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Abstract

Félix-Medina and Thompson (Jour. Off. Stat., 2004) proposed a variant of link-tracing
sampling to sample hidden and/or hard-to-detect human populations such as drug users and
sex workers. In their variant, an initial sample of venues is selected and the people found in
the sampled venues are asked to nominate other members of the population to be included
in the sample. Those authors derived maximum likelihood estimators of the population
size under the assumption that the probability that a person is nominated (nomination
probability) does not depend on the nominee (homogeneity assumption). In this work we
extend their research into the case of heterogeneous nomination probabilities and derive
both unconditional and conditional maximum likelihood estimators of the population size.
In addition, we propose both Wald and profile likelihood confidence intervals for the size of
the population. The results of simulations studies carried out by us show that in presence
of heterogeneous probabilities the proposed estimators perform reasonably well, whereas
the estimators derived under the homogeneity assumption perform badly. The simulation
results also indicate that the proposed Wald and profile likelihood confidence intervals have
relatively low performance.

Key Words: chain-referral sampling, design-based estimator, maximum likelihood esti-
mator, profile likelihood confidence interval, snowball sampling, Wald confidence interval

1. Introduction

Link-tracing sampling (LTS), also known as snowball sampling or chain referral
sampling, has been proposed for sampling hidden or hard-to-detect populations,
such as drug users, sex workers, HIV infected people and undocumented workers.
In this method an initial sample of members of the target population is selected
and the people in the initial sample are asked to nominate other members of the
population to be included in the sample. The nominated people that are not in
the initial sample might be asked to nominate other persons, and the process might
continue in this way until a specified stopping rule is satisfied.

Félix-Medina and Thompson (2004) proposed a variant of LTS in which the
initial sample is a simple random sample without replacement (SRSWOR) of sites
selected from a sampling frame that could not cover the whole population. The sites
are venues where the members of the population might be found with high probabil-
ities, such as public parks, bars and street blocks. The members of the population
who belong to a sampled site are identified and they are asked to nominate other
members of the population. In order to obtain a maximum likelihood estimator
(MLE) of the size of the population, those authors assumed that the probability
that a person is nominated by any person in a particular sampled site, which we will
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†Escuela de Ciencias F́ısico-Matemáticas, Universidad Autónoma de Sinaloa, Ciudad Universi-
taria, Culiacán Sinaloa, México
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call nomination probability, depends on the site, but not on the nominated person,
that is, they assumed homogeneous nomination probabilities.

In this paper, we extend the work by Félix-Medina and Thompson (2004) to
the case in which the nomination probabilities depend on the nominees, that is, we
assume heterogeneous nomination probabilities. The structure of this paper is as
follows. In Section 2 we introduce the LTS variant proposed by Félix-Medina and
Thompson (2004). In Section 3 we derive two types of MLE’s of the population size:
unconditional and conditional MLE’s. In Section 4 we present Wald and profile
likelihood confidence intervals for the population size. In Section 5 we present
the results of two simulation studies, and finally, in Section 6 we present some
conclusions and suggestions for future research.

2. Sampling design

In this work we consider the LTS design proposed by Félix-Medina and Thompson
(2004). Thus, let U be a finite population of an unknown number τ of people. We
assume that a portion U1 of U is covered by a sampling frame of N sites A1, . . . , AN ,
where the members of the population can be found with high probability. We
suppose that we have a criterion that allows us to assign a person in U1 to only one
site in the frame. Notice that we are not assuming that a person could not be found
in different sites, but that we are able to assign him or her to only one site, for
instance, the site where he or she spends most of his or her time. Let Mi denote the
number of members of the population that belong to the site Ai, i = 1, . . . , N . From
the previous assumption it follows that the number of people in U1 is τ1 =

∑N
1 Mi

and the number of people in the portion U2 = U − U1 of U that is not covered by
the frame is τ2 = τ − τ1.

The sampling design is as follows. A SRSWOR SA of n sites A1, . . . , An is
selected from the frame. The Mi members of the population that belong to the
sampled site Ai are identified, i = 1, . . . , n. Let S0 be the set of people in the initial
sample. Notice that the size of S0 is M =

∑n
1 Mi. The people in each sampled site

are asked to nominate other members of the population. We will say that a person
is nominated by a site if any of the people in that site nominates him or her. We
suppose that the nominations made by people in different sites are independent.
For each nominated person we record the portion U1 or U2 of the population where
he or she was located, and the sites that nominated him or her.

3. Maximum likelihood estimators

3.1 Probability models

As in Félix-Medina and Thompson (2004), we will suppose that the numbers M1, . . . ,
MN of people who belong to the sites A1, . . . , AN are independent Poisson random
variables with mean λ1. Therefore, the joint conditional distribution of the numbers
of members M1, . . . , Mn in the sampled sites and the number of people τ1 −M who
are not in the initial sample is multinomial with probability mass function (pmf):

f(m1, . . . , mn, τ1 − m) =
τ1!

∏n
1 (τ1 − m)!

