
A Small Area Procedure For Estimating Population Counts

Emily Berg∗ Wayne A. Fuller †

Abstract

When the cells of a contingency table are unplanned domains, small realized sample
sizes can cause direct survey estimators to be unreliable. We develop a procedure that
obtains more stable estimators of the cell totals and proportions in a two-way table under
an assumption that the margins of the table are well estimated. The method preserves
the direct estimators of the marginal totals and incorporates information from a previous
census. The procedure was developed for the Canadian Labour Force Survey as a way to
improve occupational detail at the province level.

In a simulation, the predictor achieves a smaller mean squared error than the direct
estimator. Due to variability in the direct estimators of the marginal totals, the reduction
in the MSE is greater for proportions than for totals. Empirical coverages of nominal 95%
prediction intervals are betweeen 93% and 96%.
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1. Introduction

Small area estimation is a term that describes estimation for domains in which
realized sample sizes are too small to produce stable direct estimators. Small areas
are often defined by a cross-classification of demographic and geographic variables.
A widely adopted solution uses models to combine direct estimators with synthetic
estimators.

Models for small area estimation typically have a hierarchical structure in
which a “sampling model” describes the distributions of the direct estimators given
the true values, and a “linking model” (Liu et al., 2007) relates the true values to
a set of auxiliary variables. Fay and Herriot (1979) use the linear mixed model
with normally distributed random effects and an assumption of a known sampling
variance. Numerous applications extend the Fay-Herriot (1979) procedure to mod-
els with nonlinear expectation functions and non-normal error distributions. Rao
(2003) and Jiang and Lahiri (2006) review methods for small area estimation.

The small area procedure that we suggest was developed for the Canadian
Labour Force Survey (LFS). The objective is to obtain more reliable estimates of
the cells in the two-way table defined by occupations and provinces. The direct
estimators of the marginal totals are judged to have adequate design properties,
and the two-way table from the previous Census provides auxiliary information.

Purcell and Kish (1980) propose Structure Preserving Estimation (SPREE)
as a way to update the contingency table from a previous census using direct es-
timators of the marginal totals obtained from a current survey. SPREE preserves
the interactions in the Census and the margins from the current survey. If the in-
teractions in the census do not hold for the current time period, then the SPREE
estimators are biased. Zhang and Chambers (2004) generalize the loglinear model
underlying SPREE to a generalized linear model with interactions proportional to
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the Census interactions. They then extend the generalized linear model to a gener-
alized linear mixed model with normally distributed random effects. We suggest an
alternative way to extend the generalized linear model to a nonlinear mixed model.

We organize the rest of this document as follows. We provide more back-
ground on the LFS application in section 2. We discuss the SPREE procedure and
extensions of SPREE in more detail in section 3. We specify a model for the direct
LFS estimators in section 4 and develop a model based predictor in section 5. We
define an estimator of the MSE in section 5 and evaluate the procedure through
simulation in section 6.

2. Canadian Labour Force Survey

The Canadian Labour Force Survey (LFS) produces monthly estimates of em-
ployment characteristics and standard labour market indicators. The LFS collects
occupational data using a hierarchical classification system in which three digit
codes are nested in two digit codes. For example, the two digit code A1 denotes
the category for specialist managers. The four three digit codes A11-A14 subdivide
specialist managers into more specific occupations. (Hidiroglou and Patak, 2009)

The LFS estimation system provides weighted direct estimators of occu-
pational totals through the three digit level of detail in each province. Because
occupations are unplanned domains in the LFS sample design, realized sample sizes
in occupations are random. Small realized sample sizes cause the direct estimators
of three digit totals and proportions in small provinces to have unacceptably large
coefficients of variation. In contrast, the direct estimators of the province two digit
totals and the national three digit totals (within two digit codes) are judged to have
adequate design properties in terms of both bias and precision. Stable monthly
estimators of three digit totals and proportions at the province level are desired.
(Hidiroglou and Patak, 2009)

The Canadian Census of Population, conducted every five years, publishes
occupational counts through the three digit level of detail for each province. The
proportions of two digit codes in each three digit code calculated with the Census
data by province are highly correlated with the corresponding proportions calcu-
lated with the direct LFS estimators. Although differences between the data col-
lection protocols used in the LFS and the Census may lead to some differences in
the resulting occupational data, the Census provides the best available source of
auxiliary information for estimating three digit occupational totals and proportions
at the province level with the LFS data. (Hidiroglou and Patak, 2009)

Our objective is to obtain estimators of the cell totals in the two-way table
defined by the cross-classification of three digit codes and provinces in a single two
digit code with better precisions than the direct estimators. Because the direct LFS
estimators of the margins of the two-way table have small coefficients of variation,
we desire a predictor of the cell totals that preserves the direct estimators of the
margins. We will also make use of the Census two-way table to the extent that the
Census data provide useful information about the employment totals in the current
time point.

