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Abstract 

Coverage intervals for a parameter estimate are frequently derived from a survey sample 

by assuming that the randomization-based parameter estimate is asymptotically normal 

and that the associated measure of the estimator‟s variance is roughly chi-squared.  In 

many situations, however, the size of the sample and the nature of the parameter being 

estimated render the conventional Wald technique dubious, especially when a one-sided 

coverage interval is needed.  We will propose a method of coverage-interval construction 

that “speeds up the asymptotics” so that the resulting one-sided intervals can have much 

better coverage properties than corresponding Wald intervals.  For the important case of a 

mean computed from a stratified, simple random sample with ignorably small sampling 

fractions, no model need be assumed.  Moreover, whether or not a model is invoked, our 

intervals are asymptotically equivalent to Wald intervals.  As a result, they share the same 

large-sample, randomization-based properties.  A simulation demonstrates the usefulness 

of our intervals.    

 

Key Words: Audit data, randomization-based, skewness, stratified sample design, Wald 

interval.    

 

1.  Introduction  

 

Suppose t̂  is a nearly unbiased estimator for a finite-population or model parameter t 

based on a survey sample.  A one-sided Wald coverage interval for t is  

 
1 1ˆ ˆ( ) or ( ) ,t t v t t v                                                         (1.1) 

 

where v is an estimator for V the variance of ˆ,t and (.) is the cumulative distribution 

function (cdf) of a standard normal distribution.  It is well known that if the sample size is 

large enough, then both inequalities hold for roughly α-percent of the samples of that size 

(when the sampling mechanism under consideration produces a sample of random size, 

the modifier “expected” needs to be added to “sample size” and “size” in the last 

sentence).   

 

In practice, however, the sample size may not be nearly large enough for a one-sided 

Wald interval to contain (“cover”) t with the frequency suggested by the asymptotic 

theory.  This may be because t̂ has a skewed distribution, as in the case of an estimated 
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proportion not near enough to 1/2, or because the relevant sample size is the number of 

sampled primary sampling units not the number of enumerated elements, as when v is 

computed from a stratified multistage sample using probability-sampling (randomization-

based) principles.  Ineither of those situations, we propose the following one-sided 

intervals: 

 

2 2 2 2ˆ ˆor  ,t t z v t t z v                                              (1.2) 

 

where   = 
2

2 31
(1 ) ,

6 2

m z
z b

v
                                                                    (1.3) 

 

z = 
-1

(α), and m3 is a nearly unbiased estimator for the third central moment of t̂ and b 

is a nearly unbiased estimator for  

 

ˆ[ ( )]
.

E v t t
B

V
                                (1.4) 

 

Often, b = m3/v, and  collapses to  

 

 = 
2

31
.

6 3

mz

v
               (1.5) 

    

We are interested here in one-sided coverage intervals with good randomization-based 

properties.  In particular, if the sample sizes were large enough (whatever that means), 

then the Wald intervals in equation (1.1) with v computed using probability-sampling 

principles should obtain.  With that in mind, observe that if | | is of a smaller asymptotic 

order than v, then equation (1.2) has the same large-sample randomization-based 

properties as (1.1).  What equation (1.2) does, if anything, is “speed up the asymptotics” 

required by equation (1.1).  

 

Section 2 derives equation (1.2) by closely following arguments in Kott and Liu (2009) 

for the coverage interval of a proportion under a stratified simple random sample with 

large sampling fractions within all strata.  Section 3 focuses on two special cases: 

population means and totals based on stratified simple random samples with at least three 

sampled units per stratum, and parameters based on stratified multistage samples when 

the first-stage sampling fractions can be ignored.  Section 4 looks at potential applications 

at the Internal Revenue Service, where stratified simple random sampling is combined 

with three different estimators.  Section 5 describes an empirical investigation based on 

those applications.  Section 6 offers some concluding remarks.   

 

2.  Deriving the Intervals 
 

We begin with an Edgeworth expansion for ˆ :t  

 

2
ˆ

Pr ( ) (1 / 6)(1 ) ( ) (1 / ),
t t

z z z z O n
V

                                       (2.1) 
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where ( )z  is the probability density function (pdf) of the standard normal distribution, 

and  

 
3

3

3/2 3/2
2

ˆ[( ) ]

ˆ[( ) ]

ME t t

VE t t
     

                

is the skewness of t̂ .  Under mild conditions for the sampling design and the underlying 

population, which will we assume to hold, V/t
2 

is O(1/n), while M3/t
3
 is O(1/n

2
).  Thus,  

is O(1/n
1/2

). 