(

1

N

)m (

1 − n

N

)τ1−m

. (1)

To model the nomination process we will define random variables X
(k)
ij ’s by X

(k)
ij =

1 if person j in Uk − Ai is nominated by site Ai and X
(k)
ij = 0 otherwise, i =
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1, . . . , n; j = 1, . . . , τk. We will suppose that the X
(k)
ij ’s are independent Bernoulli

random variables with means p
(k)
ij ’s, where the nomination probability p

(k)
ij satisfies

the following Rash model:

p
(k)
ij = Pr(X

(k)
ij = 1) =

exp(α
(k)
i + β

(k)
j )

1 + exp(α
(k)
i + β

(k)
j )

, j ∈ Uk − Ai; i = 1, . . . , n. (2)

It is worth noting that this model was considered by Coull and Agresti (1999) in the

context of multiple capture-recapture sampling. In this model α
(k)
i is a fixed (not

random) effect that represents the potential of the site Ai to nominate a person in

Uk − Ai, and β
(k)
j is a random effect that represents the propensity of the person

j ∈ Uk to be nominated. We will suppose that β
(k)
j is normally distributed with

mean 0 and unknown variance σ2
k and that these variables are independent. The

parameter σ2
k determines the degree of heterogeneity of the p

(k)
ij ’s, that is, great

values of σ2
k imply high degrees of heterogeneity.

3.2 Likelihood function

To construct the likelihood function we will first define the concept of “pattern of
nomination”. Thus, let Ω = {1, . . . , n} and let ω be a subset of Ω. We will say
that a person has pattern of nomination ω if that person is nominated only by each
one of the sites Ai with i ∈ ω. For instance, if ω = {1, 3, 4}, a person has pattern
of nomination ω if he or she is nominated only by the sites A1, A3 and A4. For
convenience we will say that a person that is not nominated by any of the sites
has pattern of nomination ω = ∅ (the empty set). Notice that the set of people in
Uk −S0 can be partitioned into the set of all the subsets ω of Ω. From the assumed

Rash model for the p
(k)
ij ’s we have that the probability that a randomly selected

person in Uk − S0 has pattern of nomination ω is

π(k)
ω (σk, α

(k)) =

∫ n
∏

i=1

exωi(α
(k)
i +σkz)

1 + e(α
(k)
i +σkz)

φ(z)dz,

where xωi = 1 if i ∈ ω and xωi = 0 otherwise, α(k) = (α
(k)
1 , . . . , α

(k)
1 ) and φ(·) is the

probability density function (pdf) of the standard normal distribution [N(0,1)].

As in Coull and Agresti (1999), instead of using π
(k)
ω (σk, α

(k)) in the likelihood

function we will use its Gaussian quadrature approximation π̃
(k)
ω (σk, α

(k)) given by

π̃(k)
ω (σk, α

(k)) =
q

∑

t=1

n
∏

i=1

exωi(α
(k)
i +σkzt)

1 + e(α
(k)
i +σkzt)

νt,

where q is a fixed constant and {zt} and {νt} are obtained from tables.
The easiest way of constructing the likelihood function is to factorize it into

different factors. One factor is the one associated with the selection procedure of
the initial sample S0, which is given by the multinomial distribution (1), that is

LMULT (τ1) ∝
τ1!

(τ1 − m)!
(1 − n/N)τ1−m.

Two other factors are the ones associated with the nomination processes of the
people in U1 − S0 and in U2. These factors are obtained by using the fact that the
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set of people in each of these regions can be partitioned into the set of all different
patterns of nomination. Therefore, these factors are given by the multinomial dis-
tributions of the respective frequencies (numbers of people) of the different patterns
of nomination, that is,

L1(τ1, σ1, α
(1)) ∝ (τ1 − m)!

(τ1 − m − r1)!

∏

ω⊂Ω−∅

[π̃(1)
ω (σ1, α

(1))]r
(1)
ω [π̃

(1)
∅ (σ1, α

(1))]τ1−m−r1

and

L2(τ2, σ2, α
(2)) ∝ τ2!

(τ2 − r2)!

∏

ω⊂Ω−∅

[π̃(2)
ω (σ2, α

(2))]r
(2)
ω [π̃

(2)
∅ (σ2, α

(2))]τ2−r2 ,

where rk is the number of distinct nominated persons in Uk − S0 and r
(k)
ω is the

number of persons in Uk − S0 that have the pattern of nomination ω, k = 1, 2.
The last factor L0(σ1, α

(1)) is the one associated with the nomination process of
the people in S0 and it is given by

L0(σ1, α
(1)) ∝

n
∏

i=1

LAi(σ1, α
(1)
−i ),

where α
(1)
−i = (α

(1)
1 , . . . , α

(1)
i−1, α

(1)
i+1, . . . , α

(1)
n ) and LAi(σ1, α

(1)
−i ) is the factor associ-

ated with the nomination process of the people in Ai ∈ SA, given by the multinomial
distribution of the frequencies (numbers of people) of the different patterns of nom-
ination in which the people in Ai can be partitioned. Thus

LAi(σ1, α
(1)
−i ) ∝

∏

ω⊂Ωi−∅

[π̃(Ai)
ω (σ1, α

(1))]r
(Ai)
ω [π̃

(Ai)
∅ (σ1, α

(1))]mi−r
(Ai)
ω ,

where Ωi = Ω − {i}, r
(Ai)
ω is the number of people in Ai that has the pattern of

nomination ω ⊂ Ωi and

π̃(Ai)
ω (σ1, α

(1)
−i ) =

q
∑

t=1

n
∏

i′ 6=i

exωi′ (α
(1)

i′
+σ1zt)

1 + e(α
(1)

i′
+σ1zt)

νt,

where xωi′ = 1 if i′ ∈ ω and xωi′ = 0 otherwise, is the Gaussian quadrature approx-
imation to the probability that a person in Ai has pattern of nomination ω ⊂ Ωi,
i = 1, . . . , n.