3. SPREE and Generalizations

Structure Preserving Estimation (SPREE) is a synthetic small area procedure
that combines auxiliary information, often data from a previous census, with current
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survey data to improve the precision of estimators of the cell totals in a multi-way
contingency table (Purcell and Kish, 1980). The idea underlying SPREE is that
relationships inherent in the previous census serve as a good model for the current
time period, while estimates of the marginal levels should come from the current
survey because the census totals are out-dated. SPREE adjusts the interior of the
table from the previous census in a way that preserves the interactions from the
census and the margins from the current survey. Purcell and Kish (1980) implement
SPREE by applying iterative proportional fitting to the two-way table with the
census totals in the interior cells and the margins estimated from the current survey.

Noble et al. (2002) characterize the model underpinning SPREE as a special
case of a generalized linear model. The estimators of the cell totals obtained from
SPREE are the maximum likelihood estimators of the expected counts under a
generalized linear model with a Poisson random component and a log link. Main
effects for rows and columns are estimated with the direct estimators. Interactions
are set equal to the interactions in a saturated loglinear model fit to the census
two-way table. The representation of SPREE as maximum likelihood estimation
suggests Newton-Raphson as an alternative to iterative proportional fitting as a
way implement SPREE (Noble et al., 2002).

Noble et al. (2002) extend the SPREE model to the family of generalized
linear models. In the general setting, the parameters of the linear predictor are
partitioned into two sets: one set (eg., the main effects in the case of SPREE) is
estimated from the direct estimators and the second set (eg., the interactions) from
the auxiliary data. The representation of SPREE as a special case of a generalized
linear model reveals that estimating a subset of the model parameters from an
auxiliary source is not limited to categorical responses and explanatory variables.
Noble et al. (2002) illustrate the generalization of SPREE through an application
to estimation of unemployment rates from the Household Labour Force Survey
conducted by Statistics New Zealand.

Griffiths (1996) considers two composite estimators of the cell totals in con-
tingency tables defined by economic characteristics in congressional districts in Iowa.
One of the composite estimators is a convex combination of the SPREE estimator
and the corresponding direct estimator. The weights used to form the convex combi-
nation depend on the design MSE’s of the SPREE estimators and the design MSE’s
of the direct estimators. The other composite estimator is the EBLUP based on a
mixed linear model for the direct estimators of totals.

Zhang and Chambers (2004) develop two extensions of the loglinear model
underlying SPREE. First, the generalized linear structural model (GLSM) permits
the interactions from the current time point to be proportional to (rather than equal
to, as in SPREE) the interactions from a census. A further extension of the GLSM
to the generalized linear structural mixed model (GLSMM) incorporates random
small area effects.

4. A Model for Three Digit Codes in Provinces

Let p̂ik be the direct estimator of the ratio of the total in province k employed
in three digit code i to the two digit total for province k, where i = 1, . . . ,m, and
k = 1, . . . ,K. We assume that the direct estimator of the proportion satisfies

p̂ik = pik + uik + eik, (1)

Section on Survey Research Methods – JSM 2009

3813



where uik is a mean zero random small area effect, eik is a mean zero sampling
error, and

pik = gik(N ,λo) (2)

is a function of the vector of Census totalsN and a vector of parameters λo. Assume
uik and ejt are uncorrelated for all i, k, j, t. Because we treat the Census totals as
fixed, pik is a fixed parameter. The true cell proportion to be predicted is

p∗ik = pik + uik. (3)

The model (1) expresses the direct estimator as a sum of three parts: the
marginal expected value, pik, the random small area effect, uik, and the random
sampling error, eik. We discuss the specific assumptions about the form of the func-
tion (2) and the variances of the random components in the following subsections.
We then discuss the implications of the model assumptions on the first and second
moments of the direct estimators of the cell totals.

4.1 Fixed Expected Value

Let (αβ)cenik be the maximum likelihood estimate of the interaction in a satu-
rated loglinear model that specifies the Census totals to have independent Poisson
distributions with means {µcenik : i = 1, . . . ,m, and k = 1, . . . ,K} satisfying

log(µcenik ) = αceni + βcenk + (αβ)cenik .

For estimability, set αcen1 = (αβ)ceni1 = (αβ)cen1k = 0 for i = 1, . . . ,m and k =
1, . . . ,K. Define

Tik(λ) = exp(αi + βk + θ(αβ)cenik ), (4)

where α1 = 0, and λ = (α2, . . . , αm, β1, . . . , βK)′. Then, assume the function in (2)
is

pik = gik(N ,λo) = T−1.k Tik,

where λo = (αo,2, . . . , αo,m, βo,1, . . . , βo,K , θo)
′, Tik = Tik(λo), and T.k =

∑m
i=1 Tik.

By construction,
∑m

i=1 pik = 1.
The loglinear model in (4) is the Generalized Linear Structural Model

(GLSM) introduced by Zhang and Chambers (2004). The assumption that θo = 1
produces the loglinear model underlying SPREE. The SPREE model specifies the
odds ratios in the two-way table with Tik in the cell for three digit code i and
province k to equal the odds ratios in the two-way table of Census totals. Allowing
θo to differ from 1 relaxes the assumption that the interactions in the Census persist
unchanged through time.

