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Abstract: For developing public policies and research purposes, income-related statistics are frequently
needed for different small geographic regions. Previous research using the Statistics of Income (SOI)
Division's Individual sample suggests that some IRS data, though free from the usual sampling error
encountered in small area estimation, can be subject to nonsampling error. However, the SOl sample
estimates, based on alarge national sample of cleaned tax data, are subject to sampling variability for small
domains. We use empirical and hierarchical Bayes methods to improve estimators of small-area totals and
apply our estimators to data from SOI’s 2004 and 2005 samples to evaluate the impact of an increased
sample size.
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1. Introduction: Small Area Estimation with IRS Data and Associated Nonsampling Errors

The 135 million individual income tax records on the Internal Revenue Service's (IRS) annual individual
returns transaction file have several uses to multiple government agencies. These data serve as the sampling
frame for various IRS functions, including the Statistics of Income (SOI) Division of IRS. SOI uses the
data to publish tabulated monetary amounts and the associated number of returns by state and Adjusted
Gross Income categories (in Table 2 in each Spring issue of the SOI Bulletin). Also, the U.S. Census
Bureau compiles the data to the county level for such uses as estimating county-to-county migration
patterns (e.g., Gross 2005) and auxiliary information in the Small Area Income and Poverty Estimation
Program’s (2009) models to estimate the number of children in poverty in each U.S. county.

These population data, based on administrative tax records for the U.S. tax filing population, are not
error-free. While estimates from these data are free from sampling error, the data contain various
nonsampling error. Generally, only tax items necessary for computer processing of atax return are retained
on the IRS file, as opposed to items needed for statistical and tax policy research. Also, measurement errors
can exist between IRS and SOI data values due to different data editing rules, as discovered when
comparing records in the IRS file to the same returns in SOI's sample. For revenue processing purposes,
IRS does not spend scarce resources correcting errors that do not affect tax liability in the more than 135
million individual income tax return records it processes each year. Since tax liability is correct, this
approach does no harm to IRS's tax collection mission or to taxpayers, but can adversely affect the data's
statistical usability for variables indirectly related to tax liability. Other IRS data limitations include a
smaller amount of information available than SOI’s sample, the IRS data are often provided to SOI in
tabular form with monetary amounts rounded to thousands, and certain high income taxpayers are omitted.

The SOI Division of IRS draws large annual samples of tax returns to produce richer and cleaner data
for population estimation and tax modeling purposes. SOI’s transcription and editing staff receive more
extensive training to transcribe, clean, and edit the data, the sample is augmented with additional items
from the return, and the data is more closely monitored and checked for consistency. However, the state is
not within the sample design, so sample-based state-level estimates have the usual sampling error problem.

To improve on design-based estimators, several indirect and model-based methods have been proposed
in the literature. These estimation procedures essentially use implicit or explicit models that borrow
strength from related resources, such as administrative and census records and previous survey data. In
order to estimate per-capita income for small areas (defined by populations less than 1,000), Fay and
Herriot (1979) used an empirical Bayes (EB) method that combined the U.S. Current Population Survey
data with various administrative and census records. To incorporate both the sampling and model errors,
Fay and Herriot (1979) used a two-level model, which can be either viewed as a Bayesian model or a
mixed regression model. Their EB estimator (also an empirical best linear unbiased predictor, or EBLUP)
performed better than the direct survey estimator and a synthetic estimator used earlier by the U.S. Census
Bureau.
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In an EBLUP approach, the best linear unbiased predictor (BLUP) of the small-area mean is first
produced and the unknown variance component(s) is (are) estimated by a standard method [e.g., maximum
likelihood, residual maximum likelihood, analysis-of-variance, etc.]. The resultant predictor, i.e., the BLUP
with estimated variance component(s), is known as an EBLUP of the true small-area mean. A challenging
problem in an EBLUP approach is to obtain a reliable measure of uncertainty of an EBLUP that captures
all sources of variability. Rao (2003) and Jiang and Lahiri (2006) provide reviews of the Fay-Herriot
method and its extensions.