 

Strictly speaking, Edgeworth expansions only apply for continuous distributions, while t̂  

may have a discrete distribution.   We are ignoring an “oscillatory term” of the 

probability function of t̂  which differentiates it from a continuously distributed 

approximation, call it t̂  sharing its first two moments.  As a result of ignoring the 

oscillatory term, one of our α-percent intervals will (at best) cover t in α-percent of all 

possible samples on average across small ranges of potential values for t rather than 

covering t in at least α-percent of all possible samples for each t.  This is why we use the 

term “coverage interval” to describe the intervals in equation (1.2) rather than the more 

common “confidence interval.”   

 

Letting 2 3/2

3(1/ 6)(1 ) /a z M V , and employing the Taylor-series expansion, 

( ) ( ) ( ) (1/ ),z a z a z O n we can replace z in equation (2.1) with z  a and 

write:  

 

2 3

3/2

ˆ
Pr (1 / 6)(1 ) ( ) (1 / )

Mt t
z z z O n

VV
 

 

or equivalently       

 

           
2 3

3/2

ˆ
Pr (1 / 6)(1 ) (1 / ) ( ).

Mt t
z z O n z

VV
 

 

Dropping the O(1/n) term, this implies 

 

     

2 3

2

2 23

2 2 23

ˆPr (1 / 6)(1 ) ( ),

ˆPr (1 / 6)(1 ) ( ),

and

ˆ ˆPr (1 / 3)(1 ) ( ).

M
t t z V z z

V

M
t t z z V z

V

M
t t z t t z V z
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To use this last equation in constructing coverage intervals, we will need (among other 

things) to estimate the unknown V.  Here we follow Andersson and Nerman (2000) and 

replace V on the right-hand side, not with v as one might expect, but with the much more 

efficient idealized variance estimator: 

 

ˆ ,v v B t t                                                                                                 (2.2) 

 

where 
ˆ,

.
Cov v t

B
V

   

Unfortunately, v , although having the minimum variance of an estimator for V in the 

form ˆv t t , can still possess an error that should not, strictly speaking, be ignored 

in this context (formally, ( )v V /t
2
 is usually OP(1/n

1/2
)).  Nevertheless, we will ignore it 

for the time being.    

 

Substituting 2z V  by 2z v  and rearranging brings us to  

 

2 2 2 231
3

ˆ ˆPr (1 ) 0 ( ).
M

t t z z B t t z v z
V

 

 

By solving the quadratic equation, we then have 

 

2

2 2 2 2 23 31 1
3 3
(1 ) (1 ) 4

ˆPr ( )
2

or

M M
z z B z z B z v

V V
t t z

 

2

2 2 2 2 23 31 1
3 3
(1 ) (1 ) 4

ˆPr ( ).
2

M M
z z B z z B z v

V V
t t z   

 

Estimating  = 2 2

3(1/ 6)(1 )( / ) ( / 2)z M V z B  by  

 

 = 2 2

3(1/ 6)(1 )( / ) ( / 2) ,z m V z b                                                                  (2.3) 

 

and the intervals in equation (1.2) result.   Under mild conditions,  is O(1/n
1/2

), while the 

bias of  an estimator for  is usually O(1/n). 
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3.  Two Special Cases 

 

3.1 Means and Totals under a Stratified Simple Random Sample 
 

Let the population be divided into H mutually exclusive strata, Uh denote the population 

of stratum h,  h = 1, …, H, each containing Nh units, and 
1

.
H

h

h

U U   Let 
h  be the 

simple random sample of nh units selected without replacement from Uh, and 
1

.
H

h

h

  

Let t be the finite-population total and t̂  be the estimate from the sample.  Suppose we 

are interested in constructing one-sided coverage intervals for a finite-population total or 

mean based on a stratified simple random sample.  The former can be expressed as 

1

,
h

H

k

h k U

t y  where y is the variable of interest.   The corresponding population mean is 

1

,
H

h h

h

Y t N W Y  where 
hH

N N , 
h hW N N  and 1 .

h
h h kU

Y N y  

 

An unbiased estimator for the finite-population total T  using probability-sampling 

principles is 

  

t̂ Ny ,                                                                                                             (3.1) 

 

where  
1

H

h h

h

y W y  and 1

h
h h ky n y . 