From the previous results we have that the maximum likelihood function is given
by

L(τ1, τ2, σ1, σ2, α
(1), α(2)) = L(1)(τ1, σ1, α

(1))L(2)(τ2, σ2, α
(2)),

where

L(1)(τ1, σ1, α
(1)) = LMULT (τ1)L1(τ1, σ1, α

(1))L0(σ1, α
(1)) and

L(2)(τ2, σ2, α
(2)) = L2(τ2, σ2, α

(2)).

3.3 Unconditional maximum likelihood estimators

Numerical maximization of L with respect to the parameters yields the uncondi-
tional MLEs τ̂k, σ̂k and α̂(k) of τk, σk and α(k), k = 1, 2. The MLE of τ = τ1 + τ2

is τ̂ = τ̂1 + τ̂2.

Section on Survey Research Methods – JSM 2009

4023



3.4 Conditional maximum likelihood estimators

From a numerical point of view a simpler approach to estimate the τ ’s is the one
proposed by Sanathan (1972) based on conditional maximum likelihood estimation.

The idea is to factorize the multinomial distributions of the frequencies r
(k)
ω of the

different patterns of nomination as follows:

L1(τ1, σ1, α
(1))∝ f({r(1)

ω }|m, τ1, σ1, α
(1)) = f({r(1)

ω }|r1, σ1, α
(1))f(r1|m, τ1, σ1, α

(1))

∝
∏

ω⊂Ω−∅





π̃
(1)
ω (σ1, α

(1))

1 − π̃
(1)
∅ (σ1, α(1))





r
(1)
ω

× (τ1 − m)!

(τ1 − m − r1)!
[1 − π̃

(1)
∅ (σ1, α

(1))]r1 [π̃
(1)
∅ (σ1, α

(1))]τ1−m−r1

= L11(σ1, α
(1))L12(τ1, σ1, α

(1))

and

L2(τ2, σ2, α
(2))∝ f({r(2)

ω }|τ2, σ2, α
(2)) = f({r(2)

ω }|r2, σ2, α
(2))f(r2|τ2, σ2, α

(2))

∝
∏

ω⊂Ω−∅





π̃
(2)
ω (σ2, α

(2))

1 − π̃
(2)
∅ (σ2, α(2))





r
(2)
ω

τ2!

(τ2 − r2)!
[1 − π̃

(2)
∅ (σ2, α

(2))]r2 [π̃
(2)
∅ (σ2, α

(2))]τ2−r2

= L21(σ2, α
(2))L22(τ2, σ2, α

(2)).

Notice that in each case the first factor Lk1(σk, α
(k)) is proportional to the pmf of

the multinomial distribution with parameter of size Rk and vector of probabilities

({π̃(k)
ω /[1− π̃

(k)
∅ ]}ω∈Ω−∅), which does not depend on τk. Notice also that the second

factors L12(τ1, σ1, α
(1)) and L22(τ2, σ2, α

(2)) are proportional to the pmf’s of the

Bin(τ1 −m, 1− π̃
(1)
∅ ) and Bin(τ2, 1− π̃

(2)
∅ ), respectively, where Bin(τ, π) denotes the

Binomial distribution with parameter of size τ and probability π.
Numerical maximizations of

L11(σ1, α
(1))L0(σ1, α

(1)) and L21(σ2, α
(2)) (3)

with respect to (σ1, α
(1)) and (σ2, α

(2)), respectively, give the conditional MLE’s σ̌k

and α̌(k) of σk and α(k), k = 1, 2. Notice that the factors in (3) do not depend
on τk, k = 1, 2. Finally, plugging the estimates σ̌k and α̌(k) into the factors of
the likelihood function that depend on τk, and maximizing these factors, that is,
maximizing

L12(τ1, σ̌1, α̌
(1))LMULT (τ1) and L22(τ2, σ̌2, α̌

(2)),

with respect to τ1 and τ2, respectively, yield the following conditional MLE’s of
these parameters:

τ̌1 =
M + R1

1 − (1 − n/N)ˇ̃π
(1)
∅ (σ̌1, α̌(1))

and

τ̌2 =
R2

1 − ˇ̃π
(2)
∅ (σ̌2, α̌(2))

.

A conditional MLE of τ is τ̌ = τ̌1 + τ̌2.
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4. Confidence intervals for the population sizes

4.1 Wald confidence intervals

Here we will suppose that if the numbers of nominees Rk, k = 1, 2, are large, then
the standard normal distribution is a reasonable approximation to the distribution
of (τ̂k − τk)/

√

V (τ̂k), where τ̂k denotes either the unconditional or the conditional
MLE of τk and V (τ̂k) denotes its variance. Under this assumption, an approximate
100(1 − α)% Wald confidence interval for τk is

τ̂k ± z1−α/2

√

V̂ (τ̂k), k = 1, 2,

where z1−α/2 denotes the (1−α/2)th quantile point of the N(0, 1) and V̂ (τ̂k) denotes
an estimator of the variance of τ̂k.

