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Abstract 
Unit level logistic regression models with mixed effects have been used for estimating 
small-area proportions in the literature. Normality is commonly assumed for the random 
effects. Nonetheless, real data often show significant departures from normality 
assumptions of the random effects. To reduce the risk of model misspecification, we 
propose an adaptive hierarchical Bayes estimation approach in which the distribution of 
the random effect is chosen adaptively from the exponential power class of probability 
distributions. The richness of the exponential power class ensures the robustness of our 
hierarchical Bayes approach against departure from normality. We demonstrate the 
robustness of our proposed model using simulated data and real data. 
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1. Introduction 
 

During the past three decades, the demand for statistical estimates for small areas 
using large-scale survey data has increased dramatically in many different application 
areas including income and poverty, education, health, and agriculture. For budget 
restrains, the same survey data, originally designed to provide statistically reliable, design 
based estimates of characteristics of interest for a high level of aggregation (e.g., national 
level, large geographic domains such as region), also is used to generate estimates at a 
lower level (e.g., states, counties, etc.). In absence of adequate direct information from 
sample survey data, model-based methods that use mixed models to combine information 
from the survey data and external sources such as Census and administrative records have 
been proposed in small area estimation. Both empirical best prediction (EBP) and 
hierarchical Bayesian (HB) approaches have been used for inference using area level or 
unit level mixed models. Rao (2003) gave a whole range of review on both approaches. 
Jiang and Lahiri (2006a) provided extensive review on recent development of the EBP 
approach in small area estimation. In this research, we consider the situation when the 
characteristics of interest are binary (i.e., 0 or 1) and the estimates to be produced are 
small proportions at small area level. 

To estimate small-area proportions, logistic regression models with small area 
specific effects are commonly used. For example, in order to estimate true small-area 
proportions 1 /iN

i ik ikP y N== Σ  , MacGibbon and Tomberlin (1989) considered the 
following models: 

 
2

| ~ ( ),

log ( ) log ( / (1 )) ;  ~ (0, ),    

ind
ik ik ik

iid
ik ik ik ik i i v

y p Bernoulli p

it p p p v v N σ′= − = +x β
 (1.1) 

where ikp  denotes the probability of a response for the k th unit in the i th area, and iky  
and ikx , 1,..., ;  1,...,ik N i m= = , are unit-specific response of the characteristic and 
covariates respectively. The model-based estimator of iP was obtained 

using 1ˆ ˆ /iN
i ik ikp p N== Σ , where ˆikp is obtained from (1.1) by estimating β  and the 
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realization of iv through empirical Bayes method. The applications of similar models can 
also be found in Farrell, MacGibbon, and Tomberlin (1997a and b), among others. Malec 
et al. (1997) considered a different logistic regression model with random regression 
coefficients. Suppose each individual in the population is assigned to one of K mutually 
exclusive and exhaustive classes based on the individual’s socioeconomic/demographic 
status. The binary response ijly for individual l  ( 1 )ijl ,...,N= in class j  in cluster i  is 
assumed independent Bernoulli with common probability ijp . To make inference on a 
finite population proportion for a specified small area and subgroup  

1

ijN

ijl ij
i I j K l i I j K

P y N
∈ ∈ = ∈ ∈

= ∑ ∑ ∑ ∑ ∑ , where I  is the collection of clusters that define the small area 

and K  is the collection of classes that defines the subpopulation, the following models 
are assumed: 

 
| ~ ( );

log ( ) log ( / (1 )) ;  ;   ~ (0, );    

ind
ijl ij ij

iid
ij ij ij j i i i i i v

y p Bernoulli p  

it p p p v v Nα′= − = = +x β β Z Σ
 (1.2) 

where jx  is class-specific covariate vector and iZ  is a p q×  area level covariate matrix. 
They used HB approach based on model (1.2) to estimate the proportion (overall and 
socioeconomic/demographic group) of persons in a state or substate who have visited a 
physician in the past year, using the data from the National Health Interview Survey.  

Logistic regression mixed models typically assume normality for the area-level 
random effects (e.g., see model 1.1 and 1.2). The wide use of the normality assumption 
can be attributed to its conceptual and computational simplicity as well as its popularity 
in standard data analysis. Nevertheless, we would expect that certain type of 
measurements would not be normally distributed. For example, leptokurtic (kurtosis>0) 
distributions and platykurtic distributions (kurtosis<0) for individual errors can occur 
(e.g., see Chapter 3 of Box and Tiao, 1973). For cases where the assumption of normality 
is not tenable, more flexible models can be adopted to accommodate non-normality. 
However, the literature in small area estimation on this aspect is not rich.  

