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Abstract
Data available to analysts are often obtained from complex sample surveys in which
population units are selected by stratified multi-stage designs with unequal selection
probabilities. Unweighted estimators of the model parameters may be severely biased in
such cases if the selection probabilities are related to the outcome values even after
conditioning on the model covariates (informative sampling). Probability weighting
reduces the bias very significantly but does not eliminate it, unless the sample sizes at the
various levels of the model hierarchy are very large. In this paper we propose a general
approach for bias correction based on resampling procedure. We assess the performance
of our proposed approach by an extensive simulation study using probability weighted
estimators of two-level model parameters when fitting complex survey data under
informative sampling designs. The proposed method showed to be effective in bias
reduction in all the cases considered.
Key Words: Bias correction, Bootstrap, Sample distribution, Probability weighting.

1. Introduction

Unweighted multilevel analysis (Goldstein, 2003) of complex survey data may lead to
severely biased estimates (Korn and Graubard, 1995) if the inclusion probabilities are
related to the model response variable even after conditioning on the design variables,
known in the sampling literature as informative sampling design (Pfeffermann, Krieger
and Rinott, 1998). Under such schemes, the model holding for the population values is
likely to be different from the model holding for the sample data, defined as sample
model by Pfeffermann et al. (1998a). Therefore, the sample model needs to be estimated
from the sample data in order to perform inferential statistical analyses based on the
sample values.

Another important issue when fitting multilevel models to sample survey data is how to
account for the sampling weights in multilevel analysis estimation. A large number of
studies on how to do this have been proposed lately in the literature (Pfeffermann,
Skinner, Holmes, Goldstein and Rabash, 1998); Korn and Graubard, 2003; Grilli and
Pratesi, 2004; Rabe-Hesketh and Skrondal, 2006). Most of them are based on
incorporating the sampling weights in the likelihood function and maximising it via
numerical integration since closed expression for the estimators are not available.
Pfeffermann et al. (1998b) propose a probability weighted iterative generalised least
squares approach (PWIGLS), which is an adaptation of the iterative generalised least
squares (IGLS) method (Goldstein, 1986) by analogy to the pseudo maximum likelihood
principle (Binder, 1983; Skinner, 1989; Chambers, 2003). The PWIGLS approach
basically consists of probability weighting of first and higher level units with weights
equal to the reciprocal of the corresponding sampling inclusion probabilities. However, as
shown in that article, the use of this approach, although reducing the bias of unweighted
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parameter estimators very substantially, does not eliminate it completely, unless in large
samples.

Classical bootstrap bias corrections (Efron, 1979) involve estimating the bias of an
estimator by apriorily chosing a function that depends only on the original and bootstrap
estimates of the parameter of interest. In analyses that involve more than one parameter,
it could well be that the bias of an estimator in estimating one parameter may depend on
the value of that parameter and on the bias in estimating the other parameters.
This article proposes a general approach for bias correction, entitled the Extended
Bootstrap Bias Correction (EBS), based on the bootstrap resampling procedure and on a
parametric model.

In Section 2 we describe the classical bootstrap bias correction methods. The EBS
approach is presented in Section 3. In Section 4 we compare the performance of the EBS
method to classical bootstrap bias corrections via an extensive Monte Carlo study. In this
experiment, we consider unweighted (thereafter naïve) and PWIGLS estimators when
fitting two-level models to survey data under informative sampling of first units with
small sample sizes at both levels. Conclusions and Remarks are presented in Section 5.

2. Classical Bootstrap Bias Corrections

Efron (1979) proposed to estimate the bias by use of bootstrap samples as obtained by
drawing units with replacement from the original sample. These resampling methods
have become very popular in statistical inference and are applied in many diverse
applications in order to obtain estimates of standard errors, confidence intervals, biases,
etc. (Shao and Tu, 1995). In what follows, parametric and nonprametric bootstrap are
reviewed along with the classical bootstrap bias corrections.

Let nzz ,...,1  be the outcomes of independent and identically distributed (i.i.d.) random

variables nZZZ ,...,, 21  having distribution F . Denoting the observed data by

( )nzzz ,...,1= , the objective is to assess the accuracy of a statistic ( )zt=ψ̂  in

estimating the unknown parameter of interest ( )Ft=ψ .Let 
**

1,..., Bzz  be B  independent

(parametric or nonparamentric) bootstrap samples and **
1 ˆ,...,ˆ Bψψ  the corresponding

bootstrap replications of the statistic ψ̂ , where ( )**ˆ ii zt=ψ . Thus, measures of accuracy

of the statistic of interest are inferred from the observed values of the bootstrap

replications **
1 ˆ,...,ˆ Bψψ . In particular, the bootstrap estimation of bias is straightforward,

as shown in Efron and Tibshirani (1986) and described as folows. The bias of the statistic
( )zt=ψ̂  in estimating the true value ( )Ft=ψ  is

( ) ( )[ ] ( )FtztEbiasbias FFF −== ψψ ,ˆ  (1)

where [ ]⋅FE  is the expectation under the distribution F . Replacing F  by the estimated

distribution F̂  in equation (1), we find the bootstrap estimate of bias:

( )[ ] ( )FtztEbias
FF

ˆ*
ˆˆ −= . (2)

