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Abstract  
 
The Quarterly Financial Report Survey (QFR) collects income and balance sheet data for most manufacturing 
corporations and for large mining, wholesale, and retail corporations.   Unit non-respondents are imputed using a 
combination of ratio and mean imputation.  In order to enhance the imputation process by eliminating influential cases 
from the base, we investigated an iterative regression approach of outlier detection.  The approach utilizes a 
combination of two regression diagnostics, leverage and studentized deleted residuals.  We compared the effectiveness 
of the “regression fits” approach to the Hidiriglou-Berthelot method of outlier detection for several positive valued 
QFR items.  To evaluate the effectiveness of the approaches, we created plots of inliers and outliers.  The “regression 
fits” approach can also detect outliers for negative valued QFR items. 
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1.  Background 
 
The Quarterly Financial Report (QFR) program publishes aggregate statistics on the financial results and position of 
U.S. corporations. Based upon a sample survey, the QFR presents estimated statements of income and retained 
earnings, balance sheets, and related financial and operating ratios for manufacturing corporations with assets of 
$250,000 and over, and mining, wholesale trade and retail trade corporations with assets of $50 million and over.  The 
statistical data are classified by industry and by asset size.  Industry classification is determined based on the North 
American Classification System (NAICS), which provides a two-digit to six-digit classification depending on level of 
detail.   
 
1.1 A Description of the Data Collected on the Form 
The questionnaire is divided into three sections: (1) income and retained earnings; (2) assets; and (3) liabilities and 
stockholders equity.  The characteristics of each of the questionnaire items differ greatly.  Survey items in the income 
section have a mixture of strictly positive items along with items that can be negative.  Several asset items have a large 
proportion of reported zeros while a number of other asset items are strictly positive.  In addition, there are several items 
from the liabilities section that can be negative.   
 
1.2 An Overview of QFR Imputation Methodology 
QFR imputation methods are based on unit non-response and the imputation cell is defined by stratum and three-digit 
NAICS. Ratio imputation is the primary imputation method utilized when prior quarter data is available.   When prior 
quarter data is unavailable, or a new company is added to the survey, weighted means imputation handles non-response.  
Ratio imputation operates by adjusting a prior quarter reported data value Xit-k, or ‘auxiliary,’ by the current quarter 
imputation cell trend ratio to obtain the imputed value Xit via itkit XRX =− * .  The cell trend, or ratio-of-identicals R, 
represents the amount of growth or decline in the cell for the current quarter relative to a prior quarter.   This ratio 
comprises the imputation base for the ratio method of imputation and is defined as kitiiti XWXWR −∑∑= /  where 
Wi is the weight, Xit represents the current quarter item value, and Xit-k represents the item value in a prior quarter.  Note 
that the current quarter is represented by t while the prior quarter is represented by t-k, k=1, 2, 3, 4.  The ratio-of-identicals 
includes only cases that responded in both current and prior quarter t-k.  The method assumes that trends for the non-
responding units are similar to those of the responding units.    
 

Section on Survey Research Methods – JSM 2009

3445



The reasonableness of the imputed data depends on the effectiveness of identifying and removing influential cases 
(outliers) from the imputation base.  
 
1.3 Research and Development of the Regression Fits Approach 
In order to obtain adequate cell counts, we chose to pursue the outlier investigation by defining group by two digit 
NAICS (NAICS2)*STRATUM.  As a preliminary step, we investigated several items from the income, assets, and 
liabilities sections of the questionnaire.  For each item and group (NAICS2*STRATUM), we regressed the prior 
quarter version of the data against current quarter.  We determined if an intercept term in the model was statistically 
significant.  The strength of the correlations and the estimates for the slope and intercepts were noted.  For most items 
and groups, the intercepts were not statistically significant.  The estimates for the regression coefficients usually ranged 
from 0.8 to 1.2.  For most items by group, the R-squared statistic was reasonably strong --usually greater than 0.8.  We 
concluded that a reasonable way to predict current quarter data by item*group would be to utilize a linear regression no 
intercept model.  The prediction would be based on the most recent available prior data for that item and group.   
Residual plots were investigated to get an indication of how to stabilize the error variance for each of the survey items.  
Generally, we found that either using the predictor or the square root of the predictor worked fairly well in obtaining a 
standard deviation function that explained the increasing variance as a function of the predictor. 
  