Farrell, MacGibbon and Tomberlin (1994) considered the EBP approach for 
protecting against outlying parameters. Using a simple random-effect model which is a 
special case of model (1.1), Farrell et al. compared the effects of step-function priors with 
those of the normal and Laplace priors for the random effects. They found that as the tails 
of the prior become heavier, the Laplace distribution is the most appropriate prior. For 
skewed prior distributions, the use of a step-function prior was recommended. To the best 
of our knowledge, this is the only research paper addressing non-normality problem in 
the application of logistic regression models for estimating small-area proportions in the 
small area estimation literature.  

To accommodate non-normality patterns such as kurtosis for the random effects, we 
propose a robust unit level mixed model by assuming a class of distributions which 
includes normal for the random effects under complex sampling design. We make 
inference on small-area proportions using survey data under a stratified simple random 
sample (SRS) design for this research, where the small areas are the design strata. 

We briefly review the exponential power distribution in Section 2.  In Section 3, we 
present a motivating example for this study. In Section 4, we propose a robust unit level 
model for survey data drawn from a finite population using a stratified SRS design to 
accommodate kurtosis problems. In Section 5, we illustrate some Bayesian inference 
procedures based on the proposed model. In Section 6, we evaluate the proposed model 
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by comparing it with the normal model using some purely simulated data and several real 
datasets. This chapter finishes with some concluding remarks in Section 7.  

 
2. Exponential Power Distribution 

 
The exponential power (EP) distribution is a three-parameter distribution whose 

density is given by: 
1/

01( | , , ) exp ( )EP
ccf x x

ϕ

μ σ ϕ μ
σ σ

⎧ ⎫
⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

, x−∞ < < +∞  

where  ,  R ,  (0,1],Rμ σ ϕ+∈ ∈ ∈ 0 (3 ) / ( )c ϕ ϕ= Γ Γ , ( )1 0 / 2 ( )c c ϕ ϕ= Γ . The 
parameters ,  , μ σ ϕ  are location, scale and shape (kurtosis) parameters respectively. This 
parameterization is preferred to the more popular one proposed by Box and Tiao (1973) 
because it implies ( )E X μ=  and 2( )Var X σ= , a property that can be very useful in 
modeling. This family includes a range of symmetric distributions that change gradually 
from the uniform ( 0ϕ → ), through short-tailed distributions (platikurtik) to the normal 
( 0.5ϕ = ), then through distributions with longer-than-normal tails (leptokurtic) to the 
double exponential shape ( 1ϕ = ). Figure 1 illustrates the EP distributions with common 
mean 0μ =  and standard deviation 1σ =  for six fix values of ϕ . The excess of kurtosis 

is 2
( ) (5 ) 3

(3 )
ϕ ϕγ

ϕ
Γ Γ

= −
Γ

. 
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Figure 1:  EP density plot with 0,  1μ σ= =   for different ϕ  
 

The exponential power distribution family can be very useful as a model in Monte 
Carlo robustness studies because it can attain a broad range of kurtosis values and include 
three well-known symmetric distributions as special cases. Box and Tiao (1973) used this 
family extensively as an alternative to the normal distribution for statistical modeling and 
also as a tool to study Bayesian robustness. In all the examples they studied, they found 
that the inferences on population mean could differ substantially as the kurtosis parameter 
changes. Hogg (1974) discussed the exponential power distribution family with 
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0.5 1ϕ≤ ≤ in relation to adaptive estimators of location. Prescott (1978) studied the 
asymptotic properties of the ϕ -trimmed means and other adaptive trimmed means from 
this family of distributions. For normal location problem, Choy and Smith (1997a) used 
the Laplace approximation method for integrals to approximate the posterior moments for 
the leptokurtic class of the exponential power distribution family and found that this 
subclass of distributions robustifies the estimation procedure by downweighting the 
influence of outlying observations. For random effects models, Choy and Smith (1997b) 
made use of the scale mixture of normal representation of the leptokurtic density function 
for use in conjunction with Markov Chain Monte Carlo methods. 
 