In practice, ( )[ ] [ ]*
ˆ

*
ˆ ψ

FF
EztE =  is approximated by averaging **

1 ˆ,...,ˆ Bψψ  over a large

number B of bootstrap replications yielding
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( )Ftiasb B
ˆˆˆ * −=ψ  (3)

where ∑
=

−=
B

b
bB

1

*1* ˆˆ ψψ . As B tends to infinity, Bbias  tends to 
F

biasˆ  (Efron and

Tibshirani, 1986).
Once an estimate of the bias is available, one can correct the original estimate by
subtracting the estimated bias from it. Hence, the bootstrap bias-corrected estimate of the
parameter of interest ψ , also known as additive correction, is given by

( )[ ] ** ˆˆ2ˆˆˆˆˆˆ ψψψψψψ −=−−=−= Ftiasb B
BC . (4)

Similarly, the multiplicative bias correction (Hall and Maiti, 2006) is given by
*2 ˆ/ˆˆ ψψψ =BC .

3. The Extended Bootstrap Bias Correction (EBS) Approach

The main idea of the EBS approach is to use data generated under an assumed model and
a plausible parameter space to identify the relationship between the true parameter value
and its estimates from the original and bootstrap samples. Hence, the functional
relationship between the error of the estimator under study and its original and bootstrap
estimates is extracted from the data themselves, rather than arbitrarily chosen. Besides,
not only original and bootstrap estimates of the target parameter are included in that
relationship but corresponding estimates of other model parameters can possibly be
included in the function as well. To allow for the fact that the bias may depend on the
true value of the parameter, the procedure explicitly takes into account a set of plausible
parameter values in the process of identification of the function.
The EBS approach is motivated by the classical bootstrap bias corrections and has two
main advantages. The first one is that it provides not only a bias-corrected estimator of
the target parameter but also the bootstrap distribution of the bias-corrected estimator,
allowing estimation of its measures of accuracy. The second advantage is that the EBS
approach is not restricted to a particular bias correction formula, permitting to express the
bias of the target estimator as a function of the biases of other estimators involved in the
analysis.
Let ξ  denote a superpopulation model with density function );( ψzξf  for an original

sample ( )nzz ,...,1=z  and a K -dimensional parameter of interest ),...,( 1 Kϕϕ=ψ . Let

ψ̂  denote the ‘original’ estimate of ψ  from the original sample. Assume that parametric
(or nonparametric) bootstrap samples are drawn from the original sample yielding the

average over the bootstrap estimates *
ψ̂ , also referred to as ‘bootstrap mean’.

Consider a single component kϕ  of ψ  for now, Kk ,...,1= . The aim is to estimate the

error of kϕ̂ , in estimating kϕ , i.e. kk ϕϕ −ˆ , by identifying the relationship between

kk ϕϕ −ˆ  and other potential factors that may be related to it, such as the original and

bootstrap estimates of all parameters involved in the analysis, i.e., ψ̂  and *
ψ̂ . Once this

functional relationship is identified, a bias-corrected estimator of kϕ  is obtained by

applying this function to the original sample. Since the bias corrections holding for
estimators of different parameters do not have to be the same, the EBS approach is
applied to each target parameter separately.
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To identify the functional relationship, a large number of values of ψ , ψ̂  and *
ψ̂  is

necessary, corresponding to the plausible parameter values and respective original and
bootstrap estimates. In practice, however, the original sample produces only one value of

ψ̂  and *
ψ̂ , and there is only one true (unknown) parameter value ψ . The range of

values is generated by mimicking the random process that originated the original estimate

and bootstrap mean, ψ̂  and *
ψ̂ , from the original sample.

The idea of the EBS method is to generate a set of plausible parameter values

Gg ψψψ ,...,,...,1  based on the original sample estimate and, for each of those, to

generate one pseudo original sample from );( gf ψzξ . Bootstrap samples are then

generated (parametrically or nonparametrically) from this pseudo original sample. As a
result, each generated parameter value generates one pseudo original estimate and
corresponding bootstrap estimates. A mathematical relationship for the bias of the
estimator under study can then be identified. A bias-corrected estimator for the target
parameter is obtained by applying this function to the original and bootstrap estimates
obtained from the original sample. The EBS method is described in six steps as follows:
Step 0 - Obtaining Original and Bootstrap Estimates

Assume that the original sample yields original and bootstrap estimates, ψ̂  and *
ψ̂ , of

the parameter ψ . These values are used later in step 5.

A single component of the vector of parameters ),...,( 1 Kϕϕ=ψ , say 1ϕ , is assumed to
be the target for bias-corrected estimation. The approach is applied to the other model
parameters in an identical manner.
Step 1 – Generation of Plausible Parameter Values
A set of G plausible parameter values ),...,( ,11,11 Gϕϕϕ =  for 1ϕ  is built according to a

process that will be specified in section (4.2.), item II.iii). Similarly for 2ϕ , obtaining

),...,( ,21,22 Gϕϕϕ = , and so on. Define Gψψ ,...,1  K -dimensional vectors of plausible

parameter values for ψ , where

),...,,( 1,1,21,11 Kϕϕϕ=ψ ,…, ),...,,( ,,2,1 gKggg ϕϕϕ=ψ ,…, ),...,,( ,,2,1 GKGGG ϕϕϕ=ψ .