We developed an algorithm that involved executing multiple regression runs in order to obtain estimated coefficients with 
desirable properties. The first step involved running an un-weighted regression with a no intercept model between the 
current to prior survey item saving the absolute residuals.  The absolute residuals were then regressed against the predictor 
or a function of the predictor to obtain a set of fitted values.  The fitted values from the second regression were in turn 
utilized to obtain a set of weights used to stabilize the error variance.  The third regression run, this time weighted, yielded 
error terms that had a more nearly constant variance.  Based on our regression algorithm, we came up with a strategy to 
identify outliers.  The general strategy involved running a few iterations of weighted regressions in which the weights 
were computed in such a way to stabilize the variances over the range of the predictor.  At each step, outliers were 
identified and removed, the diagnostics recomputed, and the regression line refit.  The formula for weighted regression in 
matrix form follows: 
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1.4 Description of the Regression Fits Approach  
Three criteria were utilized to detect outliers by the regression fits approach.  If a given case met any one of the criteria, 
the case was identified as an outlier and removed from subsequent regression runs.   “Criteria1” was based on the 
computed leverage value (hat), where leverage is a measure of distance of a reporting unit from the average (weighted 
mean) reporting unit in that group, and the computed value of the studentized deleted residual relative (RSTD) to 
respective specified upper limits of these diagnostics.  “Criteria2” was based on the RSTD compared to a specified upper 
limit of this diagnostic.  “Criteria3” was based on hat relative to a specified upper limit of this diagnostic.  Note that our 
approach relies on a combination of two regression diagnostics.  Our rationale for using two regression diagnostics for 
outlier identification was to minimize the number of non-outliers identified as outliers (TYPE1 ERROR).    
 
Let “hatcrit1” and “rstdcrit1” be the respective specified upper limits of the hat criteria and RSTD criteria based on a 
combination of leverage and studentized deleted residual respectively.  Let “hatcrit2” be the upper limit of hat criteria and  
“rstdcrit2” be the upper limit of RSTD criteria based on each diagnostic alone.  The constraints are imposed that 
hatcrit2>hatcrit1 and rstdcrit2>rstdcrit1.  The three criteria to check for outliers are as follows: 
 
Criteria1: hat > hatcrit1/num and RSTD> rstdcrit1   
Criteria2: RSTD > rstdcrit2 
Criteria3: hat > hatcrit2/num:  where num is the number of cases per group. 
 
Note that leverage-- the diagonal elements of the hat matrix H are obtained from: 
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h X X X Xii i i= −' '( ) 1 where X has dimension NX1, X transpose has dimension 1XN, and N is the number of cases per 

group. Studentized deleted residuals are based on the following formula1      
RSTD
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Where e  is the ordinary residual and  is the Mean Squared Error with the ith case omitted and h  is the ith 
diagonal element from the hat matrix. 

i MSEi ii

 
1.5 Limitations of the Regression Fits Approach 
Since the outlier detection procedure is based on a weighted linear regression model, it assumes that the two survey items 
are correlated.  The regression fits method does not work as well for survey items that have a large proportion of reported 
values of zero.  The iterative approach of excluding outliers and re-computing the resulting diagnostics presumes that the 
numbers of cases per group are moderate to large.  The user should consider choosing less iteration for items that have 
relatively small respondent counts by group.  The regression fits approach relies on having an available item for which the 
regression error term can be utilized to obtain a standard deviation function to obtain regression weights. 
 
1.6 Setting Limits for Leverage and Studentized Deleted Residuals 
We reviewed a few established guidelines2 to identify cases with high leverage that influence the fitting of a regression 
equation.  One rule frequently used is to consider a case to have high leverage if hat> (2/num) where num is the number of 
cases in that group.  Using this rule, a case is considered influential if hat is greater than twice the average leverage for the 
group.  Another rule considers as very high leverage those cases having hat>0.5.  The rule considers cases with 0.2< 
hat<0.5 as having moderately large values of leverage.  Based on empirical results to flag cases as extreme outliers, we set 
limits for outlier detection based on the “hat criteria” of at least 12/num.  We desired to keep to an absolute minimum the 
possibility of incorrectly identifying cases as outliers (TYPE1 error).  Setting guidelines for influential cases using criteria 
based on studentized deleted residuals (RSTD) is straightforward because the  (RSTD) follow a t distribution with n-2 
degrees of freedom3.  One approach to testing RSTD is to utilize a Bonferroni testing procedure that adjusts the TYPE1 
error rate based on multiple tests.  For the data we utilized, the group sizes were usually between 50 and 300.  An example 
of joint limits for outlier detection based on criteria1above and that minimize the TYPE1 error rate are: (hat>(12/num) and 
RSTD>4.0).   
 