3. Motivating example – Low Birthweight Data 
 

Birthweight is one of the most accessible and most understood variables in 
epidemiology.  A baby’s weight at birth is a strong indicator not only of a birth mother's 
health and nutritional status but also a newborn's chances for survival, growth, long-term 
health and psychosocial development. Babies born weighing less than 5 pounds, 8 ounces 
(2,500 grams) are considered low birthweight. In contrast, the average newborn weighs 
about 7 pounds. Over 7 percent of all newborn babies in the United States have low 
birthweight. Low-birthweight babies are at increased risk of serious health problems as 
newborns, lasting disabilities and even death. The overall rate of these very small babies 
in the United States is increasing (http://www.healthsystem.virginia.edu/uvahealth 
/peds_hrnewborn/lbw.cfm). 

For evaluation purpose, we studied the estimation of state level low birthweight 
using samples drawn from a known population. We treated the 2002 Natality public-use 
data file as our study population. The file included all births occurring within the United 
States in 2002. Details about the births recorded in the National Vital Statistics System 
are given at the website for the National Center for Health Statistics 
(http://www.cdc.gov/nchs/births.htm). The finite population studied comprised 4,024,378 
records of live births with birth weights reported in the 50 U.S. states plus the District of 
Columbia. The parameter of interest was the state level low birthweight rates iP , 

1,...,51i = .  
We wanted to fit model (1.1) assuming that all the individuals in state i  have a 

common probability iP . Two auxiliary variables were selected to fit the model after 
stepwise model selection process. Let ( 1 2,  ,  ik ik iky x x ) denote the indicator of low 
birthweight and two binary auxiliary variables (percentage of mother’s age less than 15 
and percentage of being the first child in the family) associated with the k th baby in the 
i th state ( 1,..., ;ik N= 1,...,51i = ), and let ( 1 2,  ,  i i iP x x ) denote the corresponding state 
level mean. We obtained 1 2,  ,  i i iP x x  from the population data and then fitted the 
following logistic regression model: 
 0 1 1 2 2logit( ) ,i i i iP x x vβ β β= + + +  (3.1) 

where 2~ (0, )
iid

iv N σ , 1,...,51.i =    
Both auxiliary variables are significant in predicting iP  (with p -values far less than 

0.05 from the t -test). Our goal next was to assess the normality of the residuals iv . The 
following methods were thereby implemented: 

i) Kolmogorov-Smirnov (K-S) normality test; 
ii) normal Quantile-Quantile (Q-Q) plot; 
iii) Bayesian method. 
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The p -value from the K-S test is 0.043, which indicates that iv  are not normal at 
significant level 0.05α = . The left panel of Figure 3-1 displays the normal Q-Q plot for 

iv . The plot indicates that the underlying distribution of iv  is more like a platikurtic 
distribution. To verify this, we produced the descriptive statistics for iv  using SAS 
PROC UNIVARIATE and the results of the descriptive statistics confirmed that iv  are 
platikurtic.   

Since SAS uses different parameterization, to estimate the kurtosis of the residuals 
iv  , we considered Bayesian approach. We assumed a priori independence between the 

components of ( ,  σ ϕ ) and specified the following non-informative priors: i) 
~ (0,  1)Unifϕ  and ii) ~ (0,  )Unif Kσ , K is a given large positive number. For reference 

on this prior assumption, we refer to Gelman (2006). We implemented model 
~ (0,  ,  )iv EP σ ϕ with the two prior assumptions using WinBUGS software. The 

posterior mean of ϕ  is 0.2. The one-sided 95% credible interval of ϕ  is (0, 0.473), which 
does not include the normal case ( 0.5ϕ = ). The posterior density plot of the kurtosis 
parameter ϕ  is displayed on the left panel of Figure 3. Clearly, the posterior mode of ϕ  
is around 0.23 and the chance of covering normal case is very small. To assess the model 
fit, we applied the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) 
criterion and compared the fit of the alternative models for different given kurtosis. 
Among several alternatives including the normal model, the EP model with 0.2ϕ =  fits 
the data best since it resulted in the smallest DIC. We then compared the Q-Q plot of iv  
with the Q-Q plot of a random data generated from a platikurtic exponential power 
distribution with 0.2ϕ =  (see the right panel of Figure 2). The similarity between the two 
Q-Q plots further confirms that the underlying distribution of  iv  is platikurtic.  