In section 5, we estimate λo using the estimator that would be the maximum
likelihood estimator under an assumption that the direct estimators of the totals
are independent Poisson random variables. We call the resulting estimators of Tik
and pik the GLSM estimators. The GLSM estimators are equal to the SPREE
estimators if the estimator of θo is constrained to equal 1. If the interactions in
the table of the expected values of the direct estimators are proportional to the
interactions in the Census, with a proportionality constant not equal to 1, then
estimating θo updates the SPREE estimators so that the estimated interactions
better represent the interactions in the current time point.
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4.2 Small Area Effects

Let uk = (u1k, . . . , umk)
′ denote the vector of small area effects for a province.

Assume that E{uik} = 0 and that the population covariance matrix for uk is

Σuu,k = ψ[diag(pk)− pkp′k] := ψΓuu,k, (5)

where pk = (p1k, . . . , pmk)
′, and ψ is a constant. The variance of uk in (5) is pro-

portional to the multinomial covariance matrix. Assuming the covariance between
uk and ut is zero for t 6= k, the covariance matrix of the vector of small area effects,
u = (u′1, . . . ,u

′
k)
′, is block-diagonal with ψΓuu,k as the kth block. Because the

columns of the covariance matrix in (5) sum to zero,
∑m

i=1 uik = 0 for all k.

4.3 Sampling Errors

Assume that E[eik |uik] = 0 so that the direct estimators are conditionally unbi-
ased for the true proportions defined in (3), given uik. Let Σee,k denote the variance
of ek = (e1k, . . . , emk)

′. In the LFS, sampling is independent across provinces, so
Σee, the covariance matrix of the vector of design errors, e = (e′1, . . . , e

′
K)′, is block-

diagonal with Σee,k as the kth block. Because the LFS estimators of the proportions
in a single province sum to 1, the covariance matrix for ek is such that

∑m
i=1 eik = 0

for all k.

4.4 True Totals and Corresponding Direct Estimators

The true total in three digit code i and province k is

M∗ik = (pik + uik)T.k. (6)

Because pikT.k = Tik, Tik is the expected value of M∗ik. Because
∑m

i=1 uik = 0 and∑m
i=1 pik = 1, the true province two digit total is equal to its expected value;

m∑
i=1

M∗ik := M.k = T.k.

In contrast, the expected value of the true national three digit total is a function of
the uik. The true national three digit total is

Mi. =
K∑
k=1

M∗ik =
K∑
k=1

(pik + uik)T.k.

The expected value of Mi. is

E[Mi.] =

K∑
k=1

pikT.k := Ti..

Because

K∑
k=1

T.kuik 6= 0, (7)

Mi. does not equal Ti.. However, under the assumption that 0 < c1 < T.k < c2 <∞
and that u has sufficient moments, K−1Mi.−K−1Ti. converges to zero in probability
as K increases.
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The model for the proportions has implications for the first and second
moments of the direct estimators of the cell totals. Let M̂.k be the direct estimator of
the two digit total in province k. Assume M̂.k is unbiased for T.k and is independent
of the vector of small area effects u. Because the direct estimator of the total and
the proportion are related through the identity, M̂ik = M̂.kp̂ik, it follows that

M̂ik = Tik + uikM̂.k + aik, (8)

where aik = eikM̂.k + pik(M̂.k − T.k), and aik is the sampling error in the scale of
totals. By (8) and the assumption that uik and M̂.k are uncorrelated, E{M̂ik} = Tik.

Let (u′,u′
M̂

)′ be the vector of small area effects, where uM̂ = (u′
M̂,1

, . . . ,u′
M̂,K

)′,

and uM̂,k = ukM̂.k. By the assumption that M̂.k is independent of uik (for all i, k),

the variance of (u′,u′
M̂

)′ has the form,

V {(u′,u′
M̂

)′} = ψBuu,

where Buu is a function of Γuu and of the expected values of the province two digit
totals. Let Σdd denote the large sample variance of the vector of sampling errors
(e′,a′)′, where a = (a′1, . . . ,a

′
K)′, and ak = (a1k, . . . , amk)

′. A Taylor expansion can
be used to express Σdd as a function of the expected values of the direct estimators
and the variance of e. The specific form of Buu and a description of the Taylor
expansion used to derive Σdd are omitted.

To summarize, the quantities of interest are the true proportions, defined in
(3), and the true totals, defined in (6). The data available for prediction include the
direct estimators of the proportions, defined in (1), and the corresponding estimators
of the cell totals, defined in (8). The Census table provides auxiliary information.

5. Procedure

The suggested procedure for predicting the true totals, defined in (6), and the
proportions, defined in (3), is composed of several steps. First, we estimate the fixed
expected value, pik, using the Poisson score function as a set of estimating equa-
tions. Second, we obtain an estimator of ψ, defined in (5), using approximations for
expected mean squares. Third, we calculate an initial predictor as a weighted com-
bination of the direct estimator and of the estimator of pik from the first step, with
weights determined by estimators of the variances. Because the initial predictors are
not calibrated to the direct estimators of the marginal totals, we use a final raking
operation to benchmark the predictors. Finally, we use a linear approximation to
define an estimator of the MSE.