In section 2, we describe the SOI sample data and analysis data descriptions. In section 3, we introduce
the direct estimators that we used in our modeling and evaluation studies. In section 4, we introduce the
area level model and the associated EBLUP methodology. To overcome the likelihood-based methods
problem of potential zero variance component estimates, we aso introduce a simple hierarchical Bayesian
approach in section 5. We describe our evaluation study and present results in section 6.

2. SOI Sample and Analysis Data Descriptions

The SOI Division selects large stratified Bernoulli samples of tax returns weekly, as they are processed by
the IRS. Stratification for the sample uses various criteria, including size of total gross positive and
negative income and an indicator for the returns’ “degree of interest” for tax modeling purposes, to create
208 strata. The sample consists of two parts within each stratum. First, a 0.05 percent Bernoulli sample is
selected, called the Continuous Work History Sample (CWHS, Weber 2004). A separate Bernoulli sample
is also selected independently from each stratum, with rates ranging from 0.01 to 100 percent. The full
sample, which itself is also a Bernoulli sample, consists of the CWHS plus all additional returns selected
with unequal probabilities of selection across strata.

Each SOI study correspondsto a“Tax Year” (TY), which for individua tax returns involves income and
financial information earned by U.S. taxpayers in the previous calendar year. For example, the TY 2004
sample, where 200,778 returns were selected from 133,189,982, reflected income earned in 2004 and
reported to IRS by December 2005. For TY 2005, CWHS sampling rates were increased to 0.1 percent and
292,966 returns were selected from 134,494,440. More detail is given in Testa and Scali (2005).

The reduced dataset for this analysis was created by first separating the samples into the certainty (i.e.,
sample units with weights equal to one) and noncertainty (units with weights greater than one) units. We
placed the 34,309 TY 2004 and 44,482 TY 2005 returns that SOl sampled with certainty each year into two
certainty strata (one for each year), since they represented a census of tax returns. Thus, without loss of
generality, we exclude these strata from the population and develop our estimation method to estimate
totals from all other strata, then add the certainty strata total of SOIl-transcribed values to our estimate from
the remaining noncertainty strata for the entire population. For both the certainty and noncertainty datasets,
the weighted sample data were tabulated to the state-level for the 50 U.S. states and Washington DC. We
excluded the “other” state category of tax returns filed by civilians and military individuas living abroad,
in U.S. possessions and territories, Puerto Rico, etc. This corresponded to 1,877 returns in 2004 and 5,186
in 2005, of which 683 and 3,543 were certainty units, respectively.

We selected six variables of interest from different parts of the 1040 tax return, which are more or less
susceptible to errorsin the IRS data: Adjusted Gross Income, Taxable Interest Income, Earned Income Tax
Credit, Real Estate Taxes Deducted, State and Local Income Taxes Deducted, and State and Local General
Sales Taxes Deducted. A description of each itemisgivenin Table 1 (from IRS 2006).

As the domain is not in the SOI sample design, both the sample sizes across states and sample weights
of units within the same state vary. Figure 1 shows the state sample sizes for both tax years. To see the
impact of these varying sample sizes on sample-based estimates, Figure 2 shows the percent relative
difference in the number population units from the TY 2004 and 2005 IRS frames and the corresponding
population size estimated using the SOI sample weights. As the number of sample units decreases, the two
state population sizes vary due to sampling error. The 2005 relative differences are lower for smaller states
since the sample size is larger, but the pattern is the same. To overcome this, we use state-level
poststratification adjustments to the SOl sample estimates of totalsin our evaluation.

For evaluation purposes, we also collapsed the 51 states into groups based on different criteria of
“similarity.” The SOI-sample based state group-level estimates then have lower sampling error due to an
increased group sample size, i.e., the direct estimates are more reasonable. Six states were considered large
enough, with more than 5,000 noncertainty returns. The remaining states were grouped based on whether or
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not the state had state income taxes, geographic region, and a relative size of income. This resulted in 21
groups, which are listed with the associated number of certainty and noncertainty sample unitsin Table 2.