By using Sanathan’s (1972) approach to derive an asymptotic approximation to
the variance of the unconditional or conditional MLE of the parameter of size of a
multinomial distribution, we have that if Rk, k = 1, 2, and Mi, i = 1, . . . , N , are
large, then an estimator of the variance of τk is

V̂ (τ̂k) = τ̂k[D̂k − B̂′
kÂ

−1
k B̂k]

−1,

where Âk = [â
(k)
ij ]n+1,n+1,

â
(1)
ij =

(

1 − n

N

)

∑

ω⊆Ω

1

ˆ̃π
(1)
ω





∂ ˆ̃π
(1)
ω

∂θ̂
(1)
i









∂ ˆ̃π
(1)
w

∂θ̂
(1)
j



 +
1

N

∑

ω⊆Ωi

1

ˆ̃π
(Ai)
ω





∂ ˆ̃π
(Ai)
ω

∂θ̂
(1)
i









∂ ˆ̃π
(Ai)
ω

∂θ̂
(1)
j



 ,

â
(2)
ij =

∑

ω⊆Ω

1

ˆ̃π
(2)
ω





∂ ˆ̃π
(2)
ω

∂θ̂
(2)
i









∂ ˆ̃π
(2)
w

∂θ̂
(2)
j



 ,

B̂k = (b̂
(k)
1 , . . . , b̂

(k)
n+1)

′, b̂
(k)
j = −(∂ ˆ̃π

(k)
∅ /∂θ̂

(k)
j )/ˆ̃π

(k)
∅ , j = 1, . . . , n + 1, k = 1, 2,

D1 = [1 − (1 − n/N)ˆ̃π
(1)
∅ ]/[(1 − n/N)ˆ̃π

(1)
∅ ], D2 = [1 − ˆ̃π

(2)
∅ ]/ˆ̃π

(2)
∅ and

θ̂(k) = (θ̂
(k)
1 , . . . , θ̂(k)

n , θ̂
(k)
n+1) = (α̂

(k)
1 , . . . , α̂(k)

n , σ̂k), k = 1, 2.

A variance estimator of τ̂ is V̂ (τ̂) = V̂ (τ̂1) + V̂ (τ̂2). It is worth noting that these
expressions for the variance estimators are valid either if τ̂k, σ̂k and α̂(k) represent
the unconditional or the conditional MLE’s.

Félix-Medina and Thompson (2004) showed that their MLE’s of the population
sizes derived under the homogeneity assumption are robust to deviations from the
assumed Poisson distribution of the Mi’s, but that the “model-based” estimators
of the variances are not; therefore, we expect that our proposed estimators of the
population sizes and the “previous model-based” estimators of their variances be-
have as the ones proposed by those authors. Thus, we have also derived “partly
design-based” estimators of the variances of the τ̂ ’s, which are obtained by replac-
ing the multinomial distribution of the Mi’s by the distribution that was used to
select the initial sample of sites; however, because these estimators still use the
assumptions about the model that describe the nomination process, they are not
completely “design-based”, but only “partly design-based”. The purpose of deriv-
ing these estimators is that they should be robust to deviations from the assumed
Poisson distribution of the Mi’s. The “partly design-based” estimator V̂D(τ̂1) of the
variance of τ̂1 is given by the expression for V̂ (τ̂1), but computing D̂1 as follows

D1 =
n

τ̂1(1 − n/N)
S2

M +
1 − ˆ̃π

(1)
∅

(1 − n/N)ˆ̃π
(1)
∅

,
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where

S2
M =

n
∑

1

(Mi − M̄)2/(n − 1) and M̄ =
n

∑

1

Mi/n,

are the sample variance and sample mean of the Mi’s. The partly design-based
estimator V̂D(τ̂2) of the variance of τ̂2 is the same as the model-based estimator
of its variance, and the design-based estimator of the variance of τ̂ is V̂D(τ̂) =
V̂D(τ̂1) + V̂D(τ̂2).

4.2 Profile likelihood intervals

In the context of multiple capture-recapture sampling, several authors such as Evans
et al. (1996) and Gimenez et al. (2005), have indicated that Wald confidence inter-
vals perform poorly when the sample sizes are not large. The reasons of their poor
performance are (i) biases in the estimates of the population size; (ii) biases in the
estimates of the variances and (iii) asymmetries in the distributions of the estima-
tors of the population sizes. They have also pointed out that a more robust method
for constructing intervals than Wald method is the one based on the asymptotic
chi-square (χ2) distribution of the generalized likelihood ratio test. The confidence
intervals obtained by this method are called profile likelihood confidence intervals
(PLCI). In our case, an approximate 100(1 − α)% PLCI for τk is given by

{τk : −2 ln[Λ(τk)] ≤ χ2
1,1−α},

where
Λ(τk) =

max

σk, α(k)
L(k)(τk, σk, α

(k))/L(k)(τ̂k, σ̂k, α̂
(k)), (4)

τ̂k, σ̂k and α̂(k) are the unconditional MLE’s of τk, σk and α(k), k = 1, 2, and χ2
1,1−α

is the (1 − α)th quantile point of the χ2 distribution with 1 degree of freedom.
To obtain a PLCI for τ = τ1 + τ2, we use the equality τ1 = τ − τ2 and consider

the likelihood function of τ , τ2, σ1, σ2, α(1) and α(2), which is given by

L(τ, τ2, σ1, σ2, α
(1), α(2)) = L(1)(τ − τ2, σ1, α

(1))L(2)(τ2, σ2, α
(2)).