5.1 Estimator of Fixed Expected Value

Following Noble et al. (2002) and Zhang and Chambers (2004), we use the Pois-
son score function to estimate the parameter vector λo, defined following (4). The
resulting estimators of the expected values of the totals satisfy the restrictions that
the sum across provinces for a fixed three digit code equals the direct estimator of
the national three digit total, and the sum across the three digit codes in a province
equals the direct estimator of the province two digit total. The score function under
a model that specifies the direct estimators of the totals to be independent Pois-
son random variables with means {Tik : i = 1, . . . ,m, and k = 1, . . . ,K}, defined
following (4), is

s(λ) = X ′(M̂ − T (λ)), (9)
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where X is the mK × (m + K) matrix with x′ik = (I[i = 2], . . . , I[i = m], I[k =
1], . . . , I[k = K], (αβ)cenik ) in row m(k− 1) + i (the row corresponding to three digit
code i and province k), I[·] is the indicator function, T (λ) = (T1(λ)′, . . . ,TK(λ)′)′,
Tk(λ) = (T1k(λ), . . . , Tmk(λ))′, and M̂ is the vector of direct estimators of cell
totals listed in the order corresponding to the order of the elements of T (λ). The
estimator λ̂ = (α̂2, . . . , α̂m, β̂1, . . . , β̂K , θ̂)

′ of λo satisfies s(λ̂) = 0. The estimator
of the expected value of the proportion is

p̂T,ik = M̂−1.k T̂ik, (10)

where T̂ik = Tik(λ̂) = exp(α̂i + β̂k + θ̂(αβ)cenik ), and α̂1 = 0. As discussed in

section 4, we refer to T̂ik and p̂T,ik as the GLSM estimators. The GLSM estimators

satisfy the marginal restrictions;
∑m

i=1 T̂ik = M̂.k, and
∑K

k=1 T̂ik = M̂i., where

M̂i. =
∑K

k=1 M̂ik.
The estimator p̂T,ik is approximately linear in the direct estimators of the

cell totals. To justify the linear approximation, we assume that λ̂ converges in
probability to λo as the dimensions of the two-way table and the province sample
sizes increase. By a Taylor expansion of the score function in (9) around the true
parameter λo,

λ̂− λo ≈ (X ′diag(T )X)−1X ′(M̂ − T ), (11)

where T = (T ′1, . . . ,T
′
K)′, Tk = (T1k, . . . , Tmk)

′, and diag(T ) is the diagonal matrix
with the vector T on the diagonal. To complete the linear approximation, let
p̂T = (p̂′T,1, . . . , p̂

′
T,K)′, where p̂T,k = (p̂T,1k, . . . , p̂T,mk)

′, and let Dp denote the

matrix of derivatives of p̂T with respect to λ̂, evaluated at λo. By (11),

p̂T − p ≈ W ′
T (uM̂ + a), (12)

where W ′
T = Dp(X

′diag(T )X)−1X ′, p = (p′1, . . . ,p
′
K)′, and uM̂ + a = M̂ − T by

(8).

5.2 Estimator of Model Variance

An estimated generalized least squares (EGLS) estimator of the variance of the
small area random effects is constructed under an approximation for E[(p̂ik−p̂T,ik)2].
Wang and Fuller (2003) discuss the procedure that we use.

The EGLS estimator is based on a linear approximation for the difference,
p̂ − p̂T , where p̂ = (p̂′1, . . . , p̂

′
K)′, and p̂k = (p̂1k, . . . , p̂mk)

′. Under our model (1)
and by the Taylor expansion in (12),

p̂− p̂T ≈W ′(e′,a′)′ +W ′(u′,u′
M̂

)′, (13)

where W ′ = (ImK , −W ′
T ), and ImK denotes the mK ×mK identity matrix. Let

(p̂− p̂T )2 be the mK × 1 vector with elements that are the squares of the elements
of p̂ − p̂T . Let Σa = W ′ΣddW and Σb = W ′BuuW , and let σa and σb be the
vectors containing the diagonal elements of Σa and Σb, respectively. The matrices
W , Σdd, and Buu are functions of the expected values of the direct estimators and
the sampling variances. We estimate Σa and Σb by replacing the expected values
with the GLSM estimators and the sampling variances with the LFS estimators of
the design variances. Let Σ̂a and Σ̂b be the resulting estimates of Σa and Σb, and
let σ̂a and σ̂b be the associated vectors of diagonal elements. By (13),

E[(p̂− p̂T )2] ≈ σa + σbψ, (14)
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and under an assumption of normality,

V {(p̂− p̂T )2} ≈ 2(Σa + Σbψ)2, (15)

where the elements of the matrix (Σa + Σbψ)2 are the squares of the elements of
the matrix (Σa + Σbψ).