Remark 1: This step could have a Bayesian interpretation but this is not considered in
this research since the objective here is to obtain a range of plausible values for the
parameter under study and not to make inference regarding the posterior distribution of
ψ .
Step 2 – Calculating the Estimation Error
For each vector of parameters gψ , one pseudo original sample is generated from the

population model );( gf ψzξ  and pseudo original estimates )ˆ,...,ˆ,ˆ(ˆ ,,2,1 gKggg ϕϕϕ=ψ

are obtained, Gg ,...,1= . The error of 1ϕ̂  in estimating 1ϕ  is then computed for each

pseudo original sample g  as gggError ,1,11 ˆ)ˆ( ϕϕϕ −= , Gg ,...,1= .

Step 3 - Estimating the Estimation Error
For each pseudo original sample obtained in step 2 a large number B of parametric
bootstrap samples are generated from )ˆ;( gf ψzξ  and bootstrap estimates

)ˆ,...,ˆ,ˆ(ˆ *
,,

*
,,2

*
,,1

*
, bgKbgbgbg ϕϕϕ=ψ , Gg ,...,1= ; Bb ,...,1=  are computed. Let

)ˆ,...,ˆ,ˆ(ˆ *
,

*
,2

*
,1

*
gKggg ϕϕϕ=ψ  denote the bootstrap means from the pseudo original sample
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g , Gg ,...,1= .

An estimate of gggError ,1,11 ˆ)ˆ( ϕϕϕ −=  for each pseudo original sample g  is then

given by gggrrorE ,1
*
,11 ˆˆ)ˆ(ˆ ϕϕϕ −= , Gg ,...,1= , which is also viewed as an estimate of

the bias of 1ϕ̂  (Efron and Tibshirani, 1986).
Step 4 – Identifying Bias Correction Functions

The idea is to model the error 11ˆ ϕϕ −=E  as a function of ψ̂  and *
ψ̂  using the ‘bias

correction data’ defined by the values gψ , gψ̂  and *ˆ gψ , Gg ,...,1= , from steps 1-3. A

possibility is to fit a standard linear regression model (or function )(⋅h ) to this data, i.e.

g
t
ggE ς+= ax , Gg ,...,1= , (5)

where, for each observation g , gggE ,1,1ˆ ϕϕ −= , t
ggg )ˆ,ˆ,1( *

ψψx = , a  is the vector of

regression coefficients and gς  is the model random error.

In fact, the analyst can apply sophisticated modelling procedures and goodness of fit tools

to identify the ‘best’ model )(* ⋅h  for the data at hands by modelling

)ˆ,ˆ(ˆ *
,1,1 gggg h ψψ=−ϕϕ , Gg ,...,1= .

A possible way to choose the model )(* ⋅h  is by using a validation method in which the

G  parameter values are split into two groups: modelling group, with vG −  values, and
validation group, with v  values. Candidate functions )(⋅h  are identified based on

( vG − ) values and then validated in the validation group. Bias-corrected estimates of

1ϕ  and corresponding errors are then obtained for each of the v  parameter values and

candidate function )(⋅h  considered, i.e.

)ˆ,ˆ(ˆˆ *
,1,1 ggHg

EBS
g h ψψ−= ϕϕ     and   g

EBS
ggError ,1,11 ˆ)ˆ( ϕϕϕ −= , vg ,...,1= ;

0,...,1 HH = , (6)

where )(⋅Hh  is the H -th candidate function identified in the modelling group and 0H  is

the number of candidate functions considered.

The ‘best’ bias correction function )(* ⋅h  is the one that originates the smallest estimated

bias for EBS
1ϕ̂  based on the validation values, i.e., )(* ⋅h  is chosen such that

∑
=

− −=
v

g
g

EBS
g

EBS viasB
1

,1,1
1

1 |ˆ|)ˆ(ˆ ϕϕϕ , (7)

an estimate of )ˆ()ˆ( 111 ϕϕϕ −= EBSEBS EBias , is minimum.
Note that the function for bias correction is completely extracted from the bias correction
data generated according to the features of the original sample available for analysis.
Therefore, for each original sample found in practice there will be a different bias
correction function that holds for that specific data.
Step 5 -  Obtaining Bias Correction for the Original Estimate

Estimates ψ̂  and *
ψ̂  obtained in step 0 are plugged in the bias correction function )(* ⋅h

identified in step 4, yielding an estimate of the bias of 1ϕ̂  in estimating 1ϕ  and, therefore,

a bias-corrected estimate of the target parameter 1ϕ , i.e.,
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)ˆ,ˆ(ˆ)ˆ(ˆˆˆ **
1111 ψψhiasBEBS −=−= ϕϕϕϕ . (8)

It is important to emphasise that the classical bootstrap bias corrections are implicitly
included in the EBS approach by appropriately choosing the vector of explanatory
variables x  in expression (5) (this is illustrated in section 4.2).
Unlike the classical bootstrap bias corrections, the EBS approach allows estimation of

measures of accuracy of EBS
1ϕ̂  as an estimator of 1ϕ , such as mean squared error (MSE)

and confidence interval (C.I.). Once the best bias correction function )(* ⋅h  is chosen, the

bootstrap distribution of the error 11ˆ ϕϕ −EBS  can be obtained by applying that function to

the bias correction data in step 4, yielding G  values of the estimation error, i.e.