 

When every nh is at least 3, it is a simple matter to construct one-sided coverage intervals 

for y  based entirely on probability-sampling principles using equation (1.2).  One sets 

 
2

2

1

3

3

3

1

3

3

1

( )

1 ,
( 1)

( )
2

1 1 , and
( 1)( 2)

( )

1
( 1)( 2)

b = .

h

h

h

k hH
kh

h

h h h h

k hH
kh h

h

h h h h h h

k hH
kh

h

h h h h h

y y
n

v W
N n n

y y
n n

m W
N N n n n

y y
n

W
N n n n

v

                               (3.2)                      

 

The first two are unbiased estimators for the second and third central moments of ,y  

while b is a consistent estimator for B under mild conditions.  
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One-sided coverage intervals for t are constructed conformably.  They are simply N times 

the analogous intervals for .y   It is easy to see that only when all the 2nh/Nh are small 

enough to be ignored does equation (1.3) collapse into equation (1.5) for all intents and 

purposes. 

 

3.2  A Parameter under a Stratified Multistage Sample 
 

In this subsection, we will consider a coverage interval for a parameter t based on 

stratified multistage sample when a nearly unbiased estimator for that parameter can be 

put in the form:  

 

1 1

1
ˆ ˆ ,

hnH

hi

h ih

t t
n

 

 

where there are 
hn  primary sampling units (PSU‟s) in stratum h, and each 

ĥit  is a nearly 

unbiased estimator for the same value.   The parameter t may be a model parameter or a 

finite-population parameter.  In the latter case, we are often assuming that the PSU‟s were 

selected using probability-sampling principles but with replacement.  

 

As an example of what we mean, consider the ratio estimator, 

 

   ˆ ,
h h

hi hi

H n H n

k k k kk k
t w y w x  

 

where 
kw  is the survey weight associated with element k, and 

hi  is the set of sampled 

elements in PSU i of stratum h.  Here,  
 

ˆ .
g

hi gi

H n

hi h k k k kk k
t n w y w x    

 

A univariate component of an estimated regression coefficient can also be put into this 

form.   

  

When all 
hn   3, the following linearization estimators can be used in equations (1.2) and 

(1.3):  

 
2 3

3
3

1 1 1 1

( ) ( )
, , and  ,

( 1) ( 1)( 2)

h hn nH H
hi h hi h

h i h ih h h h h

e e e e m
v m b

n n n n n v
  

 

where the 
hie  are linearized sample residuals such that , wherehi hie u ˆ t t ,hiu  

the 
hiu    and thus the ehi  are nearly independent random variables with a common mean 

within each stratum, and 1

1
.

hn

h h hii
e n e   For the ratio estimator,  

 

1 1
( ) ,

g

hi gi

H n

hi h k k k k kk g j k
u n w y tx w x

  

and  
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ˆ( ) .
g

hi gi

H n

hi k k k h k kk k
e w y tx n w x  

 

When one or more first-stage strata have less than three sampled PSU‟s, some collapsing 

of strata will be necessary to compute 
3m  and b .  Putting asterisks on the collapsed strata 

and counts (which affects the definition of the ehi*) we have these replacements to use in 

equations (1.2) and (1.3):  

  
2 3* ** *

3
3

1 1 1 1

( * *) ( * *) *
* , * , and b* = .

* ( * 1) *( * 1)( * 2) *

h hn nH H
hi h hi h

h i h ih h h h h

e e e e m
v m

n n n n n v
 

 

Recall that using these, by themselves, does not affect the large-sample randomization-

based properties of the coverage intervals.  

 

4.  Applications 
 

In this section, we discuss potential uses of our improved one-sided intervals at the 

Internal Revenue Service (IRS), contrasting our intervals with the conventional Wald 

intervals.   

 

The Meals and Entertainment (M&E) Study is an example in tax situation where 

coverage intervals are needed.  Many companies incur significant meals and 

entertainment (M&E) expense as part of their normal cost of doing business.  Examples 

of M&E expenses include costs like travel reimbursements, client entertainments, and 

employee group meetings or events.  Some of these expenses are 100% tax deductible.  