Then, an approximate 100(1−α)% PLCI for τ is given by (4), but using L(τ, τ2, σ1,
σ2, α

(1), α(2)) instead of L(k)(τk, σk, α
(k)) and computing the numerator of Λ(τ) by

maximizing L(τ, τ2, σ1, σ2, α
(1), α(2)) with respect to τ2, σ1, σ2, α(1) and α(2).

As in the case of the model-based Wald confidence intervals, we do not expect
that these model-based PLCI’s for τ1 and τ be robust to deviations from the assumed
Poisson distribution of the Mi’s. Therefore, we have considered adjusted PLCI’s
that take into account extra Poisson variation of the Mi’s. These intervals are
constructed as the model-based ones, but replacing the (1 − α)th quantile point
χ2

1,1−α of the χ2 distribution with one degree of freedom by (S2
M/M̄)χ2

1,1−α.

5. Monte Carlo studies

We carried out two simulation studies to explore the performance of the proposed
estimators of the population sizes, estimators of their variances and confidence in-
tervals, as well as to compare their performance with that of the corresponding
ones derived under the homogeneity assumption and which were proposed by Félix-
Medina and Thompson (2004). Because the computation of both the proposed Wald
confidence intervals and the proposed PLCI’s require a lot of computing time, we
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Table 1: Characteristics of the artificial populations generated for the first study.

Population I Population II

N = 250 N = 250
Mi ∼ Poisson Mi ∼ Neg. binomial
E(Mi) = 7.2 E(Mi) = 7.2
V (Mi) = 7.2 V (Mi) = 24.5
τ1 = 1926 τ1 = 1774
τ2 = 750 τ2 = 750
τ = 2676 τ = 2524
τ1/τ = 0.72 τ1/τ = 0.70

α
(k)
i = −6.5

M
1/4
i +0.001

α
(k)
i = −6.5

M
1/4
i +0.001

β
(k)
j ∼ N(0, 0.75) β

(k)
j ∼ N(0, 0.75)

needed to carry out two simulation studies. In the first one we analyzed the per-
formance of the estimators of the population sizes by using populations and initial
samples of relatively large sizes. In the second study we observed the performance
of the estimators of the variances and confidence intervals by using populations and
initial samples of small size.

5.1 First simulation study

We considered two finite populations of N = 250 mi-values. In Population I the
values were generated from a Poisson distribution with mean 7.2, whereas in Pop-
ulation II from a Negative binomial distribution with mean 7.2 and variance 24.5
In Table 1 are displayed the characteristics of each population. Notice that in both
populations the value of τ2 was set to 750. The values of the nomination probabili-

ties p
(k)
ij ’s were obtained by means of Rash model (2), where the values of the α

(k)
i ’s

and β
(k)
j ’s were obtained as is indicated on Table 1. The values of these parameters

were set so that the average value of the p
(k)
ij ’s was about 0.025, and since we used

an initial sample of size n = 25, the probability of nominating a person by any of
the sampled sites was about 0.46 in Population I and 0.43 in Population II.

The simulation study was carried out by replicating r = 500 times the following
procedure. From each population of N = 250 values of Mi’s a SRSWOR of n = 25

values was selected. From the i-th selected value, i =, 1, . . . , n, the values of X
(1)
ij ,

j = 1, . . . , τ1 − Mi, and X
(2)
ij′ , j′ = 1, . . . , τ2, were obtained from Bernoulli distri-

butions with means p
(1)
ij , j = 1, . . . , τ1 − Mi, and p

(2)
ij′ , j′ = 1, . . . , τ2, respectively.

These data on the Mi’s and the X
(k)
ij ’s were used to compute the estimates of the

population sizes. In this study we considered the estimators τ̃1, τ̃2 and τ̃ proposed
by Félix-Medina and Thompson (2004) and derived under the homogeneity assump-
tion; the unconditional τ̂1, τ̂2 and τ̂ and the conditional τ̌1, τ̌2 and τ̌ MLE’s proposed
in this work. The performance of an estimator τ̂ , say, of τ was evaluated by means
of its relative bias (r-bias) and the square root of its relative mean square error
(r-mse) defined by r-bias =

∑r
1(τ̂i − τ)/(rτ) and

√
r-mse =

√
∑r

1(τ̂i − τ)2/(rτ2),
where τ̂i was the value of τ̂ obtained in the i-th trial.

Section on Survey Research Methods – JSM 2009

4027



Table 2: Means, relative biases and square roots of relative mean square errors of
estimators of τ1, τ2 and τ .