All these analyses demonstrated that a platikurtic EP distribution (with 0.5ϕ < ) 
describes the underlying distribution of residual iv better than the normal distribution for 
the Natality data. Based on the prior assumption ~ (0,  100)Unifσ , We display the 
posterior density plot of the scale parameter σ  on the right panel of Figure 2. The mode 
of σ  is around 0.12 , that is, the mode of the variance 2σ  is around 0.01, which is very 
small. According to Gelman (2006), uniform prior is preferred to inverse-gamma prior 
for 2σ since it is so small. 
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Figure 2:  Normal Q-Q Plots for residual iv  and randomly generated data from platikurtic EP 
distribution  
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Figure 3:  Posterior density of the hyperparameters ϕ  and σ  
 

4. Small Area Model 
 

Consider a finite population having m strata, the i th stratum containing a finite 
number of units. Let the i th stratum be denoted by iU  with units labeled 1,...,

ii iNU U . 

Let iky  denote the characteristics associated with unit k in stratum i  
( 1,..., ;  1,...,ik N i m= = ). Let is  denote a random sample of fixed size in  taken from the 
i th stratum using the simple random sampling (SRS).  Without loss of generality, 
suppose 1( ,..., )

ii i ins U U=  for 1,...,i m= , and the sample values for the characteristics of 

interest are denoted by 1,...,
ii iny y ( 1,...,i m= ). We assume no nonsampling errors are 

involved so that once a sample is drawn, the value of the characteristic is known without 
error. Assume that iky  are binary, i.e., 0iky = or 1, 1,..., ;  1,...,ik n i m= = . Our goal is to 

estimate the small stratum proportions 1 /iN
i ik ikP y N== Σ  , 1,  ...,  i m= . Similar designs 

have been considered by others (e.g., see Ghosh and Lahiri, 1987). 
Under this design, in order to estimate the finite small area proportions iP , 

1,..., ,i m=  the following basic logistic mixed effect model is commonly used (e.g., see 
Jiang and Lahiri, 2006b): 

              Level 1:  | ~ Bernoulli( ),   1,..., ,  1,...,
ind

ik i i iy k N i mθ θ = =  (4.1) 
              Level 2: ogit( ) ,   1,...,i ii il v i mθ ′= + =x β  (4.2) 

              where 2~ (0, ),   1,..., .
iid

iv N i mσ =  (4.3) 
Here iθ s are the model parameters for the expectation of iky . For convenience, we call 
the model of (4.1)~(4.3) Bernoulli-Logit-Normal model. As demonstrated in Section 3, 
the normal assumption for the random effects iv  in (4.3) can not accommodate the 
kurtosis problem. One can possibly assume a specific distribution from the exponential 
power family such as Laplace (double exponential) distribution. However, there is still 
mis-specification risk for the distribution of the random effects. To improve robustness, 
instead of assuming normal or other specific non-normal distribution, we assume that the 
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random effects iv follow an unspecified distribution belonging to the exponential power 
distribution family with two parameters: 

 ~ (0, , ).
iid

iv EP σ ϕ  (4.4) 
We call the proposed model (4.1)-(4.2)-(4.4) Bernoulli-Logit-EP model. We assume the 
hyperparameters σ  and ϕ  are both unknown. The strength of our proposed model is that 
we use a class of probability distributions instead of a specific one and the underlying 
model will be chosen adaptively by the data. 

The EP density has been considered by Fabrizi and Trivisano (2007) as one of their 
robust extensions to the Fay-Herriot model for continuous data. The idea of using a class 
of distributions instead of a specific one for model-based inference on finite population 
total can also be found in Li and Lahiri (2007), where a super-population model was 
chosen adaptively from the well-known Box-Cox class of transformation. However, they 
did not consider small area problem, which is more complex because of the presence of 
random effects. 
 

5. Bayesian Inference 
 

We are interested in estimating the finite small area proportions iP , 1,  ...,  i m= , 

based on the Bernoulli-Logit-EP model. Let is  and c
is  denote the set of sampled units 

and non-sampled units respectively, and 
111 1, 1{ ,..., ,..., ,..., }

ms n m mny y y y ′=y . The Bayes 

estimator of iP  is the mean of the posterior distribution of iP . We can write iP  as:  

 

( )
( ){ }

1

1   

   (1- ) ,

ci i
i k s ik ikk s

i

i i i i ins
i

i i i ins

P y y
N

n p N n p
N
f p f p

∈ ∈= Σ + Σ

= + −

= +

 (5.1)  

where /i i if n N=  is the sampling rate and 1 if−  is the finite population correction, 

ip and insp are the area level proportions based on sampled and nonsampled units 
respectively.  Since ip  are known given the sample, from (5.1), we can say that the 
prediction of iP  is equivalent to the prediction of insp  given the sample.  