For tax purpose, companies would like to know the total amount of expenses that are 

100% tax deductible.  The universe of these expenses may include so many items that it 

would be too costly to review each of them.  To facilitate accounting of fully deductible 

M&E, the IRS issued revenue procedure 2004-29 to allow the use of statistical sampling 

to account for such expenses (Batcher, 2004).  An M&E universe is a company‟s list of 

expenses, and the sample is typically a stratified simple random sample with expense 

amount as the stratifier.  The sampled expenses are reviewed, and the 100% deductible 

expenses are identified.  If x  is the original expense amount, and y  is the 100% tax 

deductible amount, then the value of y  is either x  (if the expense is classified as 100% 

deductible) or 0 (if the expense is not qualified as 100% deductible).  Overall, 30% - 60% 

of expenses are qualified for the 100% deductible.  Based on the sample results, the total 

amount of the 100% deductible expenses is estimated, and the lower bound of a one-

sided 95% Wald interval is constructed (which is the same as the lower bound of a 90% 

two-sided Wald interval).  The distribution of x  is skewed, however, so that the 

distribution of y  is highly skewed.  The use of the Wald interval in this context may be 

dubious. 

 

The IRS Individual Income Tax Underreporting Study is an example where the qualified 

amount is part of the expense amount.  The IRS created the National Research Program 

(NRP) in 2000 to champion the agency‟s efforts to measure taxpayer compliance.  The 

first NRP reporting compliance study sampled more than 46,000 tax returns from tax year 

2001 Forms 1040.  The sample design for the tax year 2001 study is a stratified random 

sample design that includes 30 strata based on examination class, adjusted gross income, 
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business receipts, and other measures.  A new individual underreporting study covering 

tax years 2006 to 2008 with approximately 13,000 tax returns each year is in progress.   

 

The new study has a stratified random sample design that includes 58 strata based on 

examination class, filing status, the presence of the form 2106 and other measures.  The 

audit results of sample returns are used to make population estimates.  IRS uses a number 

of different statistics to measure taxpayer compliance.  One of the compliance measures 

is the Net Misreported Amount (NMA).  This is the total difference between the amount 

reported and the amount that should have been reported for deduction items.  Let x  be 

the reported amount and y  be the deduction amount that should have been reported for 

an item, then d x y  is the misreported or error amount.  Here, y  is less than x , that 

is, 0 y x .  In addition to the estimate of the total error amount, the upper coverage 

bound of the total error amount is of interest to the IRS individual income tax 

underreporting study.   

 

The Research and Development (R&D) Study estimates the dollar amount that qualifies 

as research and development for tax purposes.  The sampling units can be employees, 

projects or locations.  For example, if the sample selections are conducted at the 

individual employee level, then the sample is often stratified by Tier and W-2 wages.  

The Tiers are employee groups based on the expected qualification rate for their job title.  

Within each Tier, employees are grouped according to their W-2 wages, which can aid in 

improving precision by controlling the variability of the qualifying dollars.  The 

randomly selected individuals are interviewed to determine the amount of qualifying 

activities the individual had for the research and experimental expenditures under Section 

174 of the Internal Revenue Code.   Because the population tends to be highly variable, a 

large sample is needed to achieve acceptable precision of the point estimate.  Unfortunately, 

a large sample can be very costly.  Consequently, the lower bound of the qualifying 

amount at 90% coverage level is often used instead.  For each sampled unit, the 

qualifying percent varies from 0% to 100%.  If x  is the original expense amount, then the 

qualifying amount y  is somewhere between 0 and x  with a large number of 0‟s.  As a 

result, the distribution of y  is highly skewed. 

 

The IRS permits the use of three randomization-based estimators given a stratified simple 

random sample: the expansion, (separate) ratio, and difference estimators.  The notations 

of lower and upper bounds (intervals) are given in Table 1.  The subscripts denote the 

estimation methods, and the superscript „a‟ stands for the adjusted method using our 

proposed approach.  Some additional notations are defined as follows. 

 

                         Table 1:  Notations of Coverage Bounds 

Estimation 

Method 

Wald 

Approach 

Proposed 

Approach 

Expansion EL  and 
EU  a

EL  and a

EU  

Ratio 

(Separate) RL  and 
RU  a

RL  and a

RU  

Difference DL  and 
DU  a

DL  and a

DU  
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The Wald coverage intervals for the expansion estimator are  

 

ˆ ˆ
E EL t z v or U t z v ,        

 where 
1

ˆ ,
H

h h

h

t N W y  
2

2

1

1
H

h h
h

h h h

n s
v W

N n
 and 

2

2

( )

1

h

k h

k

h

h

y y

s
n

. 