Population I Population II

n = 25 M̄ = 192.5 n = 25 M̄ = 177.8

R̄(1) = 725.0 R̄(2) = 306.1 R̄(1) = 612.1 R̄(2) = 296.7

Estimator Mean r-bias
√

r-mse Mean r-bias
√

r-mse

τ̃1 1530.9 -0.21 0.21 1424.5 -0.20 0.20
τ̃2 518.4 -0.31 0.31 510.1 -0.32 0.32
τ̃ 2049.3 -0.23 0.24 1934.6 -0.23 0.24

τ̂1 1938.4 0.01 0.05 1788.5 0.01 0.07
τ̂2 760.0 0.01 0.19 822.7 0.10 0.33
τ̂ 2698.4 0.01 0.06 2611.2 0.04 0.11

τ̌1 1955.8 0.02 0.06 1770.1 -0.00 0.07
τ̌2 755.3 0.01 0.17 731.7 -0.02 0.16
τ̌ 2711.2 0.01 0.07 2501.8 -0.01 0.07

Notes: τ̃1, τ̃2 and τ̃ MLEs proposed by Félix- Medina and Thompson (2004)
derived under a homogeneous nomination probabilities model; τ̂1, τ̂2 and τ̂
and τ̌1, τ̌2 and τ̌ unconditional and conditional MLEs. Results based on 500
samples.

The results of the study are shown on Table 2. We can see that the estimators

τ̃1, τ̃2 and τ̃ that do not take into account the heterogeneity of the p
(k)
ij ’s had prob-

lems of biases and these increased the r-mse’s of the estimators significantly. On the
other hand, our proposed unconditional and conditional MLE’s performed satisfac-
torily, although the conditional estimators performed better than the unconditional
estimators. Notice that the performance of the estimators was not affected by the
distribution of the Mi’s. This means that they were robust to deviations from the
Poisson distribution. Notice also that both the unconditional and the conditional
MLE’s of τ2 showed some problems of instability (the values of

√
r-mse are between

0.16 and 0.33).

5.2 Second simulation study

This study was carried out using the same procedure as that used in the first one.
Thus, we generated two artificial populations whose characteristics are shown on

Table 3. It is worth noting that the values of the α
(k)
i ’s and β

(k)
j ’s were set so that

the average value of the p
(k)
ij ’s was about 0.09. In this study, the size of the initial

sample was set to n = 10; therefore, the probability of nominating a person by any
of the sampled sites was about 0.62.

The 95% confidence intervals that were considered in this study were the partly
design-based Wald intervals based on the estimators τ̃1, τ̃2 and τ̃ proposed by Félix-
Medina and Thompson (2004) who derived them under the homogeneity assump-
tion; both the model-based and the partly design-based Wald confidence intervals
based on the unconditional τ̂1, τ̂2 and τ̂ and on the conditional τ̌1, τ̌2 and τ̌ MLE’s
proposed in this work, and both the PLCI’s and the adjusted for extra Poisson
variation PLCI’s also proposed in this work. It is worth noting that the variance
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Table 3: Characteristics of the artificial populations generated for the second study.

Population I Population II

N = 100 N = 100
Mi ∼ Poisson Mi ∼ Neg. binomial
E(Mi) = 7.2 E(Mi) = 7.0
V (Mi) = 7.2 V (Mi) = 23.3
τ1 = 725 τ1 = 716
τ2 = 500 τ2 = 500
τ = 1225 τ = 1216
τ1/τ = 0.59 τ1/τ = 0.59

α
(k)
i = −4.0

M
1/4
i +0.001

α
(k)
i = −4.0

M
1/4
i +0.001

β
(k)
j ∼ N(0, 0.75) β

(k)
j ∼ N(0, 0.75)

estimators that were used to compute Wald intervals were also evaluated. The
performance of a variance estimator was evaluated by using the same criteria as
those used for an estimator of the population size. The performance of a confidence
interval for τ , say, was evaluated by its coverage probability (CP) and its relative
length (r-length) defined as the proportion of trials in which τ is inside the interval
and the average length of the interval divided by τ , respectively. The evaluation of
the performance of a Wald interval was based on 500 samples, whereas that of a
PLCI was based on 100 samples.

The results of the study are shown on Tables 4 and 5. From the results we can
see that the estimators of the variances of the estimators of the population sizes
obtained under the homogeneity assumption had large negative biases. These seri-
ous subestimations of the variances along with the biases of the estimators of the
population sizes substantially deteriorated the coverage probabilities of the corre-
sponding Wald intervals.

With respect to the proposed estimators of the variances of the unconditional
and conditional MLE’s of the population sizes, both the proposed model-based and
the proposed partly design-based estimators of the variances had tolerable perfor-
mance in Population I. The estimators of the variances of τ̂2 and τ̌2 had relatively
large variability which increased the variability of the estimators of the variances
of τ̂ and τ̌ . However, the corresponding Wald confidence intervals performed ac-
ceptably well, with the exception of the intervals for τ2 which were relatively long.
In the case of Population II, the estimators of the variances of the unconditional
and conditional MLE’s of the τ ’s did not perform well. This means that they, in-
cluding the partly design-based, were not robust to deviations from the assumed
Poisson distribution of the Mi’s. The estimators of the variances of τ̂1 and τ̌1 had
large biases. The estimators of the variances of τ̂2 and τ̌2 were highly unstable and
this instability affected the stability of the estimators of the variances of τ̂ and τ̌ .
Wald confidence intervals for τ̂1 and τ̌1 had relatively low coverage probabilities.
Wald intervals for τ2 were long. However, Wald confidence intervals for τ , the most
important parameter, performed well.