Thus the Bayes estimator of iP  is: 

 

( ) ( )
( ) ( )

( ) ( ){ }
( ) ( ) [ ]

( | ) 1 |
1              1 |

1              1 | , |

              1 | ( | ) ,

c
i

c
i

i s i i i ins s

i i i ik sk s
i i

i i i ik i s sk s
i i

i i i i s i i s

E P f p f E p

f p f E y
N n

f p f E E y
N n

f p f E g E

θ

θ θ

∈

∈

= + −

= + − Σ
−

= + − Σ
−

= + − ≡

y y

y

y y

y y

 (5.2) 

where 
exp( )

1 exp( )
ii i

i
ii i

v
v

θ
′ +

=
′+ +

x β
x β

. From (5.2), we can see that once ( | )i sE θ y is estimated, it 

is straightforward to estimate ( | )i sE P y  if if  is known. We can also see that ( )|i sE θ y  
is a good approximation of ( | )i sE P y if 0if ≈ . Further, the posterior variance of iP  is 
given by: 
 { } { }( | ) ( | , ) | ( | , ) | .i s i s i s i s i sV P V E P E V Pθ θ= +y y y y y  (5.3) 
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Since ( )( | , ) 1i s i i i i iE P f p fθ θ= + −y  and ( )1( | , ) 1 (1 )i s i i i i
i

V P f
N

θ θ θ= − −y , formula 

(5.3) can be further written as: 

 

( ) ( ) { }

( ) ( ){ }
( ) { }

2

2 2

1( | ) 1 ( | ) 1 (1 ) |

1             1 ( | ) 1 ( | ) ( | ) ( | )

1 1             1 1 ( | ) ( | ) 1 ( | )        

             (

i s i i s i i i s
i

i i s i i s i s i s
i

i i i s i s i s
i i

i

V P f V f E
N

f V f E V E
N

f f V E E
N N

h V

θ θ θ

θ θ θ θ

θ θ θ

θ

= − + − −

= − + − − −

⎡ ⎤⎛ ⎞
= − − − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
≡

y y y

y y y y

y y y

[ ]| ),  ( | ) ,i s i sE θy y

 (5.4)        

Formula (5.4) indicates that ( | )i sV P y  is a linear function of ( | )i sV θ y  and ( | )i sE θ y . 
Once ( | )i sV θ y  and ( | )i sE θ y  are obtained, it is straightforward to obtain ( | )i sV P y  if 

if  and iN  are known. We can also see from (5.4) that  ( ) ( )| |i s i sV P V θ≈y y  holds if 
0if ≈ .  
 Once ( | )i sE P y  and ( | )i sV P y  are obtained, the posterior density of iP  can be 

approximated by the normal density with mean ( | )i sE P y  and ( | )i sV P y . That is: 

 ( )| ~ ( | ),  ( | ) .
ind

i s i s i sP N E P V Py y y  (5.5) 
It is easy to make any inference on iP  such as posterior mean, posterior variance, 
credible intervals, using the posterior density of iP .  

In this research, we consider the case when 0if ≈  which occurs often in large-scale 
surveys. As we demonstrated earlier, the inference on iP  is equivalent to the inference on 

iθ  if 0if ≈ . As a result, the Bayesian inference will be focused on the posterior 
distribution: 

1 1( ,..., | ) ( ,..., , , , | )m s m sf y f y d d d
σ ϕ

θ θ θ θ σ ϕ σ ϕ= ∫ ∫ ∫β
β β . 

Base on the small area models described in Section 4, the joint posterior distribution 
1( ,..., , , , | )m sf yθ θ σ ϕβ  cannot be expressed in a single closed form, some approximation 

is needed. However, the joint posterior distribution can be simulated using a Markov 
Chain Monte Carlo (MCMC) such as Gibbs sampling or the Metropolis-Hastings 
algorithm. Following Malec et al. (1997), we will make inference on iθ  through HB 
approach and implement the proposed model using the MCMC technique. The posterior 
mean ( )|i sE θ y  approximates the HB point estimate of iP  and the posterior variance of 

( )|i sV θ y  is used as a measure of variability.  
HB approach requires prior assumption on the hyperparameters ,  , σβ and ϕ . 

