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Abstract

Data available to analysts are often obtained fommplex sample surveys in which
population units are selected by stratified mulige designs with unequal selection
probabilities. Unweighted estimators of the modmlaeters may be severely biased in
such cases if the selection probabilities are edldb the outcome values even after
conditioning on the model covariates (informativ@mpling). Probability weighting
reduces the bias very significantly but does niatiahte it, unless the sample sizes at the
various levels of the model hierarchy are verydaig this paper we propose a general
approach for bias correction based on resamplinggaiure. We assess the performance
of our proposed approach by an extensive simulattady using probability weighted
estimators of two-level model parameters whennfitticomplex survey data under
informative sampling designs. The proposed methoalved to be effective in bias
reduction in all the cases considered.

Key Words: Bias correction, Bootstrap, Sample distributiBrgbability weighting.

1. Introduction

Unweighted multilevel analysis (Goldstein, 2003)coimplex survey data may lead to
severely biased estimates (Korn and Graubard, 1898 inclusion probabilities are
related to the model response variable even afteditoning on the design variables,
known in the sampling literature aformative samplinglesign(Pfeffermann, Krieger
and Rinott, 1998). Under such schemes, the moddingpfor the population values is
likely to be different from the model holding fanet sample data, defined aample
modelby Pfeffermanret al. (1998a). Therefore, the sample model needs tstmaed
from the sample data in order to perform inferéngiatistical analyses based on the
sample values.

Another important issue when fitting multilevel netsl to sample survey data is how to
account for the sampling weights in multilevel as& estimation. A large number of
studies on how to do this have been proposed latelthe literature (Pfeffermann,
Skinner, Holmes, Goldstein and Rabash, 1998); kanrd Graubard, 2003; Grilli and
Pratesi, 2004; Rabe-Hesketh and Skrondal, 2006)st M them are based on
incorporating the sampling weights in the likelidofunction and maximising it via
numerical integration since closed expression fog estimators are not available.
Pfeffermannet al (1998b) propose a probability weighted iteratyeneralised least
squares approach (PWIGLS), which is an adaptatfothe iterative generalised least
squares (IGLS) method (Goldstein, 1986) by anatogye pseudo maximum likelihood
principle (Binder, 1983; Skinner, 1989; Chamber§03®. The PWIGLS approach
basically consists of probability weighting of firand higher level units with weights
equal to the reciprocal of the corresponding samggliclusion probabilities. However, as
shown in that article, the use of this approactimoaigh reducing the bias of unweighted
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parameter estimators very substantially, does limirate it completely, unless in large
samples.

Classical bootstrap bias corrections (Efron, 19ir@plve estimating the bias of an
estimator by apriorily chosing a function that deg® only on the original and bootstrap
estimates of the parameter of interest. In analysa&sinvolve more than one parameter,
it could well be that the bias of an estimator stireating one parameter may depend on
the value of that parameter and on the bias imeasithig the other parameters.

This article proposes a general approach for bi@section, entitled the Extended
Bootstrap Bias Correction (EBS), based on the b@psesampling procedure and on a
parametric model.

In Section 2 we describe the classical bootstrgs lmorrection methods. The EBS
approach is presented in Section 3. In Section 4amepare the performance of the EBS
method to classical bootstrap bias correctionsamigxtensive Monte Carlo study. In this
experiment, we consider unweighted (thereaftgive and PWIGLS estimators when
fitting two-level models to survey data under im@ative sampling of first units with
small sample sizes at both levels. ConclusionsRardarks are presented in Section 5.

2. Classical Bootstrap Bias Corrections

Efron (1979) proposed to estimate the bias by didmotstrap samples as obtained by
drawing units with replacement from the originamgde. These resampling methods
have become very popular in statistical inferenod are applied in many diverse
applications in order to obtain estimates of stamhdarors, confidence intervals, biases,
etc. (Shao and Tu, 1995). In what follows, parameind nonprametric bootstrap are
reviewed along with the classical bootstrap biasemtions.

Let z,...,z, be the outcomes of independent and identicallyribiged (i.i.d.) random

variables Z,,7,,...,Z, having distribution F . Denoting the observed data by

n
z= (21,...,zn), the objective is to assess the accuracy of dstitat) = t(;) in
estimating the unknown parameter of intengst t(F).Let ;1;5 be B independent
(parametric or nonparamentric) bootstrap samplas lﬁlptﬁB the corresponding
bootstrap replications of the statistjc, wherez[/i* = th,) Thus, measures of accuracy
of the statistic of interest are inferred from tbbserved values of the bootstrap
replicationstﬁi lﬁB In particular, the bootstrap estimation of bisstraightforward,
as shown in Efron and Tibshirani (1986) and desdris folows. The bias of the statistic
o= t(;) in estimating the true valug = t(F) is

bias. = bias. (i,¢/) = E. [t(z)] - t(F) ()
where E¢ [[]] is the expectation under the distributibn. ReplacingF by the estimated
distribution F in equation (1), we find the bootstrap estimatbias:

bias, = E, |tz )| -t(F). ®)
In practice, E, [th )J: E. [1,[/] is approximated by averagirtﬁz,...,(/?; over a large
number B of bootstrap replications yielding
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bias, =" —t(lf) (3)
- B
where (" =B™) J, . As Btends to infinity, bias, tends tobias. (Efron and
b=1

Tibshirani, 1986).