g
EBS
g ,1,1ˆ ϕϕ − , Gg ,...,1=  (similarly to expression (6)). Thus, for example, an estimate of

the variability of the estimator EBS
1ϕ̂  is given by

∑
=

− −=
G

g
g

EBS
g

EBS GESM
1

2
,1,1

1
1 )ˆ()ˆ(ˆ ϕϕϕ . (9)

Equation (9) measures the variability of the EBS estimator EBS
1ϕ̂  over all plausible values

of 1ϕ . There are several methods available for obtaining bootstrap confidence intervals
(Davison and Hinkley, 1997). A direct method (DiCiccio and Efron, 1996) consists of
obtaining a )%1( α−  bootstrap C.I. for the error 11ˆ ϕϕ −EBS  by taking the )%2/(α  and

)%2/1( α−  percentiles, 2/αp  and 2/1 α−p , respectively, of the bootstrap distribution

(based on G  values) of the difference 11ˆ ϕϕ −EBS  as the respective lower and upper

bounds, i.e. );()1;ˆ.(. 2/12/11 αααϕϕ −=−− ppIC EBS . Hence, a )%1( α−  bootstrap C.I.

for 1ϕ  is given by

)ˆ;ˆ()1;.(. 2/12/111 αα ϕϕαϕ ppIC EBSEBS −−=− − . (10)

In the particular case of informative sampling designs (Pfeffermann et al., 1998a),
application of the EBS approach requires estimation of the sample model, say );( ψzsf ,

from the original sample in order to generate the pseudo original sample for each
plausible parameter value generated in step 2 of the method. Similar remark holds for the
step 3 of the EBS approach, with the bootstrap samples from each pseudo original sample
being generated from the sample model in case of an informative sampling design.
Hence, the pseudo original samples (step 2) and the corresponding bootstrap samples
(step 3) can be generated either from the population model, say );( gf ψzξ  (in the case of

noninformative sampling, i.e. );();( ggs ff ψzψz ξ= ) or from the sample model

);( gsf ψz  (in the case of informative sampling). Nonparametric bootstrap is an

alternative for step 3 (but not for step 2) of the EBS approach for both informative and
noninformative sampling designs.

4. Bias Corrections of Unweighted and PWIGLS Estimators of a Two-level
model Under an Informative Sampling Design

In this section, the EBS approach is applied in order to reduce the bias of unweighted
(‘naïve’) and PWIGLS (Pfeffermann et al., 1998b) estimators of two-level model
parameters under an informative sampling scheme with small sample sizes of the upper
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level units. The study is based on simulated data adopting the same sampling scheme
considered by Pfeffermann et al. (1998b) and under which the PWIGLS estimators
showed large biases.
Since the sampling scheme adopted in this section is informative, the discussion at the
end of the previous section holds for the two-level model studied here. The only
particularity is that the sample model needs to be estimated for each level of the
hierarchy.
In section 4.1, the population model and sampling design considered in this application
are described along with the developments for estimation of the sample models. The
performance of the EBS approach using parametric and nonparametric bootstrap is
assessed by an extensive Monte Carlo study described in section 4.2. The results of this
study are presented in section 4.3.

4.1 Population Model, Sampling Design and Estimation of Sample Models
Consider the following two-level random intercept model (denoted ξ ):

ijjjijy εββ +=| , 
jNi ,...,1=  (level 1 model)

jj u+= ββ , Mj ,...,1=  (level 2 model), (11)

where  ju  and ijε  are independent random errors such that ( )2
...

,0~ u

dii

j Nu σ ,

( )2
...

,0~ εσε N
dii

ij . Let t
u ),,( 22 σσβ ε=ψ  be the vector of population parameters.

Consider a two-stage disproportional stratified clustered sampling design with
informative sampling only at level 1 (elementary units). At the first stage, m level 2
units are selected by a probability proportional to size without replacement design. The
measures of size are the level 2 sizes jN , which are assumed to be uncorrelated with the

random intercepts jβ , such that the sampling design is noninformative at level 2. At the

second stage, level 1 units in selected level 2 unit j  are partitioned into 2 strata

according to whether 0>ijε  or 0≤ijε  and simple random sampling without

replacement of sizes 1.jn  and 2.jn  (assuming 2.1. jj nn ≠ ) are drawn from stratum 1 and

2 of level 2 unit j , respectively. In this case, the first level inclusion probability is

related to the level 1 random error ijε  and, consequently, to the outcome ijy , featuring

an informative sampling design at level 1.
Pfeffermann et al. (1998b) considered the same first level sampling design for assessing
the performance of the PWIGLS estimators, finding nonnegligible biases when the
assumption of noninformativeness at level 1 was violated. Therefore, a noninformative
sampling design at level 2 and an informative sampling design at level 1 are assumed in
this study in order to assess the EBS approach for bias correction of the PWIGLS
estimators under the worst scenario considered by Pfeffermann et al. (1998b). The
authors did not consider the sample model in their work. Estimation of the sample model
under the sampling design described above is presented below.
Let s  denote the sample of level 2 units and js  the sample of level 1 units from the

selected level 2 unit j . In what follows, the sample model holding for the level 1 units in

the sample js  is estimated for the present sampling design and population model ξ .Let

ijO  be the stratum membership indicator taking the value 1 if the level 1 unit i  in level 2
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unit j  belongs to stratum 1 ( 0>ijε ) and zero, otherwise. Since the random errors ijε
are assumed to be normally distributed with zero mean, for sufficiently large jN  the

expected number of units in each stratum is 2/jN . This is due to the fact that * 1.jN , the

number of units in the population of stratum 1, is such that )5.0,(~*
.1 jj NBinomialN

since each ijε  is larger (or smaller) than zero with probability 0.5. Following

Pfeffermann, Krieger and Rinott (1998) and Pfeffermann, Moura and Silva (2006), the
sample model )(⋅

jsf  for the distribution of the level 1 dependent variable ijy  given the

random intercept jβ  and inclusion in the sample, is given by

),,|Pr(/),|(),,|Pr(

),,|(),|(
.