An EGLS estimator of ψ under the linear model defined by (14) and (15)
requires an initial estimate of ψ. We obtain an initial estimate of ψ from an estimator
of the lower bound of the variance of an EGLS estimator. If ψ = 0, then, under an
assumption of normally distributed errors, an estimator of the variance of an EGLS
estimator is

V̂2(ψ̃0) = [σ̂′b(2Σ̂2
a)
−1σ̂b]

−1, (16)

where Σ̂2
a contains the squares of the elements of Σ̂a. Under normality, the standard

error of an estimator of a variance is proportional to the variance. In analogy with
the method of Wang and Fuller (2003), we use ξ = 0.5[V̂2(ψ̃0)]

.5 as the initial
estimate of ψ.

Setting ψ = ξ in the variance expression (15), an EGLS estimator of ψ is

ψ̃ =
σ̂′b[2(Σ̂a + Σ̂bξ)

2]−1((p̂− p̂T )2 − σ̂a)
σ̂′b[2(Σ̂a + Σ̂bξ)2]−1σ̂b

. (17)

The EGLS estimator (17) ignores the effect of replacing σa with an estimator. We
use

ψ̂ = max(ξ, ψ̃) (18)

as the estimator of ψ. The initial value, ξ, imposes a strictly positive lower bound
on the final estimator, ψ̂.

If additional sources of information about ψ are available, one can improve
the estimator of ψ. For example, the LFS survey supplies estimators of ψ from

several time points, t = 1, . . . , d. Let V̂
(t)
2 denote the estimator (16) from the tth

time point, and let ψ̃(t) denote the corresponding EGLS estimator (17), which may
be negative. Then, a smoothed estimator of ψ is

ψ̂d = max(V̄2, ψ̄), (19)

where V̄2 = (2d)−1
[∑d

t=1 V̂
(t)
2

].5
, and ψ̄ = d−1

[∑d
t=1 ψ̃

(t)
]
. Incorporating multiple

time points has the potential to reduce the variance of the estimator of ψ and
subsequently improve the precisions of the predictors.

5.3 Predictors of True Proportions and Totals

We desire predictors of the true proportions that have small mean squared errors
and also preserve the direct estimators of the marginal totals. We define an initial
predictor that estimates the minimum MSE convex combination of p̂ik and pik. We
benchmark the initial predictors to the direct estimators of the marginal totals.

If we restrict to predictors that are linear in the direct estimators of the pro-
portions, then a vector of minimum mean squared error predictors of the proportions
in province k is pblp,k = pk +ψΓuu,k(Σee,k +ψΓuu,k)

−(p̂k−pk), where “−” denotes
a generalized inverse. Because the elements of pblp,k may be larger than 1 or smaller
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than 0, we consider a univariate predictor of the form γikp̂ik + (1 − γik)pik. The
value of γik that minimizes the mean squared error, E[(γikp̂ik + (1−γik)pik−p∗ik)2],
is

γik =
ψpik(1− pik)

ψpik(1− pik) + σ2e,ik
, (20)

where σ2e,ik is the ith diagonal element of Σee,k. The associated predictor is

p̃ik(p,γ) = pik + γik(p̂ik − pik). (21)

Isaki and Fuller (2000) compare univariate predictors calculated with the diago-
nal elements of an estimated covariance matrix with the empirical BLUP. In their
simulation study, the univariate predictors have smaller MSE’s than the predictors
based on the full estimated covariance matrix.

If

Σee,k = σ2a,kΓuu,k (22)

for a constant σ2a,k, then the element of pblp,k corresponding to three digit code i and
province k is equal to p̃ik(p,γ). Also, when (22) holds, the weight γik is constant
for all three digit codes in province k; γik = γk = ψ(ψ + σ2a,k)

−1.
The predictor (21) depends on unknown parameters. To calculate the predic-

tor, we use the EGLS estimator of ψ and the GLSM estimator of pik. We compute
an initial predictor for cell (i, k) as

p̂pred,ik = p̂T,ik + γ̂ik(p̂ik − p̂T,ik), (23)

where

γ̂ik =
ψ̂p̂T,ik(1− p̂T,ik)

ψ̂p̂T,ik(1− p̂T,ik) + σ̂2e,ik
, (24)

and σ̂2e,ik is the ith diagonal element of an estimator of Σee,k. By construction,
the univariate predictor in (23) is between the direct estimator and the GLSM
estimator. An undesirable property of p̂pred,ik is that the sum across the three digit
codes in a single province may not equal 1. Also, the univariate predictors are not
benchmarked to the direct estimators of the national three digit totals;

K∑
k=1

p̂pred,ikM̂.k 6= M̂i..