Table 1. Variable Names, Description, and Tax Form Location, by Variable of Interest

Variable

Description ®

Adjusted Gross Income

Income reported from the calculate of total income (Line
37, Form 1040) (pp. 119-120).

Taxable Interest Income

Taxable portion of interest received (Line 8a, Form 1040)
(p. 146).

Earned Income Tax Credit

Taxpayer credit for working lower-income individuals
(Line 66a, Form 1040) (pp. 125-126).

Real Estate Taxes Deducted

Taxes paid on real estate owned and not used for business
(Line 6, Schedule A) (p. 138).

State and Local Income Taxes Deducted

Taxes withheld from salary, paid directly, or made to state
disability funds (Line 5a, Schedule A) (p. 143).

State and Local General Sales Taxes Deducted

Sales Taxes incurred by individuals (Line 5b, Schedule A),
(p. 143).

a page numbers from IRS 2007.
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Table 2. Number (#) of Certainty and Noncertainty Sample Units, by State Groups

Tax 2004 Tax Year 2005
Sates Within Group # certainty | # noncertainty Total # certainty | # noncertainty Total
Cdifornia 6,541 23,990 30,531 8,419 33,415 | 41,834
Florida, Tennessee 4,053 14,566 18,619 5,442 21,757 | 27,199
New York 4528 13,101 17,629 5,283 18,347 | 23,630
Texas 2,319 11,427 13,746 3,439 17,700 | 21,139
Michigan, Wisconsin, Minnesota 1,448 10,379 11,827 1,814 15,797 | 17,611
Georgia, North Carolina, South Carolina 1,265 10,108 | 11,373 1,663 15,806 | 17,469
Indiana, Ohio, Kentucky 1,135 9,908 11,043 1,366 15,465 | 16,831
Connecticut, Rhode |sland, M assachusetts 2,214 7,952 10,166 2,699 11,013 13,712
lowa, Nebraska, Kansas, Missouri, Oklahoma 997 8,061 9,058 1,276 12,302 13,578
Illinois 1,539 7,451 8,990 1,816 10,832 | 12,648
Arizona, New Mexico, Utah, Colorado 1,432 7,415 8,847 1,967 11,482 | 13,449
Pennsylvania 932 6,480 7,412 1,210 9,695 | 10,905
New Jersey 1,273 6,138 7,411 1,520 8,367 9,887
Arkansas, Alabama, Mississippi, Louisiana 620 5,927 6,547 1,504 9,449 10,953
Virginia, West Virginia 731 4,798 5,529 927 7,278 8,205
Washington DC, Maryland, Delaware 777 4,180 4,957 1,024 6,028 7,052
Alaska, Washington 812 4,024 4,836 1,039 5,916 6,955
Montana, North Dakota, Idaho, Oregon 435 3,364 3,799 503 5,239 5,742
Nevada, Wyoming, South Dakota 935 2,450 3,385 1,144 3,600 4,744
Maine, Vermont, New Hampshire 215 1,770 1,985 299 2,656 2,955
Hawaii 108 621 729 128 1,025 1,153
Total 34,309 164,110 | 198,419 44,482 243,169 | 287,651

The state of Hawaii (HI) was previously grouped with the “other” category of states. Rather than group Hl
with dissimilar states, we retain it in a group by itself to illustrate the aternative estimators performance

under smaller sample sizes.

3. Direct Estimators

Let y, be the value of the characteristic of interest for the kth tax return, ke U , the finite population of
tax returns. We are interested in estimating the finite population total:

Y=Zyk'

keU

Let s denote the sample of tax returns drawn from the population of tax returns, sy c s the part of the
sample in domain d of interest, and wy the sampling weight for the k-th sampled tax return, ke s. The
sampling weight w is the inverse of the inclusion probability, adjusted for achieved population and

sample sizes. As described in section 1, al formulas concern estimating noncertainty strata of the Tax Y ear
2004 and 2005 populations.