Once an estimate of the bias is available, one amanect the original estimate by
subtracting the estimated bias from it. Hence jb@tstrap bias-corrected estimate of the
parameter of interegt , also known as additive correction, is given by

g5 =g -bias, =g -|g" 1) =20 -9 (4)
Similarly, the multiplicative bias correction (Haknd Maiti, 2006) is given by

g =PIy
3. The Extended Bootstrap Bias Correction (EBS) Apmach

The main idea of the EBS approach is to use datargeed under an assumed model and
a plausible parameter space to identify the ralatigp between the true parameter value
and its estimates from the original and bootstrapm@es. Hence, the functional
relationship between the error of the estimatoreurstiudy and its original and bootstrap
estimates is extracted from the data themselvésemrahan arbitrarily chosen. Besides,
not only original and bootstrap estimates of thgda parameter are included in that
relationship but corresponding estimates of othedeh parameters can possibly be
included in the function as well. To allow for tfect that the bias may depend on the
true value of the parameter, the procedure exiglitikes into account a set of plausible
parameter values in the process of identificatiothe function.

The EBS approach is motivated by the classicaldtiagt bias corrections and has two
main advantages. The first one is that it providesonly a bias-corrected estimator of
the target parameter but also the bootstrap disioib of the bias-corrected estimator,
allowing estimation of its measures of accuracye §hcond advantage is that the EBS
approach is not restricted to a particular biasemtion formula, permitting to express the
bias of the target estimator as a function of tlasds of other estimators involved in the
analysis.

Let ¢ denote a superpopulation model with density famctf, (z;y) for anoriginal
samplez = (zi,...,zn) and aK -dimensional parameter of interagt= (¢@,,...,9, ) . Let

y denote the ‘original’ estimate af from the original sample. Assume that parametric
(or nonparametric) bootstrap samples are drawn fiteemoriginal sample yielding the
average over the bootstrap estimaTe*s, also referred to as ‘bootstrap mean’.

Consider a single componem of y for now, k =1,...,K . The aim is to estimate the
error of @, , in estimatingg, , i.e. §, — @, , by identifying the relationship between
@, —$, and other potential factors that may be related, teuch as the original and

bootstrap estimates afl parameters involved in the analysis, i.,and $ . Once this
functional relationship is identified, a bias-catiexl estimator of@, is obtained by

applying this function to the original sample. Sinthe bias corrections holding for
estimators of different parameters do not have gothe same, the EBS approach is
applied to each target parameter separately.
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To identify the functional relationship, a largenmuer of values ofy , ¥ and $ is

necessary, corresponding to the plausible paramvetees and respective original and
bootstrap estimates. In practice, however, thar@aigample produces only one value of

y and $ and there is only one true (unknown) parametéwneva . The range of
values is generated by mimicking the random prottestsoriginated the original estimate
and bootstrap meany and $ , from the original sample.

The idea of the EBS method is to generate a sepladisible parameter values
WieoWghWe based on the original sample estimate and, foh edcthose, to

generate_ongseudo original sampldrom f{(z;\yg). Bootstrap samples are then

generated (parametrically or nonparametricallyjrfrihis pseudo original sample. As a
result, eachgenerated parameter valugenerates on@seudo original estimatend
correspondingbootstrap estimatesA mathematical relationship for the bias of the
estimator under study can then be identified. Asdoiarrected estimator for the target
parameter is obtained by applying this functiortite original and bootstrap estimates
obtained from the original sample. The EBS metlsodiiscribed in six steps as follows:
Step 0 - Obtaining Original and Bootstrap Estimates

Assume that the original sample yields original &odtstrap estimatesy and $ , Of
the parametexy . These values are used later in step 5.
A single component of the vector of parameters (@,,...,4, ) . say @,, is assumed to

be the target for bias-corrected estimation. Ther@geh is applied to the other model
parameters in an identical manner.
Step 1 — Generation of Plausible Parameter Values