ψψψ

ψψ

jjjijjijj

jjij

def

jijs

siyfysi

siyfyf
j

βββ

ββ

ξ ∈∈=

∈=
 (12)

Note that the distribution of ijy  given jβ  under the model ξ , ),|( ψjijyf βξ , follows a

normal distribution with mean jβ  and variance 2
εσ .

The probability in the numerator of (12) is given by

      jjjijj Nnysi /2),,|Pr( 1.=∈ ψβ , if 0>− jijy β  and

jjjijj Nnysi /2),,|Pr( 2.=∈ ψβ , otherwise,             (12A)

using the fact that once both ijy  and jβ  are known, the ijε  is also known and, therefore,

),,|Pr( ψjijj ysi β∈  is simply the inclusion probability in the corresponding stratum.

The term ),|Pr( ψjjsi β∈  in the denominator of (12) is given by

,),,(
2

),,(
2

),|(),,|Pr(),|(),,|Pr(

),|(),,|Pr(),|Pr(

21.22.

∫∫

∫∫

∫

∞

∞−

∞

∞−

∞

∞−

+=

∈+∈=

∈=∈

j

j

j

j

ijjij
j

j
ijjij

j

j

ijjijjijjijjijjijj

ijjijjijjjj

dyy
N

n
dyy

N

n

dyyfysidyyfysi

dyyfysisi

β
ε

β

ε

β
ξ

β

ξ

ξ

σβφσβφ

ββββ

βββ

ψψψψ

ψψψ

 (12B)

where ),;( 2
εσβφ jijy  denotes the normal probability density function with mean jβ  and

variance 2
εσ  evaluated at point ijy ; also ),,|Pr( ψjijj ysi β∈  is equal to the sampling

fraction in stratum 2 of level 2 unit j , i.e. 
j

j

N

n 2.2
, for jijy β≤  (or 0≤ijε ). Similarly

for stratum 1, with corresponding probability equal to 
j

j

N

n 1.2
. Since each integral in

(12B) is equal to 0.5, the denominator of (12) is written as
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,
2

12

2

12

),,(
2

),,(
2

),|Pr(

2.1.1.2.

21.22.

j

j

j

jj

j

j

j

j

ijjij
j

j
ijjij

j

j
jj

N

n

N

nn

N

n

N

n

dyy
N

n
dyy

N

n
si

j

j

=
+

=⋅+⋅=

+=∈ ∫∫
∞

∞− β
ε

β

ε σβφσβφβ ψ

(12C)

which is equal to the sampling fraction at the level 2 unit j .
Replacing (12A) and (12C) in (12), the sample distribution for the level 1 measurements

ijy  given the random intercept jβ  and inclusion in the sample is

( ) ( )







≤

>
=













≤

>

=∈=

−

−

.),,;(2

),,;(2

,
/

),;()/2(

,
/

),;()/2(

,,|,|

21
2.

21
1.

2
2.

2
1.

jijjijjj

jijjijjj

jij
jj

jijjj

jij
jj

jijjj

jjijjijs

yifynn

yifynn

yif
Nn

yNn

yif
Nn

yNn

siyfyf
j

βσβφ

βσβφ

β
σβφ

β
σβφ

ββ

ε

ε

ε

ε

ψψ

 (13)

Since the sampling design is noninformative at level 2, the sample distribution for the
level 2 measurements jβ  given inclusion in the sample is the same as the distribution of

jβ  in the population, i.e., ( ) ( ) ),;(,|| 2
ujjjs sjff σββφββ =∈= ψψ .          (14)

4.2 Monte Carlo Study
In this section, the performance of the EBS approach is assessed via a Monte Carlo study
for the population model, sampling scheme and sample model described in the previous
section. The experiment mimics the simulation study performed by Pfeffermann et al.
(1998b) with an additional step for adjusting the bias of unweighted and PWIGLS
estimators by applying the EBS approach. The scaled 2 PWIGLS estimators proposed by
Pfeffermann et al. (1998b) is adopted in this study.

Let t
u )ˆ,ˆ,ˆ(ˆ 22 σσβ ε=ψ  and t

u )ˆ,ˆ,ˆ(ˆ ,*2,*2** σσβ ε=ψ  be the respective vectors of original

estimates and bootstrap means of the vector of population parameters t
u ),,( 22 σσβ ε=ψ .