In our case, we have epsem sampling within each stratum, i.e., the sampling weights are the same for all
the sampled units belonging to the same stratum. However, weights vary across strata and within a given
domain. Let

Ya= D Yk
kEUd
denote the population total for the d-th domain (excluding the units belonging to the certainty stratum). We
estimate the population total with the following design-unbiased uncalibrated direct estimator:
Yo = D WYk
ke sy
Since Ny is known from the IRS records, our problem is equivalent to estimating the finite population
mean for domain d:
Yq =Yg/ Ng.
We can consider the weighted sample mean as the design-based direct estimator of Yy :

)
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ydw:zkesd kak/zkesdwk' (2)

Since the state is not in the sample design, we apply asimple state-level post-stratification adjustment to (1)
and obtain the direct calibrated (CAL) estimator:

SCAL _ N o

Yo' = Ng Yow )
Estimator (3), which is approximately design-unbiased in large samples, is used to compare alternative
model-based state group-level estimates. Estimator (1) is used to evaluate estimates of national-level totals.

4, EBLUP Estimators

In this section, we obtain an empirical best linear unbiased estimator (EBLUP) of Yy . Under the following
arealevel model, dueto Fay and Herriot (1979), for d =1,---,m, assume
ind _

Level 1: ydW ~ N(Yd’Dd);
ind (4)

Level 2 Yy ~ N(X] 4. A),
where Dy is the estimated sampling variance of Yy, , Yg is the true population mean, and xg =1 x4],
where X4 isthe mean of the same variable based on IRS tabular data.

The main sources of error in the IRS means are the nonsampling error described in section 1, while the
SOI means are subject to sampling error, which is reduced in the TY 2005 estimates due to the increased

sample size. Figure A.1 contains plots of Yy, versus Xy for each variablein 2004 and 2005. Although the
estimates y,, are subject to sampling variability, a strong linear relationship is still observed between these
estimates and Xy for each variable, particularly for variables less affected by IRS errors. We take

advantage of thisrelationship in Level 2 of model (4).
Under model (4), the best predictor (BP) of Yy is given by:

Y = (1 Bg) Vow + BaXd B, (5)
where By = DDd N If A isknown, then § isestimated by the weighted least squares estimator:
q t

d=1 d=1

Replacing § by ,B(A) , we obtain the following empirical best predictor (EBP) of Yy :

VP = (1- Bu) Vo + B A(A. ®)
Note that \?dEBP E\?dBLUP, the best linear unbiased predictor (BLUP) of Yy under the following linear
mixed model:

Vaw = X4 B+Vq +6€4.,
where the sampling errors {eg} and the random effects {v4} are uncorrelated, with vq ~(0,A) and
€4 ~(0,Dg) . When both f and A are unknown, we propose the following empirical best linear unbiased

predictor (EBLUP) of Yy :

-1
PN LU | T J 01 =
ﬂ(A)—{ZDd_’_AXdXd} {ZDwadyowj-

Yo oHYP = (1~ By) Vaw + Baxa A(A), (7)
where éd = DDd A and A is any standard consistent estimator of A. In this paper, we consider the
g+

residual maximum likelihood (REML) estimator of A.

The EBLUP approach has several advantages for producing point estimates of the state-level means..
However, the standard likelihood and analysis-of-variance-based methods can numericaly yield zero
variance component estimates
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We define the mean square prediction error (MSPE) of \?dEBLUP as

- _\2
MSPE(Y,FBLUP) — E(YdEBLUP _Yd) ’

where the expectation is taken over the joint distribution of Vg, and Yy under the Fay-Herriot model. A
naive M SPE estimator is obtained by estimating the MSPE of the BLUP and is given by:

mspef’ = gy (A) + gz (A), ®
-1
. o~ A R " m
where gig(A) = ByA, gog(A) =Bihyg, and hyg =xg | Y. 1 XjX| | Xq.Thisisreferred to asthe
j:le +A

“naive MSPE estimator,” since it does not incorporate the additional uncertainty due to the estimation of
A. Prasad and Rao (1990) showed that the order of this underestimation is O(m‘l) under certain regularity
conditions.