A set of G plausible parameter valu£§ = (@1, P1c) for @, is built according to a
process that will be specified in section (4.29mi IL.iii). Similarly for ¢,, obtaining
¢, =($,1,--.9,5) , and so on. Definay,,...,y s K -dimensional vectors of plausible
parameter values for v, where

v, = (¢1,1’¢2,1""’¢K,1)1""‘I’g = (¢1,g’¢2,g""’¢K,g)1"'i Ve = (¢1,G’¢2,G""!¢K,G)'

Remark 1. This step could have a Bayesian interpretatianthig is not considered in
this research since the objective here is to obtaimange of plausible values for the
parameter under study and not to make inferencardety the posterior distribution of

g{[ep 2 — Calculating the Estimation Error

For each vector of parametegs;, one pseudo original sample is generated from the
population modelf,(z;y,) and pseudo original estimates, = (@, @, .. Py )

are obtainedg =1,...,G . The error of@, in estimatingg, is then computed for each
pseudo original samplg asError (¢,) =¢,, - #,,, 9=1...G.

Step 3 - Estimating the Estimation Error
For each pseudo original sample obtained in stepl@ge number B of parametric

bootstrap samples are generated frorﬁcc (z;ﬁ/g) and bootstrap estimates
Vo = B PogprPrgp), 9=1..G; b=1..,B are computed. Let
ﬁg = (Z;Q,Z;Q é_SKg) denote the bootstrap means from the pseudo origamaple

3536



Social Statistics Section —JSM 2009

g,9=-1....G.
An estimate of Error, (#,) =¢'51’g —¢,, for each pseudo original samplg is then

given by érrorg (@) = Zlfg —¢1yg , 9=1,...,G, which is also viewed as an estimate of
the bias of@, (Efron and Tibshirani, 1986).

Step 4 — Identifying Bias Correction Functions

The idea is to model the errd =@, — ¢, as a function ofiy and y~ using the ‘bias

correction data’ defined by the valuqsg, \f;g and Eg , 0=1...,G, from steps 1-3. A
possibility is to fit a standard linear regressinadel (or functionh(l)) to this data, i.e.
—ut —
E, =X,a+¢,, 9=1...G, 5)
where, for each observatiop, E, =@, —#,,. X, = L,y ,¥;)", a is the vector of

regression coefficients ang}, is the model random error.

In fact, the analyst can apply sophisticated mauglprocedures and goodness of fit tools
to identify the ‘best model h' ()] for the data at hands by modelling

¢Lg ~@.4 =h(l’|\’g!$;)v 9=1...G.

A possible way to choose the model([)] is by using a validation method in which the

G parameter values are split into two groupsidelling groupwith G —Vv values, and
validation group with v values. Candidate functionk([) are identified based on

(G —v) values and then validated in the validation groBias-corrected estimates of
@, and corresponding errors are then obtained fon eé¢he v parameter values and
candidate functiorh(l) considered ie.

g =@, —hy(W,,w,) and Error (d,) =@ ° -, 9=1...,v;

H =1...,H,, (6)
where h,, (Y is the H -th candidate function identified in the modelliggoup andH , is
the number of candidate functions considered.
The ‘best’ bias correction functioh’ (] is the one that originates the smallest estimated

bias for #,>° based on thealidation valuesi.e., h" ()l is chosen such that

B|a5(¢ EBS) V—lz | ¢ EBS ¢1 ol (7)

an estimate oBias(@,®°) = E(@,"° - ¢1 is minimum.

Note that the function for bias correction is coetply extracted from the bias correction
data generated according to the features of thggnati sample available for analysis.
Therefore, for each original sample found in ptthere will be a different bias
correction function that holds for that specifi¢ada

Step 5 - Obtaining Bias Correction for the Origind Estimate

Estimatesy and $ obtained in step 0 are plugged in the bias camedtnction h’ ([}
identified in step 4, yielding an estimate of thasbof @, in estimatingg, and, therefore,
a bias-corrected estimate of the target paranggtere.,
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EBS ¢1 Bias(¢l) = ¢1 -h ("I)"T’*) (8)
It is important to emphasise that the classicaltdicap bias corrections are implicitly
included in the EBS approach by appropriately chapghe vector of explanatory
variablesx in expression (5) (this is illustrated in sectif).
Unlike the classical bootstrap bias corrections, BBS approach allows estimation of

measures of accuracy @tlEBS as an estimator of,, such as mean squared error (MSE)
and confidence interval (C.I.). Once the best biasection functionh™ ([}l is chosen, the
bootstrap distributiorof the errord,®® — ¢, can be obtained by applying that function to
the bias correction data in step 4, yieldifgy values of the estimation error, i.e.
EBS - ¢Lg, g=1...,G (similarly to expression (6)). Thus, for examm@a,estimate of

the varlablllty of the estimatop,>° is glven by
MSE($7"°) = G_lz (g —01g)° - 9)