If the estimate of Σee,k is proportional to the estimate of Γuu,k, then the
estimated coefficient (24) is the same for all three digit codes in a province;

γ̂ik = γ̂k =
ψ̂

ψ̂ + σ̂2a,k
, (25)

where the estimate of Σee,k is

Σ̂ee,k = σ̂2a,kΓ̂uu,k = σ̂2a,k[diag(p̂T,k)− p̂T,kp̂′T,k]. (26)

When (26) holds, the total of the predicted proportions in a province is 1 because∑m
i=1(p̂ik − p̂T,ik) = 0.
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An initial estimator of the total employed in three digit code i and province
k is

M̂∗ik = p̂pred,ikM̂.k. (27)

Because the table with M̂∗ik in the entry for three digit code i and province k does
not necessarily satisfy the desired benchmarking property, we suggest using a final
raking operation to benchmark the predictors. Let M̃ik denote the predicted total
in three digit code i and province k in the raked table. Define the proportions
arising from the benchmarked predictors of totals by

p̃ik =
M̃ik

M̂.k

(28)

for i = 1, . . . ,m and k = 1, . . . ,K. Unlike the initial univariate predictor p̂pred,ik,
the benchmarked proportion in (28) is not restricted to fall between the direct
estimator and the GLSM estimator. However, the benchmarked proportions satisfy
the marginal restrictions;

∑m
i=1 p̃ikM̂.k = M̂.k, and

∑K
k=1 p̃ikM̂.k = M̂i..

5.4 Estimator of Mean Squared Error

We use Taylor series to approximate the MSE of the predictor. Define

p̃ik(γ) = p̂T,ik + γik(p̂ik − p̂T,ik), (29)

which is the univariate predictor calculated with the unknown γik defined in (20).
Let p̃(γ) be the vector with element p̃ik(γ), let Dγ be the diagonal matrix with
diagonal element γik, and let p∗ be the vector of true proportions defined in (3).
The elements of p̃(γ), Dγ , and p∗ are listed in the order with provinces grouped
together. By the linear approximations in the previous section,

p̃(γ)− p∗ ≈Dγ(u+ e)− u+ (ImK −Dγ)W ′
T (uM̂ + a) (30)

= D1(e
′,a′)′ +D2(u

′,u′
M̂

)′,

whereD1 =
(
Dγ , (ImK −Dγ)W ′

T

)
andD2 =

(
(Dγ − ImK), (I −Dγ)W ′

T

)
.

An approximation for the MSE based on (30) is

MSE1 = D1ΣddD
′
1 +D2ψBuuD

′
2. (31)

If Σee,k = σ2a,kΓuu,k, and if

E[Dγe((uM̂ + a)′WT − u)(ImK −Dγ)′] = 0, (32)

then MSE1 simplifies to

MSE1 = Σuu −Σuu(Σuu + Σee)
−Σuu + (ImK −Dγ)Vglsm(ImK −Dγ)′, (33)

where Σuu and Σee are the block-diagonal covariance matrices of u and e, re-
spectively, and Vglsm is the approximate covariance matrix of p̂T . Based on the
linear approximation in (12), Vglsm = W ′

T (ψBuu22 + Σdd22)WT , where Σdd22 and
Buu22 are the mK ×mK sub-matrices of Σdd and Buu giving the variances of a
and uM̂ , respectively. An estimator of the diagonal element of the matrix in (33)
corresponding to three digit code i and province k is

ˆMSE1,ik =
ψ̂p̂T,ik(1− p̂T,ik)σ̂2a,k

ψ̂ + σ̂2a,k
+ (1− γ̂k)2V̂glsm,ik,ik, (34)
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where V̂glsm,ik,ik denotes the estimator of the diagonal element of Vglsm correspond-
ing to three digit code i and province k. The estimator (34) has the form

ˆMSE1,ik = g1,ik(ψ̂) + g2,ik(ψ̂).

The first term in the sum is g1,ik(ψ̂) = [ψ̂ + σ̂2a,k]
−1[ψ̂p̂T,ik(1 − p̂T,ik)σ̂2a,k], which

accounts for the prediction uncertainty due to the small area effects (the difference
between p̃ik(p,γ) and p∗ik). The second term is g2,ik(ψ̂) = (1− γ̂k)2V̂glsm,ik,ik, which
accounts for uncertainty due to estimation of pik (the difference between p̃ik(γ) and
p̃ik(p,γ)). The estimator (34) ignores variability in the predictor due to estimation
of ψ.

We define an estimator that accounts for uncertainty due to estimation of
ψ in analogy with the Prasad-Rao (1990) approach. Under normality, an estimator
of the variance of ψ̂ is

V̂ (ψ̂) =
σ̂′bV

−1
ξ Vψ̂V

−1
ξ σ̂b

(σ̂′bV
−1
ξ σ̂b)2

, (35)

where Vξ = 2(Σ̂a + Σ̂bξ)
2, and Vψ̂ = 2(Σ̂a + Σ̂bψ̂)2. If the estimator of ψ is

an average of d estimators from d uncorrelated time points, as in (19), then an
estimator of the variance of the pooled estimator of ψ is

V̂d = d−2
d∑
t=1

V̂ (ψ̂(t)), (36)

where V̂ (ψ̂(t)) is the estimator (35) from the tth time point. Letting γ′k(ψ̂) denote

the partial derivative of γ̂k with respect to ψ̂, evaluated at ψ̂, we define

g3,ik(ψ̂) = [γ′k(ψ̂)]2(σ̂2a,k + ψ̂)p̂T,ik(1− p̂T,ik)V̂ (ψ̂) (37)