Figure A.2 shows the resulting estimated shrinkage factors (éd , the weight given to the regression
estimate in (7)) for the 50 states and the District of Columbia in 2004 (patterns for 2005 were similar and
thus omitted). For each variable, the states are sorted by Dy . The effect A =0 isthat al of the wei ghtis

given to the regression estimate xgﬁ i.e, in estimating the state-level means, éd =1 in (7), so that

YEBLUP _ T B(A). This appliesto all states, regardiess of the state’s sampling variance, and occurred for

six out of our twelve combinations of variables and tax years. This is unreasonable since we would like to
use as much of the SOl sample information as possible, particularly for the larger states with lower
sampling variance. Specifically, for 2004, this occurred for Adjusted Gross Income, Taxable Interest
Income, Real Estate Taxes Deducted, and State and Loca Income Taxes Deducted. For 2005, this
occurred for Earned Income Tax Credit and Real Estate Taxes Deducted.

5. Hierarchical Bayes Models

To ensure that we always incorporate the SOl sample data in our state-level estimates, we now introduce a
simple hierarchical Bayesian model to overcome the problem associated with the classical method of
estimating A . However, this requires stronger model assumptionsto evaluate. For d =1,---,m, assume
ind _
Level 1 Yaw ~ N(Y4.Dq);
_ind T
Level 2. Yy ~ N(x3/3.A); ©
Level 3: B ~Unif ®2, A~ z(A).
Thefirst two levels of this model are identical to model (4) used to produce the EBLUP estimates described
in section 4. Our theoretical motivation for model (9) is that, when A is known, the Uniform prior on the

two hyperparametersin A produces the BLUP estimate (7) for Yy, i.e, \?dHB :\%dBLUP . We consider two
alternative prior distributions for the hyperparameter A: a Uniform (Unif) prior, denoted by
m(A)=Unif (O,U) and an Inverse Gamma (IG) prior, denoted by 7,(A)=1G(0.0010.001). The

hierarchical Bayes estimators of\?d corresponding to the priorszy (A) and 7z, (A) are denoted by \?dHB(l) and

\?dHB(Z) , respectively.

These particular prior distributions are generally noninformative (or “flat”) priors that have been used in
similar variance component models (see, e.g., Gelman 2006). For both tax years and all variables, we
chose U =10,000,000. This upper bound creates a uniform prior that is very flat, while the

1G(0.001,0.001) prior is a commonly used prior in the Bayesian literature. One advantage of the HB

approach over the classical method is that it guarantees a strictly positive estimate of A. Another advantage
of the HB approach is that we can use the posterior distributions for the parameters of interest for al related
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inferences. We estimate the parameters by their posterior means and measure the uncertainty of the point
estimators by the corresponding posterior variances. For interval estimation, the Bayesian approach uses
credible intervals, which are much easier to compute and often easier for non-statisticians to interpret than
the corresponding M SPE-based estimates described in section 4.

For both priors, the posterior distributions of the parameters of interest do not have closed-form
solutions. We used 100,000 iterations (after a burn-in of 5,000 iterations) of the Markov Chain Monte Carlo
(MCMC) agorithm to approximate the posterior distributions. The MCMC error in estimating A was
found to be very low.

For all variables and both years, the 1G(0.001,0.001) prior created posterior distributions for A that
were very skewed towards zero. Again, this affects the estimated shrinkage factor for all statesin A.2. The
effect hereis similar to AREME = 0: given avery small A withthe IG prior, most of the weight is given to

the regression estimate xg f to produce \?dHB(Z). This also occurred regardless of the state’'s sampling

variance and is unreasonable since we ignore most of the SOI sample information in VdHB(Z) for larger

states with lower sampling variance. However, the uniform prior assigned more weight (i.e., éd <0.5) to
the SOI mean for larger states, asillustrated in A.2.