Assume they are independent, i.e., ( , , ) ( ) ( ) ( )f f f fσ ϕ σ ϕ=β β . We draw samples 
( ) ( ) ( ) ( ) ( )
1{ ,..., , , , ; 1,..., }d d d d d

m d Tθ θ σ ϕ =β from the joint posterior distributions 

1( ,..., , , , | )m sf yθ θ σ ϕβ   using the Metropolis-Hastings algorithm within the Gibbs 
sampler. Details of the algorithm, which draws random samples based on the full 
conditional distributions of the unknown parameters starting with one or multiple sets of 
initial values, are given by Robert and Casella (1999) and Chen, Shao, and Ibraham 
(2000). 
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6. Model Evaluation and Data Analysis 
 

In this section, we evaluate the robustness of our proposed model using both 
simulated data and real data.  
 
6.1   Simulated Data Analysis 

 
The aim was to compare the Bernoulli-Logit-EP and Bernoulli-Logit-Normal models 

with the random effects iv  generated under different distributions.  In this simulation 
exercise, we would like to investigate the following issues: 

1) When iv are non-normal, how worse the Bernoulli-Logit-Normal model performs 
compared to the Bernoulli-Logit-EP model; 
 2) When iv are actually normal, what is the effect for over-parameterization by the 
Bernoulli-Logit-EP model. 

To generate the data, we set 5in =  and 100m = . We also set 4 different cases of  σ  and 
ϕ  by varying the values:  

i) 2 0.01σ =  and  0.1 ; 
ii) 0.2ϕ = (platikutic) and 0.5 (normal).  

For each of the 4 combined cases of σ  and ϕ , we generated one sample data from 
the sequential models: ~ (0, , ),iv EP σ ϕ  logit( )i ivθ μ= + , and ~ ( )ij iy Bernoulli P , 

1,..., ij n= , 1,...,i m= . Without loss of generality, we set 0μ = . To implement the HB 
modeling using the sampled data, for simplicity, we assumed no auxiliary variables were 
available, i.e., i μ′ =x β . we also specified the following individual prior assumptions for 
individual parameters:  i) Flat prior for μ , i.e., ( )   1f μ ∝ ; ii) ~ (0, )Uniform Lσ , and iii) 

~ (0,  1)Uniformϕ . 
Using each sample data as input, we computed HB estimates for the two models 

introduced in Section 4 using WinBUGS. For each WinBUGS run, three independent 
chains were used. For each chain, burn-ins of 1,000 samples were produced, with 4,000 
samples after burn-in. The resultant 12,000 MCMC samples after burn-in were then used 
to compute the posterior mean and percentiles for each HB model based on each sample 
data set. The potential scale reduction factor R̂ was used as the primary measure for 
convergence (see Gelman and Rubin, 1992). 

Let HB
iθ denote a HB estimator of iθ , and let ,

HB
i qθ  denote the q th percentile of the 

posterior distribution of iθ . To evaluate the two HB models, the following two 
evaluation statistics for each HB estimator are calculated: 

• Average absolute deviation (AAD), 1
1 m HB

i iiAAD
m

θ θ== −∑  

• Average absolute relative deviation (AARD), 1
1 m HB

i i iiAARD
m

θ θ θ== −∑  

 
Table 1 reports the ratios of the evaluation statistics for the HB estimates based on 

the model Bernoulli-Logit-Normal over those based on the alternative model.  Both 
evaluation statistics show consistent patterns for the HB estimates.  When the random 
effects iv  were generated from EP distribution with 0.2ϕ = (see the first two rows in the 
table), Bernoulli-Logit-Normal model produces worse results than the Bernoulli-Logit-EP 
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model. For example, the loss is over 13 percent in terms of AAD for the first case.  When 
the random effects iv  were generated from normal distribution (see the last two rows in 
the table), Bernoulli-Logit-EP model still gives better results compared with the 
Bernoulli-Logit-Normal model.  Overall, the results indicate that the effect for over-
parameterization is not worrisome and the Bernoulli-Logit-EP model is pretty robust. The 
table also shows that when 2σ  is larger, the results from the two models are closer, 
which means that the results are less sensitive to the kurtosis measure. 

 
Table 1:  Ratios of the evaluation statistics for the two models (Normal/EP) using 

simulated data 
Data Generate Model AAD AARD 

( )0, 0.1, 0.2EP μ σ ϕ= = =  1.131 1.132 
( )0, 0.33, 0.2EP μ σ ϕ= = =  1.029 1.027 

( )20, 0.01N μ σ= =  
0.992 0.992 

( )20, 0.11N μ σ= =  
0.996 0.996 

 
6.2  Real Data Analysis 

 
In this subsection, we first conduct data analysis using samples drawn from a real 

finite population, and then conduct the analysis based on a real survey data: the well-
known baseball data (Efron and Morris, 1975) and the 1994 Missouri turkey hunting data 
(He and Sun, 1998). 
 