Equation (9) measures the variability of the EB@wetor @;>° over all plausible values

of @, . There are several methods available for obtaibmaistrap confidence intervals
(Davison and Hinkley, 1997). A direct method (Di€lc and Efron, 1996) consists of
obtaining a(l-a)% bootstrap C.I. for the errap®° — ¢, by taking the(a /2% and

A-a /2% percentiles, p,,, and pP,_,,,, respectlvely, of the bootstrap distribution
(based onG values) of the differencg)®® — ¢, as the respective lower and upper

bounds, i.e.C.l1.(§%° ¢, 1-a) = (P, ,,: Pry,») - Hence, a(l—a)% bootstrap C.1.
for @, is given by

Cl(dA-a)= (I = Prgroi®° = Payo) - (10)

In the particular case of informative sampling dasi (Pfeffermanret al, 1998a),
application of the EBS approach requires estimatiothe sample model, saf, (z;v) ,
from the original samplein order to generate thpseudooriginal samplefor each
plausible parameter value generated in step 2eofrtthod. Similar remark holds for the
step 3 of the EBS approach, with the bootstrap tesrippm each pseudo original sample
being generated from the sample model in case offarmative sampling design.

Hence, the pseudo original samples (step 2) andaéhesponding bootstrap samples

(step 3) can be generated either from the populatiodel, sayf, (z;y ;) (in the case of
noninformative sampling, i.e.f,(z;y,) = f,(Zw,)) or from the sample model

f(zy,) (in the case of informative sampling). Nonparafetiootstrap is an

alternative for step 3 (but not for step 2) of H8S approach for both informative and
noninformative sampling designs.

4. Bias Corrections of Unweighted and PWIGLS Estimtors of a Two-level
model Under an Informative Sampling Design

In this section, the EBS approach is applied irepto reduce the bias of unweighted

(‘naive’) and PWIGLS (Pfeffermanmt al, 1998b) estimators of two-level model
parameters under an informative sampling scheme svitall sample sizes of the upper
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level units. The study is based on simulated ddtgpting the same sampling scheme
considered by Pfeffermanet al (1998b) and under which the PWIGLS estimators
showed large biases.

Since the sampling scheme adopted in this secsionformative, the discussion at the

end of the previous section holds for the two-lemsbddel studied here. The only

particularity is that the sample model needs toelémated for each level of the

hierarchy.

In section 4.1, the population model and sampliagigh considered in this application

are described along with the developments for edgiim of the sample models. The

performance of the EBS approach using parametret raanparametric bootstrap is

assessed by an extensive Monte Carlo study deddribgection 4.2. The results of this

study are presented in section 4.3.

4.1 Population Model, Sampling Design and Estimation c6ample Models
Consider the following two-level random interceptdel (denoted ):

yi |8, =B; +&,i=1..,N, (level 1 model)
B, =B+u,, j=1..M (level 2 model), (11)

ii.d.
where u; and g are independent random errors such thgt ~ N(O,Juz),
iid.
& ~ N(O, af). Let yw = (B,02,072)" be the vector of population parameters.
Consider a two-stage disproportional stratified stdued sampling design with
informative sampling only at level 1 (elementanyitsin At the first stagem level 2

units are selected by a probability proportionabie without replacement design. The
measures of size are the level 2 siNajs, which are assumed to be uncorrelated with the
random interceptgﬁ’j, such that the sampling design is noninformativiexel 2. At the
second stage, level 1 units in selected level 2 yniare partitioned into 2 strata
according to whetherg; > 0 or & < 0 and simple random sampling without

replacement of sizen,, andn,, (assumingn,, # n;,) are drawn from stratum 1 and
2 of level 2 unit j, respectively. In this case, the first level irsthin probability is
related to the level 1 random errgy and, consequently, to the outcoryg, featuring

an informative sampling design at level 1.

Pfeffermanret al (1998b) considered the same first level sampliegign for assessing
the performance of the PWIGLS estimators, findirghmegligible biases when the
assumption of noninformativeness at level 1 wasatéd. Therefore, a noninformative
sampling design at level 2 and an informative samgpdlesign at level 1 are assumed in
this study in order to assess the EBS approachbifis correction of the PWIGLS
estimators under the worst scenario considered fejfePmannet al (1998b). The
authors did not consider the sample model in therk. Estimation of the sample model
under the sampling design described above is presérlow.