6. Results

Here we consider three evaluations of our direct, EB and HB model-based totals: how well estimated state-
level totals add up to the state-group totals, the national-level totals, and the precision of the state-level
estimates. First, to evaluate the EB and HB estimates and the resulting totals, we calculated the alternative

means \?d , estimated the total of the noncertainty units with NyYy , and added it to the variables total

from the certainty units for each state. We then collapsed the states into the twenty-one groups shown
in Table 2 and used the difference relative to the calibrated total (1) to evaluate the alternatives:
Y6 =2 ge g NaYa
% Rel Difleooxzdeg AZ"EQ g=1...,21.
CAL
Zd Yd
eg

The calibrated SOI sample estimate in (3) is used to gauge how well the alternative model-based estimates
estimate the state-group totals, since the large state-group sample sizes shown in Table 2 reduce the
sampling error in the SOI estimates significantly. That is, preferable model-based state-level estimates,
when added up within groups, are those closest to the SOI sample estimates. Figure A.3 shows the plots of
the percent relative differences for the alternative state-group totals, for each variable of interest and
alternative totals. For al variables, the states were sorted by descending state group sample size; as the
group sample size decreases, the percent relative differences increase. For al groups, the model-based
estimates are closer to the calibrated SOI state group total than the uncalibrated and IRS-based totals. The
exception was HI, where the uncalibrated SOl sample total for this state was closest to the calibrated total
(with exceptions, where the uncalibrated SOI sample total for HI was furthest from the calibrated total).

Table A.4 shows the absolute relative percent relative differencesin A.3 for 2004, averaged across 20 of
the state groups (H! was excluded for this summary measure). That is,

20 YSA- - NgY, ‘
Ave |% Rel Diff|:%z 100><Zd€9% Yzcifg 9.
g=1 deg d ‘

The absolute value was used to avoid large positive and negative differences canceling each other out. For
al variables and years, the HB uniform prior model had the lowest average percent relative difference
across the state groups. The omitted 2005 relative differences were smaller, with the same patterns.

Second, we evaluate the adternative estimates at a national-level. When aggregating the state-level totals
to the national-level, preferable model-based estimates should be close to the uncalibrated SOI sample-
based estimates in (1), the estimator based upon the sample design strata. This total is used for evaluation
of national-level totals since the sample is large enough to estimate them with low sampling error. Table
A.5 shows the uncalibrated national-level total of each variable and the percent relative difference between
it and the IRS data and aternative model-based estimates:
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51 .
Dokes Yk~ 2. 2 NaYa
d=1 _

Zkeswk Yk

For both years and all variables, the calibrated total in (3) was closest to the uncalibrated total, having the
lowest percent relative difference. The HB model with the uniform prior was second closest. The IRS data-
based totals are the furthest from the uncalibrated SOI totals due to the nonsampling error described in
section 1. While all percent relative differences appear small, they correspond to very large differencesin
the totals measured in terms of dollar amounts (in the millions or billions).

Last, for the precision of the alternative state-level estimates, Figure A.6 shows the coefficients of
variation (CV) for each variable in 2004. That is,

CV (Yg) = 200x NgVar (Y ) /¥ -

% Rel Diff = 100x

For the EBLUP estimates, the M SPE estimates from (10) were used to estimate CV(NdeEBLUP) . For the

HB estimates, the posterior variances were used to calculate CV(Nd\?dHB) . For all variables and tax years,
the SOI sample CVs increase as the state sample size decreases and become less stable for the smallest
states, as the estimates of Var (\?d ) are also subject to sampling error. However, the model-based CV's are

much more stable across states, due to the strong linear relationship noted between the IRS and SOI state-
level means, used in Level 2 of the EB and HB models and shown in A.1. The HB IG prior model had the
lowest CV’s, but we need to consider the pattern: CV's for larger states are nearly identical to those for
smaller states, which intuitively does not make sense. However, the HB uniform and EB REML-based
CV’s increase as the sample size decreases, as expected. Due to the larger 2005 sample sizes, the largest
SOI sample CV’swere 1-5% lower, but the 2005 results agreed with those for 2004, so they were omitted.

7. Conclusions and Limitations

We attempt to improve population-based estimates from administrative tax return data that are subject to
nonsampling error and sample-based estimates subject to sampling error. Both EBLUP and HB approaches
seem to produce results preferable over those produced using only the SOI sample or IRS frame data. They
were obtained by exploiting relationships between the sample and population variable means and removing
nonsampling errors in the certainty units totals by using only the SOI data for these returns. This was
demonstrated by gains in precision reflected by lower estimates of the coefficients of variation in the state-
level totals and more stability in the estimates themselves when combined to the state-group level and
compared to the calibrated SOl sample totals. In addition, when combined across al states, the model-basd
estimates of state-level totals also produced national-level totals that were more consistent to those
produced from the SOI sample than the IRS data.