 

Our improved intervals have the form:  

 

2 2 2 2ˆ ˆa a

E EL t z v or U t z v ,          

 

where 

2 32
3

2
1

1 21
1 1 ,

6 2

H
h h h

h h

h h h h

z n n sz
W g

v N N n
 and 

3

3

( )

( 1)( 2)

h

h k h

k

h

h h h

n y y

g
n n s

. 

 

Here  is based on equations (2.3) and (3.2), and 
hg  is the estimated skewness of y  for 

stratum h . 

 

The Wald coverage intervals for the ratio estimator can be expressed as 

 

            ˆ ˆ
R R R R R RL t z v or U t z v ,                                                                                                          

 

where 
1

ˆˆ ,
H

R h xh

h

t R t ˆ ,h
h

h

y
R

x
 and 

xht  is the total of x  in stratum h , 

2
2

1

1
H

h Rh
R h

h h h

n s
v W

N n
, 2 2 2

0Rh h Rhs c s , 
/

,xh h
h

h

t N
c

x
 and 

2

2

0

ˆ( )

1

h

k h k

k

Rh

h

y R x

s
n

. 

 

We are using the weighted-residual-variance estimator for 
Rv  (Särndal et al., 1989) 

because it has been shown to have better coverage properties than the more standard 

alternative where 
hc  is replaced by 1. Our improved intervals are  

 

            2 2 2 2ˆ ˆ  a a

R R R R R R R R R RL t z v or U t z v ,                                        

 

where 

2 32
3

2
1

1 21
1 1 ,

6 2

H
h h Rh

R h Rh

hR h h h

z n n sz
W g

v N N n
  

and 

3

3

3

ˆ( )

( 1)( 2)

h

h k h k

k

Rh h

h h Rh

n y R x

g c
n n s

. 

 

Note that we also apply the correction term 
hc  in estimating the skewness in stratum h . 
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The Wald coverage intervals for the difference estimator are 

 

            ˆ ˆ
D D D D D DL t z v or U t z v ,                                                                                                      

where 
1

ˆ
H

D x h h

h

t t N d , 1

h
h h kd n d , d y x , 

2
2

1

1
H

h Dh
D h

h h h

n s
v W

N n
 and 

2

2

( )

1

h

k h

k

Dh

h

d d

s
n

.  Here, 
hd is the sample mean of variable d  in stratum h .  Our 

alternatives are 

 

2 2 2 2ˆ ˆa a

D D D D D D D D D DL t z v or U t z v ,                                                                                

 

where 

2 32
3

2
1

1 21
1 1

6 2

H
h h Dh

D h Dh

hD h h h

z n n sz
W g

v N N n
  

and 

3

3

( )

( 1)( 2)

h

h k h

k

Dh

h h Dh

n d d

g
n n s

. 

 

5.  Simulations 
 

In this section, we compare the coverage intervals described in Section 4.  A population 

of 10,020 values of x is first generated from the highly skewed lognormal distribution 

with parameters µ=8, σ=1, shown in Figure 1 (these are the parameters of the normal 

distribution from which the lognormal is derived).  The largest 20 values are dropped 

from the subsequent analysis because these values would likely be treated as certainties 

in practice.  The remaining population is divided into five strata using equal dollar 

amount of x .  Table 2 summarizes the population. 
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                 Table 2:  Summary of the Simulation Population 

                 

Minimum Maximum

1                 38.2            3,448.8              5,563              9,690,057 

2            3,449.3            6,139.6              2,085              9,692,312 

3            6,141.5          10,164.0              1,244              9,694,484 

4          10,170.0          17,914.8                 733              9,675,960 

5          17,925.2          48,669.2                 375              9,710,327 

10,000          48,463,140          

Range of x
Stratum

 Population 

Size 

 Total of              

Total

h hN
xT

x

 

 

We create eight setting of values for a stratum-specific parameter 
hp   shown in Table 3.  

This parameter corresponds to the “probability” that the variable of interest (to be labeled 

“y”) is zero.  Settings 1 – 4 represent rare events in all strata with some variations in the 

hp  values.  Settings 6 and 7 represent not rare events overall and have wide variations in 

hp  values among strata.  Setting 7 and 8 have high values of 
hp  in all strata.   