= p̂T,ik(1− p̂T,ik)
σ̂4a,k

(σ̂2a,k + ψ̂)3
V̂ (ψ̂)

to estimate the effect of estimation of ψ on the MSE. If the estimator of ψ is the
pooled estimator, ψ̂d defined in (19), then V̂ (ψ̂) in (37) is replaced by V̂d defined
in (36). To estimate the bias of g1,ik(ψ̂) for g1,ik(ψ), the corresponding quantity
constructed with the true ψ instead of the EGLS estimate, we use

Ê[g1,ik(ψ̂)− g1,ik(ψ)] = 0.5g′′1,ik(ψ̂)V̂ (ψ̂) = −g3,ik(ψ̂), (38)

where g′′1,ik(ψ̂) is the second partial derivative of g1,ik(ψ̂) with respect to ψ̂ evaluated

at ψ̂. Assembling the components in (34), (37), and (38), we obtain

ˆMSE2,ik = ˆMSE1,ik + 2g3,ik(ψ̂) (39)

as the estimator of the MSE of the predictor of the proportion for three digit code i
and province k. We define an estimator of the MSE for totals through an argument
analogous to the derivation used for proportions. Details about the MSE estimator
for totals are omitted.

The estimator of the MSE defined above neglects the effect of the final raking
operation. One justification of the Taylor approximation for the raked predictors is
that the variance of the small area effect, uik, converges to zero. Because we do not
make this assumption, we do not use the linear approximation to the final raking
operation to derive an alternative estimator of the MSE.
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6. Simulation

This section has three parts. First, we explain how we use the Dirichlet-
multinomial distribution to generate variables to represent the direct estimators.
Second, we show that the simulation model satisfies the assumptions of model (1)
and specify estimators of the variances. Third, we describe the results of the Monte
Carlo experiment.

6.1 Hierarchical Model for Simulation

The data for the simulation study were generated to represent the two digit code
A1 (specialist managers) cross-classified into 4 three digit codes by 10 provinces.
The 4× 10 table of totals from the 2006 Census and estimated province totals from
the 2008 LFS were used to define the parameters. Let {(αβ)cenik : i = 1, . . . ,m; k =
1, . . . ,K} denote maximum likelihood estimates of the interactions in the Census
table under the assumption that the Census totals are independent Poisson random
variables. The interactions corresponding to three digit code 1 or province 1 are
set to zero. Next, fix a parameter vector λo = (αo,2, . . . , αo,m, βo,1, . . . , βo,K , θo)

′.

Finally, set Tik = exp(αo,i + βo,k + θo(αβ)cenik ), Ti. =
∑K

i=1 Tik, T.k =
∑m

i=1 Tik, and
pik = T−1.k Tik. The resulting expected values of the proportions and marginal totals
are in Table 1.

To induce sampling variability in the direct estimators of the marginal totals,
we generate the sample size, ñk, in the two digit code in province k from a binomial
distribution with a sample size of mk and a success probability equal to 0.01. The
direct estimator of the province two digit total is M̂.k = (mk0.01)−1T.kñk. We
choose the expected sample sizes to produce the coefficients of variation of the
direct estimators of the province two digit totals in the last row of Table 1. The
expected sample sizes are on the horizontal axes of Figures 1-3. The provinces in
Table 1 and in Figures 1-3 are listed in increasing order by expected sample size.

Table 1: Expected Values and Coefficients of Variation

Province PEI NF NB NS SK MB AB BC QC ON Ti.

i = 1 0.401 0.349 0.340 0.358 0.350 0.348 0.338 0.332 0.382 0.336 99611
i = 2 0.194 0.190 0.198 0.206 0.183 0.185 0.212 0.199 0.216 0.222 60438
i = 3 0.243 0.253 0.261 0.255 0.256 0.271 0.262 0.281 0.257 0.273 76033
i = 4 0.163 0.208 0.201 0.182 0.210 0.195 0.188 0.187 0.144 0.169 48600

T.k 1398 4332 6228 8311 8702 10335 29720 35599 73515 106541 284682

CV of M̂.k 0.22 0.20 0.20 0.18 0.14 0.12 0.12 0.12 0.11 0.06

To specify distributions for generating p∗k, we fix ψ = 0.01726, the median
of the inverses of the expected sample sizes. Then, we generate the vector of true
proportions p∗k from a Dirichlet distribution with probability density function

P (x1k, . . . , xmk) =

[∏m
i=1 Γ(ωik)

Γ(ωo)

]−1 m∏
i=1

xωik−1
ik , (40)

where
∑m

i=1 xik = 1, and Γ(a) =
∫∞
0 ta−1e−tdt. To generate vectors of proportions

with the desired first and second moments (E[p∗k] = pk, and V {p∗k} = Γuu,kψ), we
set ωo = ψ−1 − 1 = 0.01726−1 − 1, and ωik = pikωo.