Let s denote the sample of level 2 units agd the sample of level 1 units from the
selected level 2 unif . In what follows, the sample model holding for teeel 1 units in
the samples; is estimated for the present sampling design amadiiption modelé .Let

O; be the stratum membership indicator taking theevdl if the level 1 unit in level 2
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unit j belongs to stratum 1£ >0) and zero, otherwise. Since the random ergyrs
are assumed to be normally distributed with zeraméor sufficiently largeN; the
expected number of units in each stratunNis/2. This is due to the fact thattl;_l, the
number of units in the population of stratum 1sigh thatNI_j ~ Binomial(N; ,0.5)

since each¢; is larger (or smaller) than zero with probabilif5. Following

Pfeffermann, Krieger and Rinott (1998) and Pfeffanm Moura and Silva (2006), the
sample modelfSi (1 for the distribution of the level 1 dependent able y; given the

random intercep]ﬁ’j and inclusion in the sample, is given by

Oy 18,.w) = £(y, [10s,,5,.w)
= Pr( Dsj |yij ’/8,' V) f{(yij |IBJ )/ Pr( Dsj |,3, W),

Note that the distribution of; given 3; under the modef, f.(y; | 5;,w), follows a

(12)

normal distribution with meay3; and variances? .
The probability in the numerator of (12) is given b

PriOs; |y;,B3;,w)=2n;,/N,,if y; =3, >0 and
PriUs; |y;,B;,w) =2n,,/N;, otherwise, (12A)
using the fact that once boy} and 3; are known, theg; is also known and, therefore,
Pri Os; | y;,;,w) is simply the inclusion probability in the corresgling stratum.
The termPr( Us; | 8;,vy) in the denominator of (12) is given by

PriOs; | 8,,w) = [Pra0s; 1Yy, B,,w) f:(y, | B, w)dy,

A Y (12B)
= JPrGDSj LY By w) fe(y; | By w)dy; + JPrGDSj LY, B w) fe(y; | By, w)dy;

on. A 2n., ¢
Nl-.2 J‘ﬂyij !ﬂj ’o-g)dyu + Nl--l J.ﬂyij 'ﬂj ,ng)dyu ,
i I B

where ¢/(y; ; B, ,02) denotes the normal probability density functiothwhean3; and

varianceo’ evaluated at poiny; ; also Pr( Os; | y;,53;,w) is equal to the sampling

. - n
fraction in stratum 2 of level 2 unif, i.e. 12

, for y; < B, (or g <0). Similarly

J
2n,
for stratum 1, with corresponding probability eqmaIN—"l. Since each integral in
j
(12B) is equal to 0.5, the denominator of (12) igten as
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_2n, A , 2n,, © ,
Pri0s, | 5, w) === [y B, 00)dy; +~ 2 [y, ), 00y,
b ey (12C)
:2nj,2G1_+2nj.1[_]1_:nj'l+nj.2 _n
N 2 N 2 N, N,

J J J
which is equal to the sampling fraction at the I&anit | .

Replacing (12A) and (12C) in (12), the sample istion for the level 1 measurements
y; given the random interceg?; and inclusion in the sample is

(2nj.1/Nj)¢yij ;ﬁj ’052)

1|f y|j >18]
f (y.. 1B \V):f(y.. li0s B \,,)z n /N,
R o @n;, /N Ay, B;.07) (13)
, if Yi SIBJ'
nj/Nj

_ 2NNy ey B, 00), iy, > B,

2nj.2nj_l(dyij ;ﬁj ,052)1 if Yi Sﬁj'
Since the sampling design is noninformative atll&yethe sample distribution for the
level 2 measuremem;gj given inclusion in the sample is the same as iigilnlition of

f3; in the population, i.e.J‘s(,Bj |\|1): f(,Bj | DS,\V): AB;; B.oY). (14)

4.2 Monte Carlo Study

In this section, the performance of the EBS apgraa@ssessed via a Monte Carlo study
for the population model, sampling scheme and sampldel described in the previous
section. The experiment mimics the simulation stpdyformed by Pfeffermanat al
(1998b) with an additional step for adjusting thasbof unweighted and PWIGLS
estimators by applying the EBS approach. The scleW/IGLS estimators proposed by
Pfeffermanret al (1998b) is adopted in this study.

Let y = (B3,62,62)" andy’ = (E*,gf'*,guz'*)t be the respective vectors of original
estimates and bootstrap means of the vector oflatmu parametersy = (5,072,07)" .
The experiment involves generating populations ftbenmodel in (11) with parameters
L=1, Uuz =02, ng = 05 and M =300 second level units. The second level sizes
N; were determined byN, =75exdﬁj), where U, ~ N(O,af) truncated below by
=150, and above byL.5g, . The values ofN; lie in the interval [38;147] with average

around 80. The sample size at the first stag®@s35 level 2 units. At the second stage,
simple random samples of level 1 units of siregs =2 and n;, =7 are drawn from

strata 1 and 2, respectively. Therefore, the &#teiple sizes\; are fixed {1, = 9) for all

level 2 units | .