The experiment involves generating populations from the model in (11) with parameters

1=β , 2.02 =uσ , 5.02 =εσ  and 300=M  second level units. The second level sizes

jN  were determined by ( )jj uN ~exp75= , where ( )2,0~~
uj Nu σ  truncated below by

uσ5.1−  and above by uσ5.1 . The values of jN  lie in the interval [38;147] with average

around 80. The sample size at the first stage is 35=m  level 2 units. At the second stage,
simple random samples of level 1 units of sizes 21. =jn  and 72. =jn  are drawn from

strata 1 and 2, respectively. Therefore, the total sample sizes jn  are fixed ( 9=jn ) for all

level 2 units j .
Generation of bootstrap samples from the original and the pseudo original samples (step
0 and step 3 in section 3, respectively) is carried out by both parametric and
nonparametric bootstrap. The latter involves selecting the second level units by a simple
random sampling design, with all the first level units (individual level) from the sampled
level 2 units being included in the sample. The sampling weights used in the replicated
values (bootstrap samples) are identical to the original sampling weights. For simplicity,
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generation of the plausible parameter values (step 1, section 3) was performed from a
uniform distribution between two boundaries determined by the original estimates (see
step II.iii) below). The experiment consists in replicating the six steps of the EBS
approach (section 3) a large number of times in order to assess the bias and mean squared
error of the EBS estimators. The method is described below for the PWIGLS estimator

pw
ψ̂ , with an identical process applied to the naïve estimator naive

ψ̂ . When the selection

(or generation) of the sample does not depend on the type of the estimator (i.e. in steps II)

and ii.a) below), both estimators pw
ψ̂  and naive

ψ̂  were obtained from the same sample.

The EBS approach was implemented as follows:
 I) Generate a population according to the population model in (11);
 II)  From the population in I), select one original sample by an informative sampling

scheme described in the previous sub-section. For this sample, perform the following:

i) Obtain PWIGLS original estimates, pw
ψ̂ , of ψ  with corresponding PWIGLS

standard errors )ˆ( pwseψ ;

ii)  Obtain bootstrap means ,*ˆ pw
ψ  from 250=B  bootstrap samples generated by

ii.a) nonparametric bootstrap;

ii.b) parametric bootstrap via the sample model based on pw
ψ̂ , i.e.,

)ˆ,|( pw
jijs yf

j
ψβ  and )ˆ|( pw

jsf ψβ ;

iii)  Obtain a set of 400=G  parameter values for each component of ψ . For an

original estimate pwβ̂  of β , for example, the values are generated by

randomly drawing G  values from ),( bauniform , where

)ˆ(3ˆ pwpw sea ββ −=  and )ˆ(3ˆ pwpw seb ββ += , yielding pw
G

pw
ψψ ,...,1 .

iv) For each pw
gψ , 400,...,1=g , in iii):

iv.a) Generate one pseudo original sample from ),|( pw
gjijs yf

j
ψβ  and

)|( pw
gjsf ψβ , obtaining pw

gψ̂ ;

iv.b) Obtain bootstrap means ,*ˆ pw
gψ  from 250=B  bootstrap samples

generated by:
iv.b.1) nonparametric bootstrap;

iv.b.2) parametric bootstrap via the sample model based on pw
gψ̂ , i.e.,

)ˆ,|( pw
gjijs yf

j
ψβ  and )ˆ|( pw

gjsf ψβ ;

v) Allocate 50=v  parameter values to the validation group and 350=− vG
values to the modelling group (step 4 in section 3). For correcting the bias of,

say pwβ̂ , identify functions )(* ⋅h  by modelling

)ˆ,ˆ(ˆ ,*pw
g

pw
g

pw
g

pw
g h ψψ=− ββ , 350,...,1=g . After validating them in the

validation group, the ‘best’ function, say )(*
1 ⋅h , for correcting the bias of

pwβ̂  is chosen according to expression (7) in section 3. Similarly, functions

)(*
2 ⋅h  and )(*

3 ⋅h  are chosen for correcting the bias of 
pw

u
,2σ̂  and pw,2ˆεσ ,

respectively;
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vi) Obtain EBS bias-corrected estimator of pwβ̂ , 
pw

u
,2σ̂  and pw,2ˆεσ  such that

)ˆ,ˆ(ˆˆ ,**
1

pwpwpwEBS h ψψ−= ββ  ; )ˆ,ˆ(ˆˆ ,**
2

,2,2 pwpwpw
u

EBS
u h ψψ−= σσ  and

)ˆ,ˆ(ˆˆ ,**
3

,2,2 pwpwpwEBS h ψψ−= εε σσ . Note that the original estimates from  steps i)

and ii) are plugged in the functions.

Mean squared error estimates of the EBS estimators are obtained by using

the estimates from step v). For EBSβ̂ , for example, let

)ˆ,ˆ(ˆˆ ,**
1

pw
g

pw
g

pw
g

EBS
g h ψψ−= ββ , 400,...,1 == Gg , and obtain

2

1

1 )ˆ()ˆ(ˆ ∑ =
− −= G

g

pw
g

EBS
g

EBS GESM βββ .