Between our alternative estimators, while the prior specification in our small-area model is subjective,
the resulting state-level mean estimates between the EB and HB Uniform prior results are very close when

A is nonzero. This provides empirical support to the choice of model (7). Of the twelve tax return
variable/tax year combinations we examined, six of the REML-based shrinkage factors were equal to one
for all states, resulting in use of only the regression-based component to estimate the state-level mean.
However, the Uniform and Inverse Gamma priors in the HB model both produced positive estimates of A
in all cases. While the IG prior produced state-level estimates very close to the regression estimates and EB

estimates when AREML = 0 the uniform prior seemed to work well for al six variables of interest and two
tax years. The resulting model-based state-level estimates from this HB model use more SOl sample
information for larger states, which is intuitively sensible from a design-based perspective. The HB
approach of using the posterior distributions for al inference is also easier to both produce and interpret.
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Figure A.1. IRSvs. SOI Mean Plots, noncertainty sample and frame units (note differencesin scale)
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A.2. Estimated Shrinkage Factors, By , Tax Y ear 2004

Adjusted Gross Income

Taxable Interest Income
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A.3. Percent Relative Differences Between Alternative Totals and SOI Sample Estimates to Calibrated State Group Totals, Tax Y ear 2004 (note differencesin

scale)
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A.3. Percent Relative Differences Between Alternative Totals and SOI Sample Estimates to Calibrated State Group Totals, Tax Y ear 2004 (cont’ d, note
differencesin scale)
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Table A.4. Average of Absolute Percent Relative Differences Across State-Groups (excl

. HI) Between Alternative Estimates and Calibrated SOl Sample Total
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Table A.5. National-Level Totals Estimated Using Uncalibrated SOl Sample Total and Percent Relative Difference to Model-based Estimates

Nat|_<|3_rc1)?la—|l;evel Per cent Relative Differenceto Uncalibrated SOI Total
Variable: 2004 result Uncalibrated Calibrated Regression .
2005 r esult 0l Total Ol Total IRS Total E<timate REML | HB Unif(O,U) | HB IG(.OOl.OOl)

Adiusted Gross |ncome 6,758,989,080 -0.003 -0.747 -0.036 -0.036 -0.034 -0.038

) 7,386,619,562 -0.007 -0.862 -0.053 -0.046 -0.043 -0.055

Taxable Interest Income 124,785,074 -0.055 -0.183 -1.510 -1.508 -1.372 -1.503

161,383,767 -0.069 -0.079 -1.072 -0.997 -0.880 -1.051

Earned Income Tax Credit 39,969,753 -0.038 1.728 -0.992 -0.749 -0.698 -0.873

42,351,454 0.002 0.559 -0.304 -0.304 -0.268 -0.298

132,120,007 0.029 0.221 -0.332 -0.337 -0.291 -0.333

Real Estate Taxes Deducted 144546368 | 0.113 1.565 0036 | -0.039 10,018 -0.039
201,938,363 0.067 -0.373 -0.212 -0.210 -0.149 -0.204 gg’
State and L ocal Income Taxes Deducted 227161944 | 0073 0633 0.165 0.032 0.035 0.027 2,
17,519,274 -0.371 8.855 -2.691 -1.261 -1.224 -1.274 >
State and Local General Sales Taxes Deducted 17.265817 | -0.435 1.885 1562 | -0.953 10.927 -0.980 2
* SOl totals are rounded to the thousands of real dollars. 2
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A.6. Coefficients of Variation for Alternative Estimates of State-Level Totals, Tax Y ear 2004 (note differencesin scale) sg?_
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A.6. Coefficients of Variation for Alternative Estimates of State-Level Totals, Tax Y ear 2004 (cont’ d, note differencesin scale)
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