Generation of bootstrap samples from the origimal e pseudo original samples (step
0 and step 3 in section 3, respectively) is carrad by both parametric and
nonparametric bootstrap. The latter involves selgdhe second level units by a simple
random sampling design, with all the first leveltsirfindividual level) from the sampled
level 2 units being included in the sample. The @armg weights used in the replicated
values (bootstrap samples) are identical to thgiral sampling weights. For simplicity,
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generation of the plausible parameter values ($tegection 3) was performed from a
uniform distribution between two boundaries detewdi by the original estimates (see
step ILiii) below). The experiment consists in lregting the six steps of the EBS
approach (section 3) a large number of times il assess the bias and mean squared
error of the EBS estimators. The method is desdriidow for the PWIGLS estimator

v ™", with an identical process applied to the naivtamesor y""°. When the selection
(or generation) of the sample does not depend®tytie of the estimator (i.e. in steps II)

~ naive

and ii.a) below), both estimatoxg”" and were obtained from the same sample.

The EBS approach was implemented as follows:

I) Generate a population according to the populatiodehin (11);

II) From the population in 1), select one original sempy an informative sampling
scheme described in the previous sub-section.Hsaimple, perform the following:

i) Obtain PWIGLS original estimatesy”", of y with corresponding PWIGLS
standard errorse(y ™) ;
i) Obtain bootstrap meanTp """ from B = 250 bootstrap samples generated by

ii.a) nonparametric bootstrap;
ii.b) parametric bootstrap via the sample modeletdaon ¢, i.e.,

fsj (y.J |ﬂj ,qlpw) and fs(ﬂ] |\’I"pW) :
iii)  Obtain a set of =400 parameter values for each componentyaf For an

original estimate,@pW of [, for example, the values are generated by
randomly drawing G  values from uniform(a,b), where

a= " -3sg"™) andb= 3" +3sg3"™), yielding (T2 TS
iv) For eachq;gw, g =1...400, iniii):
iv.a) Generate one pseudo original sample frq‘rsp(yij | B,,w!") and
f.(B; |w?"), obtainingy §*;
iv.b) Obtain bootstrap meanggpw'* from B =250 bootstrap samples

generated by:
iv.b.1) nonparametric bootstrap;

iv.b.2) parametric bootstrap via the sample mocesied on\flgw, ie.,

fo (yy 18,,05") and f(B; [wg"):
V) Allocate v =50 parameter values to the validation group &é v =350
values to the modelling group (step 4 in sectiarF8) correcting the bias of,

say B, identify functions h' (0 by modelling
,ég”w By = h(ﬁ;gw,$§w'*), g =1,...350. After validating them in the
validation group, the ‘best’ function, sdj (DY, for correcting the bias of
,[;’pw is chosen according to expression (7) in sectioBidilarly, functions

h, (00 and h; (0] are chosen for correcting the bias 6f " and 62",
respectively;
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AZ’DW

vi)  Obtain EBS bias-corrected estimator A", 62" and &%

[;EBS — l[;pw _ h; (‘i’ pw @ pW,*) : aA.uz,EBS — 5’5’pw _ h; ¥ pW'E ot and
G258 = 27 —h) (y ™,y ™). Note that the original estimates from steps i)

and ii) are plugged in the functions.

such that

Mean squared error estimates of the EBS estimat@robtained by using
the estimates from step V). For™°, for example, let

I[}gEBs - I[}gpw _ h; " pw,$gw,*) ’ g=1...,G =400, and obtain

[*]