Steps I-II above were repeated 100=R  times. The number of plausible parameter values
400=G  was chosen in order to allow a reasonable number of parameter values for

estimation (350 values) and validation (50 values) of the candidate bias correction
functions (step 4 in section 3). In practical situations, however, only one original sample
is available for analysis and usually only one type of estimator and type of bootstrap is
considered in the bias corrections, which make the EBS approach much easier to be
implemented with a reasonable execution time (a few hours in this application). The
experiments conducted in this research were all implemented in the statistical software R
(R Development Core Team, 2008) and in the statistical software SAS (SAS Institute
Inc., 1999), including a specific routine for the PWIGLS approach not available in
standard statistical software. The naïve parameter estimates were obtained by using the
function lme of the statistical software R. In practice, the modelling of the bias correction
data in step v) of the experiment needs to be done just once. However, in order to
undertake a Monte Carlo study of the performance of the EBS bias-corrected estimators
with 100=R  original samples, an automatic procedure for searching for the ‘best’
function for bias correction of each estimator is needed. This procedure was implemented
as follows. Having generated the 400=G  values for a specific parameter (step iii) of the
experiment), 50=v  values were randomly selected as the validation group (step v)) and

350=− vG  values as the modelling group. Concentrate on the modelling group for
now. For a specific response variable (error of the estimator to be corrected), a full model
is fitted to the ‘raw data’ (model 0) and extreme values were excluded from the analysis
based on the Cook’s distance (Fox, 1991), which is a well-known outlier indicator
available in most of the standard statistical software. Using the ‘clean data’, the full
model is re-fitted (model 1). Another model is obtained (model 2) by applying a
backward elimination regression method on the clean data. Model 2 without the intercept
(model 3) was also assessed in situations where although that estimate was not
significantly different from zero the intercept was kept in the model by the backward
elimination procedure. Hence, for each parameter and bias correction function identified,
the three models (models 1, 2 and 3 above) were validated on the validation data,
obtaining realisations of bias of the EBS estimator. Six different functions were
considered in the modelling process and models 1, 2 and 3 were fitted for each function.
The chosen model, among the 18 models assessed, was the one producing the smallest
estimated bias for the EBS estimator based on the validation group (a discussion on this
issue is presented in section 5). Six functions were used in the process of choosing the

best function for bias correction for each estimator: 2
uσ , β  and 2

εσ . These functions

were identified by firstly fitting the model manually for a few original samples. Then,
they were included in the list of candidate functions to be evaluated by the automatic
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procedure described in the previous paragraph. The classical additive and multiplicative
bootstrap bias corrections are special case, for example, of functions 1 and 2,
respectively, shown in Table 1, taking 11 =a  and 0320 === aaa .

Table 1: Examples of candidate bias correction functions used in the EBS approach

for 
2ˆuσ .

Function
Code

Formulae of function )(⋅h , 350,...,1 =−= vGg

1 )
ˆ

ˆ
()

ˆ

ˆ
()

ˆ

ˆ
(

ˆ *

32
,

,*2
,

22
,

,*2
,

102
,

2
,

g

g

g

g

gu

gu

gu

gu aaaa
β
β

σ
σ

σ
σ

σ
σ

ε

ε ⋅+⋅+⋅+=

2 )ˆˆ()ˆˆ()ˆˆ(ˆ *
3

2
,

,*2
,2

2
,

,*2
,10

2
,

2
, gggggugugugu aaaa ββσσσσσσ εε −⋅+−⋅+−⋅+=−

4.3 Results
Tables 2-4 show summary statistics for the naïve, PWIGLS and respective bias-corrected
estimators of the three parameters β , 2

uσ  and 2
εσ  under the classical corrections and the

EBS approach. Results are reported for nonparametric bootstrap only. Similar
conclusions are valid for the parametric case. The number of original samples considered
for naïve and PWIGLS estimators is 72=R  and 95=R , respectively.

Let rψ̂  denote an estimator (naïve, PWIGLS, EBS or classical bias-corrected estimator)

of the parameter ψ  (known in the simulation study) for the original sample .,...,1 Rr =
The following summary statistics were computed for rψ̂ : simulation mean (Mean):

∑ =
−= R

r rR
1

1 ˆˆ ψψ ; simulation standard deviation (SD): ∑ =
− −− R

r rR
1

21 )ˆˆ()1( ψψ ; empirical

bias (Bias): ∑ =
− −R

r rR
1

1 )ˆ( ψψ ; empirical relative bias (RB): ∑ =
− −R

r
rR

1

1 )
ˆ

(
ψ

ψψ ; empirical

root mean squared error (RMSEemp): ∑ =
− −R

r rR
1

21 )ˆ( ψψ .

As anticipated, the naïve and PWIGLS estimators based on the original sample are highly
biased in the present scenario, especially for the variance component parameters. The
EBS bias-corrected estimators show very good performance for all model parameters,
including the variance component estimators, which are expected to be most problematic
to estimate due to their high sensitivity to small sample sizes. Classical bias corrections,
however, perform poorly with small or no reduction in the biases.
As anticipated, the naïve and PWIGLS estimators based on the original sample are highly
biased in the present scenario, especially for the variance component parameters. The
EBS bias-corrected estimators show very good performance for all model parameters,
including the variance component estimators, which are expected to be most problematic
to estimate due to their high sensitivity to small sample sizes. Classical bias corrections,
however, perform poorly with small or no reduction in the biases.
It is worth emphasising that the bias-corrected PWIGLS estimators obtained by the EBS
approach perform well even in the case where the non-corrected estimator is practically
unbiased, which is a desirable characteristic of a bias correction procedure. This is the
case of the PWIGLS estimator of the intercept β  (Pfeffermann et al., 1998b). In
addition, the trade-off bias-variance does not seem to be an issue for the EBS bias-
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corrected estimators, since the mean squared errors (RMSEemp) show minimum increase
or even reduction when compared to the non-corrected estimators.