6.2.1  Sample Data Drwan from the 2002 Natality Population 
 

We revisit the birthweight problem using the 2002 Natality public-use data as 
described in Section 3. We drew six sets of independent samples of size 4,526n =  using 
simple random sampling within states from the finite population. The state level sample 
sizes in  ranged from 7 (for small states such as Vermont) to 690 (for California). The 
sample sizes in  are the same as those used in Liu, Lahiri and Kalton (2008). The 
sampling fraction if  varied from 0.0007 to 0.0046 which are approximated equal to zero.  

In this analysis, we wanted to compare the performance of the two models: 
Bernoulli-Logit-EP and Bernoulli-Logit-Normal. Using each sampled data, we computed 
the HB estimates based on both models incorporating the two auxiliary variables 
considered in Section 3. The prior distributions on the hyperparameters are identical to 
the ones used in Section 6.1. To compare the two models, the four evaluation statistics, 
described in Section 6.1, are again computed for each HB estimator. Table 2 reports the 
ratio of the evaluation statistics for Bernoulli-Logit-Normal to Bernoulli-Logit-EP. The 
numbers in the table consistently show that Bernoulli-Logit-EP model works better than 
the Bernoulli-Logit-Normal model in terms of the four evaluation statistics. As we 
demonstrated in Section 3, the random effects iv  for this data set are not normal. 
Therefore, the analysis result in this subsection is consistent with what we found using 
purely simulated data in Section 6.1.  
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Table 2. Ratio of the four summary statistics for the HB estimates produced by 
Bernoulli-Logit-Normal over those produced by Bernoulli-Logit-EP  

Sample AAD AARD 
1 1.016 1.016 
2 1.045 1.040 
3 1.021 1.012 
4 1.023 1.016 
5 1.076 1.076 
6 1.014 1.013 

 
6.2.2 Baseball Data 
 

In this subsection, we revisit the well-known baseball data given in Efron and 
Morris (1975). This data set has been analyzed by several researchers in the past, 
including Efron and Morris (1975), Gelman et al. (1995), Rao (2003), Jiang and Lahiri 
(2006a), among others. The data set contains the batting averages of 18 major league 
players through their first 45 official at bats of the 1970 season ( ip ) and the true batting 
averages of all the 18 players for the rest of the 1970 season ( insp ).  Efron and Morris 
(1975) used this data set to demonstrate the performance of their empirical Bayes and 
limited translation empirical Bayes estimators derived using an exchangeable prior in the 
presence of an outlying observation. They considered the problem of predicting the 
batting average for all the players for the remainder of the 1970 season based on their 
batting averages for the first 45 at bats. Gelman et al. (1995) provided additional data for 
this estimation problem and included important auxiliary data like the batting average of 
each player in the previous (1969) season. We consider the same estimation problem as 
Efron and Morris (1975) did. That is, we want to predict insp using the sampled data. 

The sample size 45in =  is the number of times at bats for each player, 1,...,18.i =  
Using the baseball data, we computed the HB estimates for insp  using the two models: 
Bernoulli-Logit-EP and Bernoulli-Logit-Normal. The previous season batting average 
was used as a covariate. We can prove that ( ) ( )| |ins s i sE p E θ=y y  and 

( ) ( )| |ins s i sV p V θ=y y  based on the two models. Figure 4 displays the true rest 1970 
season batting average (Ptrue) for each player along with the sample proportion (DirectP) 
and the two different HB estimators (HBEP and HBNorm) in the increasing order of the 
previous season average. The figure shows that the two HB estimates are very close to 
each other and performed much better than the direct estimates. Table 3 reports the four 
summary statistics for both models and it further confirms the closeness of the two HB 
estimators.  