With respect to the profile likelihood intervals, in Population I, they had rela-
tively low coverage probabilities. In Population II, the coverage probability of the
PLCI for τ1 was very low because this interval was sensitive to the deviation from
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Table 4: Population I. Relative biases and square roots of relative mean square
errors of variance estimators and coverage probabilities and relative lengths of 95%
confidence intervals for τ1, τ2 and τ .

Variance Confidence
estimator r-bias

√
r-mse interval CP r-length

ṼD(τ̃1) -.29 .31 τ̃1 ± 1.96
√

ṼD(τ̃1) 0.00 .11

ṼD(τ̃2) -.27 .33 τ̃2 ± 1.96
√

ṼD(τ̃2) 0.00 .13

ṼD(τ̃) -.36 .38 τ̃±1.96
√

ṼD(τ̃) 0.00 .08

V̂ (τ̂1) -.03 .17 τ̂1 ± 1.96
√

V̂ (τ̂1) 0.92 .24

Ṽ (τ̂2) .08 .94 τ̂2 ± 1.96
√

V̂ (τ̂2) 0.94 .52

V̂ (τ̂) .13 .71 τ̂ ± 1.96
√

V̂ (τ̂) 0.93 .26

V̂D(τ̂1) .02 .24 τ̂1 ± 1.96
√

V̂D(τ̂1) 0.93 .24

ṼD(τ̂2) .08 .94 τ̂2 ± 1.96
√

V̂D(τ̂2) 0.94 .52

V̂D(τ̂) .15 .72 τ̂ ± 1.96
√

V̂D(τ̂) 0.93 .26

V̌ (τ̌1) -.25 .31 τ̌1 ± 1.96
√

V̌ (τ̌1) 0.91 .24

Ṽ (τ̌2) .09 .96 τ̌2 ± 1.96
√

V̌ (τ̌2) 0.94 .59

V̌ (τ̌) .05 .67 τ̌ ± 1.96
√

V̌ (τ̌) 0.94 .26

V̌D(τ̌1) -.20 .33 τ̌1 ± 1.96
√

V̌D(τ̌1) 0.91 .25

ṼD(τ̌2) .09 .96 τ̌2 ± 1.96
√

ṼD(τ̌2) 0.94 .59

V̌D(τ̌) .07 .68 τ̌ ± 1.96
√

V̌D(τ̌) 0.94 .27

PLCI based on τ̂1 0.90 .21
PLCI based on τ̂2 0.89 .54
PLCI based on τ̂ 0.84∗ .26∗

Notes: ṼD(τ̃1), ṼD(τ̃2) and ṼD(τ̃) partly design-based estimators of the vari-
ances of the MLE’s τ̃1, τ̃2 and τ̃ proposed by Félix-Medina and Thompson

(2004) derived under a homogeneous nomination probabilities model; V̂ (τ̂1),

V̂ (τ̂2) and V̂ (τ̂), and V̂D(τ̂1), V̂D(τ̂2) and V̂D(τ̂) model-based and partly design-
based estimators of the variances of the unconditional MLE’s τ̂1, τ̂2 and τ̂ ;

V̌ (τ̌1), V̌ (τ̌2) and V̌ (τ̌), and V̌D(τ̌1), V̌D(τ̌2) and V̌D(τ̌) model-based and partly
design-based estimators of the variances of the conditional MLE’s τ̌1, τ̌2 and τ̌ ;
PLCI, profile likelihood confidence interval; CP, coverage probability; n = 10;

M̄ = 72.4, R̄(1) = 365.9 and R̄(2) = 280.3. Results for Wald intervals were
based on 500 samples, whereas results for PLCI ’s were based on 100 samples.
Results marked with an ∗ were obtained discarding 5 samples.
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Table 5: Population II. Relative biases and square roots of relative mean square
errors of variance estimators and coverage probabilities and relative lengths of 95%
confidence intervals for τ1, τ2 and τ .