MSE(IBEBS) — G_lzjzl(lggEBS _ ﬂng)z.
Steps I-Il above were repeatéti=100 times. The number of plausible parameter values
G =400 was chosen in order to allow a reasonable numbgrammeter values for
estimation (350 values) and validation (50 valuek)the candidate bias correction
functions (step 4 in section 3). In practical ditmas, however, only one original sample
is available for analysis and usually only one tgpestimator and type of bootstrap is
considered in the bias corrections, which make EBS approach much easier to be
implemented with a reasonable execution time (a f@wrs in this application). The
experiments conducted in this research were allemented in the statistical software R
(R Development Core Team, 2008) and in the stedissoftware SAS (SAS Institute
Inc., 1999), including a specific routine for th&V/R5LS approach not available in
standard statistical software. The naive paranetémates were obtained by using the
function Ime of the statistical software R. In gree, the modelling of the bias correction
data in step v) of the experiment needs to be doseonce. However, in order to
undertake a Monte Carlo study of the performancthefEBS bias-corrected estimators
with  R=100 original samples, an automatic procedure for $wagcfor the ‘best’
function for bias correction of each estimatoreégded. This procedure was implemented
as follows. Having generated ti& = 400 values for a specific parameter (step iii) of the
experiment),v =50 values were randomly selected as the validatioongstep v)) and
G —-v =350 values as the modelling group. Concentrate onntbdelling group for
now. For a specific response variable (error ofastimator to be corrected), a full model
is fitted to the ‘raw data’ (model 0) and extrenaues were excluded from the analysis
based on the Cook’s distance (Fox, 1991), whicta isvell-known outlier indicator
available in most of the standard statistical safw Using the ‘clean data’, the full
model is re-fitted (model 1). Another model is ob¢al (model 2) by applying a
backward elimination regression method on the ctiia. Model 2 without the intercept
(model 3) was also assessed in situations whetwugh that estimate was not
significantly different from zero the intercept wkept in the model by the backward
elimination procedure. Hence, for each parametdriéas correction function identified,
the three models (models 1, 2 and 3 above) werielatall on the validation data,
obtaining realisations of bias of the EBS estimatBix different functions were
considered in the modelling process and modelsahd3 were fitted for each function.
The chosen model, among the 18 models assessedh&ase producing the smallest
estimated bias for the EBS estimator based on dlidation group (a discussion on this
issue is presented in section 5). Six functionsewesed in the process of choosing the

best function for bias correction for each estimaw’, B and . These functions

were identified by firstly fitting the model manlafor a few original samples. Then,
they were included in the list of candidate funeido be evaluated by the automatic
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procedure described in the previous paragraph.cldssical additive and multiplicative
bootstrap bias corrections are special case, fample, of functions 1 and 2,

respectively, shown in Table 1, takilg =1 anda, =a, =a, =0.

Table 1: Examples of candidate bias correction functioreius the EBS approach

for G72.
Flé:noc(;ié)n Formulae of functionh([), g =1,...,G —v =350
G, Tty va 1000y v a o
1 - =8y ta [57) +a, [5%) +a, [{=")
Uu,g au,g as,g IGg
2 A2 2 _ ok _ A2 T2+ a2 Xy
Uu,g au,g - aO +a1 |la-u,g au,g) + a'2 mas,g Js,g) + a3 l]ﬁg ﬁg)
4.3Results

Tables 2-4 show summary statistics for the naiVé|GLS and respective bias-corrected
estimators of the three parametgfs o7 and g under the classical corrections and the

EBS approach. Results are reported for nonparamdigotstrap only. Similar
conclusions are valid for the parametric case. Aumaber of original samples considered

for naive and PWIGLS estimatorsks= 72 and R = 95, respectively.
Let ¢/, denote an estimator (naive, PWIGLS, EBS or classias-corrected estimator)
of the parametey (known in the simulation study) for the originalnspler =1,...,R.

The following summary statistics were computed & : simulation mean (Mean):

g =R*Y" g, ; simulation standard deviation (SD)/:(R_l)-lzR:l([pr -)?; empirical
bias (Bias): R_lzil(‘f’r -y); empirical relative bias (RB)p—lzil(wrw_‘»”); empirical

root mean squared error (RM3H: RS @, —p)? -

As anticipated, the naive and PWIGLS estimatorsda# the original sample are highly

biased in the present scenario, especially forvdrgance component parameters. The
EBS bias-corrected estimators show very good padace for all model parameters,

including the variance component estimators, whighexpected to be most problematic
to estimate due to their high sensitivity to snsalinple sizes. Classical bias corrections,
however, perform poorly with small or no reductiarthe biases.

As anticipated, the naive and PWIGLS estimatorsda# the original sample are highly

biased in the present scenario, especially forviireance component parameters. The
EBS bias-corrected estimators show very good padace for all model parameters,

including the variance component estimators, whighexpected to be most problematic
to estimate due to their high sensitivity to snsalinple sizes. Classical bias corrections,
however, perform poorly with small or no reductiarthe biases.

It is worth emphasising that the bias-corrected BIAB estimators obtained by the EBS

approach perform well even in the case where tlecoorected estimator is practically

unbiased, which is a desirable characteristic bfag correction procedure. This is the

case of the PWIGLS estimator of the interceBt (Pfeffermannet al, 1998b). In
addition, the trade-off bias-variance does not séerbe an issue for the EBS bias-
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corrected estimators, since the mean squared €RMSE™) show minimum increase
or even reduction when compared to the non-comlezsémators.

5. Conclusions and Final Remarks

In this article a bias correction approach — theeroted bootstrap bias correction (EBS) —
was proposed. The method was applied to bias adfumstof unweighted and PWIGLS
estimators of linear two level model parameterseuridformative sampling of level 1
units with small sample sizes at both levels. TBSprocedure was assessed by Monte
Carlo study, evaluating the behaviour of the EB8redors through mean squared errors
and biases estimates.