 
Table 3: Summary statistics for the two HB estimators using the baseball data  

Model AAD AARD 
Bernoulli-Logit-EP  0.0195 0.0774 
Bernoulli-Logit-Normal  0.0198 0.0790 

 

The true values of insp  are available for the baseball data. In order to investigate the 
nature of the random effects iv , we fitted the logistic regression model defined by (3.1) 
on insp  considering the previous season average at bats as the covariate. We then tested 
the normality of the residuals iv  using K-S normality test and the normal Q-Q plot. The 
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p-value of 0.676 from the K-S test concludes that iv  appear to be normal.  One player 
was identified as outlier through the normal Q-Q plot. Excluding that outlier,  iv  look 
approximately normal. The posterior mean of the kurtosis parameter ϕ  estimated using 
the Bernoulli-Logit-EP model equals to 0.506. It further confirms the approximate 
normality of iv .  

The finding from this analysis is consistent with the simulated data analysis, that is, 
when the random effects iv  are actually normal, the over-parameterization is not 
worrisome. 
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Figure 4: HB estimates of the batting average for the rest of the 1970 season  
 
6.2.3  Missouri Turkey Hunting Survey Data 
 

The Missouri Turkey Hunting Survey (MTHS) is a bi-annual postseason mail survey 
conducted by the Missouri Department of Conservation to monitor and aid in the 
regulation of the turkey hunting season. Questionnaires are mailed to a random sample of 
permit buyers after the turkey hunting season. The MTHS provides information 
concerning the number of turkeys harvested by hunters on each day of the hunting season 
and the total number of trips made to the counties by these hunters on each hunting day. 
The success rates are then obtained from this information.  The 1994 spring season data 
has been analyzed by He and Sun (1998). The problem was to estimate the county level 
success rates iP  for all counties in Missouri. They provided hierarchical Bayesian 
estimates of success rates for all the 114 counties in Missouri using a simple Binomial-
Beta model without covariates.  

We revisit the 1994 spring season data analyzed by He and Sun (1998) in this 
subsection. There were three counties with zero sample size. They could be predicted 
from the same model using the parameters estimated from the rest data. We excluded 
them from our analysis for simplicity purpose. The sample sizes for the rest 111 counties 
varied from 2 to 802. We computed the HB estimates for the rest 111 counties using the 
two models Bernoulli-Logit-EP and Bernoulli-Logit-Normal with no covariates under the 
same prior assumptions considered in the earlier sections. Figure 5 displays the two HB 
estimates (HBEP and HBNorm) along with the direct sample estimates (DirectP) sorted 
by the sample size in the increasing order. Figure 6 displays the corresponding standard 
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errors of the point estimates. The two HB estimates appeared close to each other for 
many of the counties, with HBEP being a little bit closer to the direct estimates than the 
HBNorm. The graph clearly shows that when the sample size is small, the deviation 
between the direct estimates and the HB estimates is large.  But as the sample size is 
getting larger, the deviation is getting smaller. For the county with the largest sample size 
( 802in = ), all the three estimates become the same.  
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Figure 5: Estimation of the Turkey Hunting success rates 
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Figure 6:  Standard errors of the direct estimates and posterior standard errors of the HB estimates 
of the Turkey hunting success rates 
 

Figure 7 displays the posterior density plots for the hyperparameters σ  and ϕ . The 
upper two panels present the standard deviation σ  and the kurtosis ϕ  from the 
Bernoulli-Logit-EP model respectively.  The lower panel presents σ  from the Bernoulli-
Logit-Normal model. Both of the two plots on the left show bell shapes for σ , though the 
estimates from the EP model appearing a more sharp shape than the other one. The 
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posterior density plot for ϕ  shows that the mode of ϕ  is around 0.05. The posterior mean 
of the kurtosis parameter ϕ  is around 0.2. All these evidences indicate that the random 
effects iv are platikurtik and therefore Bernoulli-Logit-EP may be a more appropriate 
model to fit this data. 
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Figure 7: Posterior density of the hyperparameters 
 

7. Concluding Remarks 
 

The proposed Bernoulli-Logit-EP model extended the usual logistic regression 
mixed model by assuming a class of probability distributions in modeling the distribution 
of random effects. We considered an adaptive approach in which the shape parameter 
( ϕ ) is automatically determined by the survey data. The parameter ϕ  is 0.5 under 
normality. Our empirical data analyses based on both simulated data and real survey data 
demonstrated the robustness of the Bernoulli-Logit-EP model and suggested that the 
proposed model works efficiently to accommodate potential kurtosis and zero problems. 
To avoid computation burden, we only generated a few samples in our evaluation study 
based on simulated data. So the evaluation results are limited. 

In this research, we proposed the new model for a simple sampling design from a 
finite population. The proposed model can be extended to accommodate for multi-stage 
sampling design. 
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