1.7 Evaluation of Regression Fits for Selected Negative Valued Survey Items 
In order to evaluate the regression fits outlier detection approach, we chose three real valued income items.  Income-Loss 
from Operations (E104), Income Loss Before income taxes (E111), and Net Income-Loss for Quarter (E118) were three 
survey items containing a fair proportion of negative valued data.  Moreover these three items contained few cases of 
reported zeros.  For each group  (NAICS2*STRATUM) we created plots of prior to current quarter by item.  For positive 
values, we transformed the data to obtain the square root of the original data value.  For negative data values, we 
transformed the data creating the negative of the absolute value of the square root of the original data.  The transformed 
data made comparisons by graphing easier due to the large range in the original data values. Plot 1, as an example, depicts 
three outliers chosen  in group 31*18 for item E104 using regression fits.  Outliers are denoted by the “*’ symbol.  Note 
that the outlier corresponding closely to the transformed order pair (1200, 1200) is a point of high leverage.  
 
For each group, we recorded the total number of cases and number of outliers identified.  Generally we found that by 
group the regression fits approach detected from 0.5% to 3% of the cases as outliers.  A review of the plots showed a 
definite trend between prior to current quarter data values by group.  Usually there was definite separation geometrically 
between the chosen outliers and non-outliers.  Occasionally, we noticed that two points appearing equally spaced from the 
trend line and “center of mass” would be treated differently-- one as an outlier and the other not.  We attributed these 
anomalies to the fact that criteria1 utilizes a combination of leverage and studentized deleted residual values for outlier 
detection.  Overall, the regression fits approach was effective in identifying outliers.  The effectiveness of regression fits 
depends on making a good choice of a variable from which to obtain a standard deviation function that is in turn utilized 
to obtain weights for a regression.   
 
2.  Discussion of the HB and Regression Fits Outlier Detection Methods 
 
2.1 The Hidiroglou-Berthelot Method (HB) 
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The Hidiroglou_Berthelot (HB) is a reliable method of outlier detection for positive valued survey items often used by 
periodic business surveys at the Census Bureau.  One of the strengths of HB is that it utilizes two parameters U and C, in 
determining outliers to control for the size of the reporting unit and width of the acceptance region respectively.  The size 
parameter U may assume any value in the region 0<=U<=1.  When U is 0, size has no effect on the HB statistic that is 
used to detect outliers but as U increases toward 1 the term in the maximization function below increases so that the HB 
statistic is more extreme—placing greater emphasis on size as a criteria for outlier detection4.  HB uses a transformed ratio 
that results in Si that has a symmetric distribution centered at 0.  Let Xi be the survey item to be evaluated, Yi the auxiliary 
item (prior quarter), and Ri the ratio of Xi to Yi.  The transformed ratio, Si is given by the following relation: 
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>0     where  is the median ratio of X to Y. Rmed

The HB statistic along with the parameter U is given by the following formula:  E S W X WYi i i i i i
U= *{max( , )}

 
2.2 Comparison of HB and Regression Fits 
We compared the HB and the regression fits approaches to outlier detection for a few positive valued items.  We desired 
an approach to outlier detection that effectively flags a relatively small number of extreme cases for each group and 
properly separates the outliers from the non-outliers.  Both HB and Regression Fits rely on a moderate to strong 
correlation between the survey item tested and the auxiliary item.  Again HB is a transformed ratio edit that provides a 
parameter U that allows the user to place more emphasis on flagging larger reporting units as outliers.   HB always 
chooses outliers symmetrically about the trend line.  HB uses a parameter C such that when C increases, the acceptance 
region is increased resulting in fewer cases flagged as outliers.   
 
In contrast, the regression fits approach equally evaluates units based on the distance from a trend line expressed in units 
of standard deviations irrespective of the size of the reporting unit.  Neither method of outlier detection works effectively 
on pairs of items that are weakly correlated or on data pairs that contain a high proportion of reported zeros.  Regression 
fits, unlike HB, may flag cases that are “close” to a trend line but have high leverage values.  Pairs of units that are 
consistent but have very large leverage may need to be identified.  Imputation procedures rely on the removal of 
influential cases from the base in order to minimize the chances of obtaining unusually small or large imputes.   
 
