estimator were almost twice as wide (average width was 
approximately 1.2) as the EC confidence intervals and showed a negative shift reflecting 
the underestimation displayed in Figure 1. 
 
The confidence interval coverage rates for estimated totals are similar for the ECTS, 
ECF2m, and ECMV variance estimators.  However, the naïve and ECNJCm coverage 
rates fall below the 90 percent when the benchmark survey is small relative to the 
analytic survey. 
 
5.4 Stability of the Variance Estimators 
The results presented above suggest that there are minimal theoretical, as well as 
empirical, differences between the ECTS, ECF2m, and ECMV methods. A comparison 
of the variation in the variance estimates, calculated with expression (17), suggests that 
the ECTS variance estimator is most stable among those examined though the relative 
increase for the other estimators was less than five percent. This corresponds with the 
discussion given in Krewski & Rao (1981). The difference in the stability of the ECF2 
and ECMV methods is less noticeable with estimated means than with estimated totals. 
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6. Conclusions and Future Work 
 
The theoretical and analytical work discussed in this paper addresses poststratification 
using estimated control totals, i.e., estimated-control (EC) poststratification.  Traditional 
variance estimators can severely underestimate the population sampling variance 
resulting in, for example, incorrect decisions for hypothesis tests and sub-optimal sample 
allocations when the design is optimized in the future.  The level of underestimation is 
related to the precision of the benchmark control totals. This underestimation, however, is 
less severe with means, a function of two estimated totals, in comparison with estimated 
totals. 
 
The ECNJCm method (Nadimpalli, Judkins, & Chu 2004) can also produce variance 
estimates that are too small.  Our simulation studies suggest that the bias in the ECNJCm 
variance estimates is much less with the means than with totals such that the differences 
between this and the other EC estimators examined is not acute.  However, additional 
theory is needed to support this claim under general conditions. 
 
Our recommendation for a variance estimator for an ECPS estimator of a mean falls to 
one of the three remaining EC formula.  Theoretically, the linearization variance 
estimator (ECTS), the Fuller two-phase jackknife estimator (ECF2m), and the 
multivariate normal jackknife estimator (ECMV) are asymptotically equivalent. The 
empirical results suggest that the differences among the three methods in practice are 
negligible. Choosing between the ECTS and one of the jackknife methods must be based 
on the type of analysis or public-use file desired for the study. 
 
More work is needed to reduce the negative relative biases seen in the empirical study 
(Table 1) because slightly conservative variance estimates are generally more desirable.  
Our future research will also include a generalization to linear calibration (e.g., GREG) 
and to other statistics.  We additionally plan to investigate whether threshold values can 
be identified that determine (i) when there will be a negligible difference between 
variance estimates using the standard and ECPS formulae, and (2) when the benchmark 
controls are too imprecise to use in poststratification. We also plan to investigate the 
theoretical implications for measurement errors in the analytic and benchmark surveys, 
and methods to improve the benchmark estimates which includes for example, collapsing 
cells to create an “optimal” set of poststratification cells.  
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