Given ñk and p∗k, the direct estimator of the total in three digit code i and

province k depends on a multinomial random vector, (M̃
(d)
1k , . . . , M̃

(d)
mk)
′, with proba-

bility mass function, P (M̃
(d)
1k = x1k, . . . , M̃

(d)
mk = xmk) = ñk!(

∏m
i=1 xik!)

−1∏m
i=1(p

∗
ik)

xik ,
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where x1k, . . . , xmk are non-negative integers that sum to ñk. The direct estimator

of the total employed in three digit code i and province k is M̂ik = ñ−1k M̂.kM̃
(d)
ik .

The corresponding direct estimator of the proportion is p̂ik = M̂−1.k M̂ik = ñ−1k M̃
(d)
ik .

We explain how this data generating model satisfies the assumptions of model (1)
in the next section.

6.2 Second Moments and Variance Estimators

To express the model for simulation in the form of model (1), let ek = p̂k − p∗k,
and let uk = p∗−pk. By properties of the multinomial and Dirichlet distributions,
ek and uk have zero means and are uncorrelated. The variance of uk is Γuu,kψ, and
the variance of ek is E{ñ−1k }Γuu,k(1− ψ).

We define estimators of the variances of ek and uk to approximate the pro-
cedures used in the LFS. The estimator of the sampling variance in the simulation
is Σ̂ee,k = ñ−1k [diag(p̂T,k) − p̂T,kp̂′T,k]. In the LFS, the estimator of ψ is smoothed
across several time points, t = 1, . . . , d. In the simulation, we used the procedure de-
scribed in section 5.2 to combine estimators of ψ from four independently generated
data sets.

6.3 Results

Figure 1 shows the ratios of the Monte Carlo MSE’s of the predictors, defined
in (28), and the GLSM estimators, defined in (10), to the Monte Carlo MSE’s of
the direct estimators of the proportions. Four ratios are plotted for each province.
The expected province sample sample sizes are listed in increasing order on the
horizontal axis. The Monte Carlo sample size is 10,000. In the four provinces with
the four smallest expected sample sizes, the empirical MSE’s of the predictors are
approximately 34% − 51% of the empirical MSE’s of the direct estimators (Monte
Carlo standard errors of the ratios are 0.006-0.010), while the empirical MSE’s of the
GLSM estimators are approximately 52%−80% of the empirical MSE’s of the direct
estimators (Monte Carlo SE, 0.010-0.016). In the next four provinces (SK-BC), the
empirical MSE’s of the predictors are between 57% and 68% of the empirical MSE’s
of the direct estimators (Monte Carlo SE, 0.008-0.011), while the empirical MSE’s
of the GLSM estimators are between 116% and 161% of the empirical MSE’s of
the direct estimators (Monte Carlo SE, 0.024-0.034). In QC, the province with the
second largest expected sample size, the MSE’s of the predictors are 66%− 80% of
the MSE’s of the direct estimators (Monte Carlo SE, 0.005-0.007), and the MSE’s
of the GLSM estimators are 85% − 111% of the MSE’s of the direct estimators
(Monte Carlo SE, 0.014-0.022). In ON, the province with the largest sample size,
the empirical MSE’s of the predictors are approximately 88%−90% of the empirical
MSE’s of the direct estimators (Monte Carlo SE, 0.007-0.008), while the bias of the
GLSM estimator leads to MSE’s between 228% and 274% of the MSE’s of the
direct estimators (Monte Carlo SE, 0.043-0.055). The MSE’s of the predictors are
uniformly smaller than the MSE’s of the direct estimators.

Figure 2 shows ratios of Monte Carlo MSE’s of the predictors to Monte Carlo
MSE’s of the direct estimators for totals and proportions. The relative MSE’s for
both proportions and totals tend to increase as the expected sample sizes increase.
In the smallest province (PEI), the reduction in the MSE is smallest for the cell with
the largest expected value. The largest of the expected proportions in the smallest
province is 0.401 (Table 1), and the relative MSE for the associated total is 72%.
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Figure 1: Ratios of Monte Carlo MSE’s of predictors and GLSM estimators to
Monte Carlo MSE’s of direct estimators of proportions. (Monte Carlo sample size:
10,000)

Figure 2 also shows that the reduction in the MSE is uniformly smaller for totals
than for proportions. We conjecture that variability in the direct estimators of the
province two digit totals accounts for the differences between the MSE’s for totals
and proportions. In particular, variability in the direct estimators of the province
margins limits the possible reduction in the MSE of totals.
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Figure 2: Ratios of Monte Carlo MSE’s of predictors to Monte Carlo MSE’s of
direct estimators. (Monte Carlo sample size: 10,000)

Figure 3 shows the empirical coverages of nominal 95% prediction intervals.
The empirical coverages for proportions remain between 94.4% and 96%. Empirical
coverages for totals are between 93% and 94% in the smaller provinces and are closer
to 95% in the larger provinces. For both totals and proportions, the empirical
coverages tend to increase with the expected sample sizes. We do not have an
explanation for the increasing trend.
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Figure 3: Empirical coverages of nominal 95% prediction intervals. (Monte Carlo
sample size: 10,000)
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