5. Conclusions and Final Remarks

In this article a bias correction approach – the extended bootstrap bias correction (EBS) –
was proposed. The method was applied to bias adjustment of unweighted and PWIGLS
estimators of linear two level model parameters under informative sampling of level 1
units with small sample sizes at both levels. The EBS procedure was assessed by Monte
Carlo study, evaluating the behaviour of the EBS estimators through mean squared errors
and biases estimates.
The main finding of the Monte Carlo study conducted in this study is that the EBS bias
correction approach performs very well for all the scenarios considered (naïve and
PWIGLS estimators under nonparametric bootstrap – tables 2-4).
When the sampling design is informative and the parametric bootstrap is applied, the
estimation of the sample model is necessary in the EBS approach (for generation of
pseudo original samples and bootstrap samples) and also in the classical corrections (for
generation of bootstrap samples). If the nonparametric bootstrap is adopted, the sample
model is still needed for generation of the pseudo original samples in the EBS approach,
although it is not necessary when using the classical corrections (but the results revealed
poor performance in this situation – tables 2-4).
In the case of a noninformative sampling scheme, knowledge of the population model is
required for both parametric and nonparametric bootstrap if the EBS approach is used.
For classical corrections, however, assumptions about the population model can be
relaxed if the nonparametric bootstrap is adopted.
The EBS approach is more computing intensive when compared to the classical
corrections, but shows good performance for all the scenarios studied. In addition, unlike
the classical corrections, it allows mean squared error and confidence interval estimation
for the bias-corrected estimators in practical situations where only one original sample is
available for analysis.
A range of factors can be changed to improve the EBS approach proposed in this article.
First, the best function can be chosen such that the estimated MSE (not the bias) of the
EBS estimator is minimum (Corrêa, 2008, Chapters 4 and 5).
Another issue to be explored is the generation of the parameter values. Adopting wider
intervals and distributions other than the uniform is an important issue to be considered.
For example, considering a wider interval ],[ ba , )ˆ(4ˆ ψψ sea ⋅−=  and

)ˆ(4ˆ ψψ seb ⋅+= , for the generation of the plausible parameter values (step iii) in
section 4.2) may improve the fitting of the model and, consequently, the bias correction
results, since the true parameter value will almost surely be covered by an wider interval.
On the other hand, it may be true that the further the plausible parameter value is from the
true value the more different the relationship is, suggesting considering a narrower
interval. Besides, it is important to perform a sensitivity analysis to assess the effect of
the choice of the distribution used to generate the plausible parameter values on the
performance of the EBS approach.
The number of plausible parameter values G , and also the number of bootstrap samples,
can be increased in practice since only one original sample is actually available for
analysis. In addition, more sophisticated regression analysis tools can be used on the
identification of the bias correction function, yielding better EBS estimators.
The extended bootstrap bias correction procedure proposed and assessed in this article
adopted Monte Carlo methods in an attempt to mimic common situations found in
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practice, where biased estimates are produced as a result of analysing survey data. We
conclude therefore that the EBS approach is applicable to real survey data.
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Table 2: Naïve and PWIGLS estimators. Nonparametric bootstrap. True value 1=β .

Table 3: Naïve and PWIGLS estimators. Nonparametric bootstrap. True value 2.02 =uσ .

Estimator Mean SD Bias RB RMSEemp

naive,2ˆεσ 0.169 0.046 -0.031 15% 0.055

Additive correction 0.165 0.049 -0.035 17% 0.060
Multiplicative
correction

0.165 0.049 -0.035 17% 0.060

EBS 0.187 0.071 -0.013 6% 0.071
pw

u
,2σ̂ 0.158 0.052 -0.042 -20% 0.065

Additive correction 0.165 0.054 -0.035 -15% 0.064
Multiplicative
correction

0.165 0.054 -0.035 -15% 0.064

EBS 0.196 0.051 -0.004 -2% 0.050

Table 4: Naïve and PWIGLS estimators. Nonparametric bootstrap. True value 5.02 =εσ .

Estimator Mean SD Bias RB RMSEemp

naive,2ˆεσ 0.429 0.041 -0.071 -14.2% 0.082

Additive correction 0.448 0.043 -0.052 -10.4% 0.067
Multiplicative
correction

0.449 0.043 -0.051 -10.2% 0.066

EBS 0.493 0.050 -0.007 -1.4% 0.050
pw,2ˆεσ 0.522 0.056 0.022 4.4% 0.060

Additive correction 0.522 0.056 0.022 4.4% 0.060
Multiplicative
correction

0.522 0.057 0.022 4.4% 0.060

EBS 0.503 0.053 0.003 0.2% 0.054

Estimator Mean SD Bias RB RMSEemp

naiveβ̂ 0.691 0.086 -0.309 -30.9% 0.321

Additive correction 0.691 0.086 -0.309 -30.9% 0.321
Multiplicative
correction

0.691 0.086 -0.309 -30.9% 0.321

EBS 1.002 0.151 0.002 0.2% 0.150
pwβ̂ 0.994 0.092 -0.006 -0.6% 0.091

Additive correction 0.995 0.092 -0.005 -0.5% 0.092
Multiplicative
correction

0.995 0.092 -0.005 -0.5% 0.092

EBS 0.996 0.089 -0.004 -0.4% 0.088
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