Variance Confidence
estimator r-bias

√
r-mse interval CP r-length

ṼD(τ̃1) -.50 .51 τ̃1 ± 1.96
√

ṼD(τ̃1) 0.00 .11

ṼD(τ̃2) -.32 .41 τ̃2 ± 1.96
√

ṼD(τ̃2) 0.00 .14

ṼD(τ̃) -.50 .51 τ̃±1.96
√

ṼD(τ̃) 0.00 .09

V̂ (τ̂1) -.35 .37 τ̂1 ± 1.96
√

V̂ (τ̂1) 0.89 .24

V̂ (τ̂2) .054 1.34 τ̂2 ± 1.96
√

V̂ (τ̂2) 0.924 .634

V̂ (τ̂) .024 .824 τ̂ ± 1.96
√

V̂ (τ̂) 0.954 .304

V̂D(τ̂1) -.55 .56 τ̂1 ± 1.96
√

V̂D(τ̂1) 0.79 .20

V̂D(τ̂2) .054 1.34 τ̂2 ± 1.96
√

V̂D(τ̂2) 0.924 .634

V̂D(τ̂) -.014 .824 τ̂ ± 1.96
√

V̂D(τ̂) 0.924 .294

V̌ (τ̌1) -.26 .34 τ̌1 ± 1.96
√

V̌ (τ̌1) 0.92 .25

V̌ (τ̌2) .244 1.34 τ̌2 ± 1.96
√

V̌ (τ̌2) 0.944 .654

V̌ (τ̌) .054 .894 τ̌ ± 1.96
√

V̌ (τ̌) 0.974 .314

V̌D(τ̌1) -.47 .52 τ̌1 ± 1.96
√

V̌D(τ̌1) 0.84 .21

V̌D(τ̌2) .244 1.34 τ̌2 ± 1.96
√

V̌D(τ̌2) 0.944 .654

V̌D(τ̌) -.504 1.04 τ̌ ± 1.96
√

V̌D(τ̌) 0.964 .304

PLCI based on τ̂1 0.762 .212

PLCI based on τ̂2 0.954 .584

PLCI based on τ̂ 0.9212 .3312

Adjusted PLCI based on τ̂1 0.93 .39
Adjusted PLCI based on τ̂2 0.954 .584

Adjusted PLCI based on τ̂ 0.98 .49

Notes: ṼD(τ̃1), ṼD(τ̃2) and ṼD(τ̃) partly design-based estimators of the vari-
ances of the MLE’s τ̃1, τ̃2 and τ̃ proposed by Félix-Medina and Thompson

(2004) derived under a homogeneous nomination probabilities model; V̂ (τ̂1),

V̂ (τ̂2) and V̂ (τ̂), and V̂D(τ̂1), V̂D(τ̂2) and V̂D(τ̂) model-based and partly design-
based estimators of the variances of the unconditional MLE’s τ̂1, τ̂2 and τ̂ ;

V̌ (τ̌1), V̌ (τ̌2) and V̌ (τ̌), and V̌D(τ̌1), V̌D(τ̌2) and V̌D(τ̌) model-based and partly
design-based estimators of the variances of the conditional MLE’s τ̌1, τ̌2 and τ̌ ;
PLCI, profile likelihood confidence interval; CP, coverage probability; n = 10;

M̄ = 71.2, R̄(1) = 358.9 and R̄(2) = 260.0. Results for Wald intervals were
based on 500 samples, whereas results for PLCI ’s were based on 100 samples.
Results marked with a superscript were obtained discarding the number of
samples indicated by the superscript.
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the Poisson distribution of the Mi’s. However, the adjusted PLCI’s, that take into
account the extra Poisson variation of the Mi’s, showed good coverage probabilities.

It is worth noting that for some samples the values of the estimators of the
variances of τ̂2 and τ̌2 were huge. These huge values caused that the values of
the estimators of the variances of τ̂ and τ̌ were also huge. The problem was that
the computation of each estimator of the variance of τ̂2 or τ̌2 requires to solve a
system of linear equations and for some samples the matrices of coefficients were
ill-conditioned. As is indicated in Table 5, we discarded these cases. In addition,
PLCI’s could not be computed for some samples. The problem was that the upper
limit of the interval is obtained as the largest root of the equation −2 ln[Λ(τk)] =
χ2

1,1−α, and for some samples that root was huge. These cases were also discarded.

6. Conclusions and suggestions for further research

Even though the simulation studies carried out in this research were not extensive,
according to the results we can say that in presence of heterogeneous nomination
probabilities the two types of proposed MLE’s of the population sizes perform ac-
ceptably regardless of the distribution of the Mi’s. On the other hand, the MLE’s
derived under the homogeneity assumption perform badly: they have large biases
that increase their mean square errors substantially. The proposed variance esti-
mators perform tolerably well when the Poisson distribution of the Mi’s is satisfied,
but they do not perform well when that assumption is not satisfied. This implies
that they are not robust to deviations from the Poisson distribution. Similarly,
Wald confidence intervals perform acceptably well when the assumption of Poisson
distribution is satisfied, but they do not perform well when that assumption is not
satisfied, with the exception of the intervals for τ which perform acceptably well.
The results about the performance of the profile likelihood intervals do not allow
us to reach any conclusion. For instance, low coverage probabilities were obtained
when the assumption of Poisson distribution of the Mi’s is satisfied, whereas cov-
erage probabilities close to 0.95 were obtained (with the exception of the coverage
probability of the interval for τ1) when that assumption was not satisfied. There-
fore, further research is required to reach conclusions about the performance of this
type of interval.

It is worth noting that not only the performance of the PLCI’s needs further
research, but the performance of the proposed estimators of the population sizes,
estimators of their variances and Wald intervals also requires further research since
the Monte Carlo studies carried out in this research were very limited. Another
problem that needs further research is the implementation or development of effi-
cient numerical methods to compute the proposed point and interval estimators.
Their computation requires a lot of calculations and consequently is very comput-
ing time consuming. A possibility could be to implement the method to compute
PLCI’s proposed by Venzon and Moolgavkar (1988).
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