2.3 Comparisons of Graphical Analysis Between HB and Regression fits 
In order to compare and contrast the differences in HB and regression fits results; we selected the positive valued survey 
items sales (E101) from the income section and total assets (E223) from the asset section.  For each of the item*group 
combinations, we recorded the total number of cases, the number of cases flagged as outliers by HB, the number of cases 
flagged as outliers by regression fits, and the number of cases for which there were differences in classification.  The 
comparisons were based on HB parameters C=40 and U=0.5.  We used hatcrit1=16 and hatcrit2=32 as well as 
rstdcrit1=4.0 and rstdcrit2=6.0 for regression fits in making the comparisons. 
 
We found complete agreement between HB and regression fits in outlier detection for 5 of the 12 groups investigated for 
item E101.  Three of the five groups for which there was agreement in outlier detection had no outliers selected for either 
method.  As shown in Table A, the NAICS2*stratum groups 32*18 and 44*16 had the same three outliers detected for 
each of the two methods.  Two of the remaining seven groups had ‘substantial agreement’ between the two methods.  For 
one group, HB selected three outliers below the trend line whereas regression fits selected a set of three outliers above the 
trend line.  The six cases classified as outliers for this group were all ‘borderline cases’, therefore adjusting the parameter 
settings for either method would have likely yielded different results.  The results of the comparisons in outlier detection 
between HB and Regression Fits for item E101 are summarized in Table A.  A graphical comparison is illustrated for the 
group 21*18 by a review of Plot 2 and Plot 3. 
 
We found complete agreement in outlier detection between HB and regression fits for 7 of the 12 groups investigated for 
item E223.  For 3 of the 7 groups for which there was complete agreement between the two methods no outliers were 
detected.  Of the 5 groups for which there was disagreement in outlier detection, 4 groups differed by one case classified 
differently between the two methods.   Overall, the agreement in the outlier sets chosen from the two methods was 
remarkably good given the differences in approach.  Please refer to Table A columns 7-9 for a summary of counts of 
outliers detected based on the two approaches.    
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We evaluated the effectiveness of the regression fits outlier approach for both real and positive valued survey items.  In 
evaluating the approach, we considered the relative number of outliers chosen to the total count by item*group.  We also 
considered the relationship of outliers to non-outliers within the group as shown by a review of plots.  Investigation of 
plots was crucial in determining whether or not the procedure was properly differentiating outliers from non-outliers.  The 
results indicated that regression fits approach was effective in distinguishing outliers for the negative valued survey items 
chosen from the questionnaire.  In making a comparison between HB and regression fits, for positive valued items, we 
experimented with a few different combinations of parameter settings for the two approaches.  An overall objective 
comparison is difficult since one can obtain fewer counts of outliers from one of the approaches by simply adjusting the 
parameters for that approach.  We settled on parameter settings that yielded comparable results for the two methods of 
outlier detection.  Based on our comparisons that included counts and review of plots we concluded that regression fits 
yielded similar results to HB for positive valued survey items.  
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Table A: Comparison of Outlier Results Between HB and Regression Fits for Items E101 and E223 
 
 Item E101 Item E223 

NAICS2 
(1) 

Stratum 
(2) 

Number 
Of Cases  
In Group 
(3) 

Outliers 
Detected 
By HB 
 (4) 

Outliers 
Detected 
By   
Regression 
Fits (5) 

Classification
Differences 
Between  
Methods 
 (6) 

Outliers 
Detected 
By HB 
 (7) 

Outliers  
Detected 
By  
Regression  
Fits (8) 

Classification 
Differences 
(9) 

21 16 43 0 0 0 0 0 0 
31 16 119 2 0 2 0 0 0 
32 16 155 3 4 1 1 2 1 
33 16 293 1 2 1 0 2 2 
42 16 383 3 1 2 0 0 0 
44 16 132 3 3 0 1 1 0 
21 18 149 4 3 1 0 1 1 
31 18 215 0 0 0 2 2 0 
32 18 350 3 3 0 1 2 1 
33 18 568 0 3 3 1 1 0 
42 18 444 3 3 3 2 3 1 
44 18 191 0 0 0 1 1 0 
 
 

NAICS2 Descriptions 

 
21 Mining 31 Food, Beverage, Textiles, Apparel, and Leather Manufacturing 
32 Paper, Printing, Petroleum and Coal 

Products, Chemical, Plastic 
33 Primary Metal, Fabricated Metal, Machinery, Computer and Electronic, 

Electrical, Transportation Equipment, Furniture, and Miscellaneous  
42 Wholesale Trade 44 Retail Trade 
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