The main finding of the Monte Carlo study condudctedhis study is that the EBS bias
correction approach performs very well for all teeenarios considered (naive and
PWIGLS estimators under nonparametric bootstragbles 2-4).

When the sampling design is informative and theaiptric bootstrap is applied, the
estimation of the sample model is necessary inBB& approach (for generation of
pseudo original samples and bootstrap samplesgaigodn the classical corrections (for
generation of bootstrap samples). If the nonpanambbotstrap is adopted, the sample
model is still needed for generation of the pseodginal samples in the EBS approach,
although it is not necessary when using the claksmrrections (but the results revealed
poor performance in this situation — tables 2-4).

In the case of a noninformative sampling schemewkedge of the population model is
required for both parametric and nonparametric dicay if the EBS approach is used.
For classical corrections, however, assumptionsutaiee population model can be
relaxed if the nonparametric bootstrap is adopted.

The EBS approach is more computing intensive whempared to the classical
corrections, but shows good performance for allsttenarios studied. In addition, unlike
the classical corrections, it allows mean squareat @nd confidence interval estimation
for the bias-corrected estimators in practicalaioans where only one original sample is
available for analysis.

A range of factors can be changed to improve th8 Bproach proposed in this article.
First, the best function can be chosen such tleéttimated MSEnot the bias) of the
EBS estimator is minimum (Corréa, 2008, Chapteasdi5).

Another issue to be explored is the generatiorhefgarameter values. Adopting wider
intervals and distributions other than the unifasnan important issue to be considered.

For example, considering a wider intervala,b], a=¢-43gy) and
b= +45dy), for the generation of the plausible parameteuesl(step iii) in

section 4.2) may improve the fitting of the modetaconsequently, the bias correction
results, since the true parameter value will alnsaseély be covered by an wider interval.
On the other hand, it may be true that the furthemplausible parameter value is from the
true value the more different the relationship gsggesting considering a narrower
interval. Besides, it is important to perform a stvity analysis to assess the effect of
the choice of the distribution used to generate glaisible parameter values on the
performance of the EBS approach.

The number of plausible parameter valigs and also the number of bootstrap samples,
can be increased in practice since only one ofigiample is actually available for
analysis. In addition, more sophisticated regressinalysis tools can be used on the
identification of the bias correction function, gimg better EBS estimators.

The extended bootstrap bias correction proceduwpgged and assessed in this article
adopted Monte Carlo methods in an attempt to miogmmon situations found in
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practice, where biased estimates are producedrasult of analysing survey data. We
conclude therefore that the EBS approach is afipéda real survey data.
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Table 2: Naive and PWIGLS estimators. Nonparametric bootstrap. True value g=1.

Estimator Mean SD Bias RB RMSE
[rave 0.691 0.086 -0.309  -30.9% 0.321
Additive correction 0.691 0.086 -0.309 -30.9% 0.321
Multiplicative 0.691 0.086 .0.309  -30.9% 0.321
correction
EBS 1.002 0.151 0.002 0.2% 0.150
B 0.994 0.092 -0.006 -0.6% 0.091
Additive correction 0.995 0.092 -0.005 -0.5% 0.092
Multiplicative 0.995 0.092 -0.005 -0.5% 0.092
correction
EBS 0.996 0.089 -0.004 -0.4% 0.088

Table 3: Naive and PWIGLS estimators. Nonparametric bogisffaue values? = 02.

Estimator Mean SD Bias RB RMSE’
gzrave 0.169  0.046 -0.031 15% 0.055
Additive correction 0.165 0.049 -0.035 17% 0.060
Multiplicative 0165  0.049 -0.035 17% 0.060
correction
EBS 0.187 0.071 -0.013 6% 0.071
g 0.158  0.052 -0.042 -20% 0.065
Additive correction 0.165 0.054 -0.035 -15% 0.064
Multiplicative 0165 0.054 0035  -15% 0.064
correction
EBS 0.196  0.051 -0.004 2% 0.050

Table 4: Naive and PWIGLS estimators. Nonparametric bamsffrue values? = 05.

Estimator Mean SD Bias RB RMSE’
gznave 0.429  0.041 0071 -14.2% 0.082
Additive correction 0.448 0.043 -0.052 -10.4% 0.067
Multiplicative 0449 0.043 0051 -10.2% 0.066
correction
EBS 0.493  0.050 -0.007 -1.4% 0.050
gz 0.522 0.056 0.022 4.4% 0.060
Additive correction 0.522 0.056 0.022 4.4% 0.060
Multiplicative 0522 0.057 0.022 4.4% 0.060
correction
EBS 0.503 0.053 0.003 0.2% 0.054
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