              Table 3:  
hp  Settings for the Simulation 

hp  

Setting 

Stratum Qualifying Proportions 

1 2 3 4 5( , , , , )p p p p p  

Po1pulation  

total of y , 

T  

Ratio,  
x

T

T
 

1 0.10,    0.08,    0.05,    0.03,    0.02      2,706,178  5.6% 

2 0.02,    0.03,    0.05,    0.08,    0.10      2,738,314  5.7% 

3 0.20,    0.15,    0.10,    0.10,    0.05      5,812,281  12.0% 

4 0.05,    0.10,    0.10,    0.15,    0.20      5,891,010  12.2% 

5 0.10,    0.30,    0.50,    0.70,    0.90   24,314,679  50.2% 

6 0.90,    0.70,    0.50,    0.30,    0.10   24,300,641  50.1% 

7 0.90,    0.92,    0.95,    0.97,    0.98   45,785,287  94.5% 

8 0.98,    0.97,    0.95,    0.92,    0.90   45,775,904  94.5% 

 
 

We set hn  = 30 in every stratum.   We then draw 1,000 stratified random.  Let 
hix  be the 

i -th unit in stratum h  from the randomly generated values of x .  We generate y values 

using two models:  

 

Model One:      
,  if 

 
0,  otherwise

hi h h

hi

x i N p
y ,                                                                    (5.1) 

and  

Model Two:    
,  if 

 
0,  otherwise

hi hi h h

hi

u x i N p
y ,                                                                 (5.2) 
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where 0 1hiu  is the random variable from the uniform(0, 1) distribution.  Model One 

of equation (5.1) roughly mimics the data for the M&E study where a unit is either not 

qualified ( 0y ) or fully qualified ( y x ), and Model Two roughly mimics the data in 

the other two applications where a unit can be partially qualified ( 0 y x ). 

 

We calculate the coverage bound of total amount of y  for each of 1000 samples.  A 

constraint is put on the calculation such that the lower bound should not be smaller than 

the sample total ,kk
y  and the upper bound should not be larger than 

( ).x k kk k
T x y  We use the coverage rate (CR) and average distance (AD) to 

compare different methods.  The coverage rate is the fraction of samples whose intervals 

cover the true population value.  The average distance is a measure of how close the 

boundary of the coverage interval is to the true value.  It is defined as the mean of the 

absolute distance of the lower (or upper) bound from the true population value divided by 

the true value:    

 

  
1000

1

1 1
| |

1000
j

j

AD B T
T

,                                                                                (5.3) 

 

where 
jB  is the coverage bound calculated from the sample 

jB , 1,2, ,1000j .   

 

Figures 2 compare the coverage rates (CR) and average distance (AD) of the lower bound 

for the eight settings of different 
hp  values and different estimation methods.  The 

nominal level is 95%.  The coverage plots show that our proposed improvement brings 

the Wald coverage closer to the nominal level in almost all situations.  When the 

qualifying rates are small (settings 1 – 4), the Wald lower bound for the expansion and 

ratio estimators tend to over-cover, while our proposed improvement adjusts coverage 

levels down to be close to the 95% nominal level.  In addition, our method has shorter 

average distances.  When coupled with the difference estimator, the Wald interval 

performs well in settings 1 – 4.  Its properties are very similar to those of our proposed 

alternative.  In these settings, however, average distances are much longer than those 

produced by the expansion and separate estimators.  When the qualifying rates are not 

extreme (settings 5 and 6), our proposed intervals are not very different from the Wald no 

matter the estimator.  When the qualifying rates are large (settings 7 and 8), our improved 

intervals have coverage rates closer to the nominal level for the ratio and difference 

estimators.  

 

Figure 3 displays the same comparisons for upper bounds.  Note that the scale of AD in 

Figure 3 is larger than that in Figure 2 in order to fit the much larger average distance of 

upper bounds using difference estimators.  The conclusions drawn from lower bounds 

tend to hold again except that the skewness is in the opposite direction.  The upper 

bounds have under-coverage in settings where the lower bounds have over-coverage.  

The relative sizes of the average distances are also reversed.   
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               Figure 2: Coverage Rate and Average Distance of Lower Bound at 95% 
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Figure 3: Coverage Rate and Average Distance of Upper Bound at 95%  
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6.  Conclusions 
 

We have proposed a relatively simple improvement on one-sided Wald coverage 

intervals for a parameter estimated with survey data. We have shown how our 

improvement can be applied broadly, demonstrating it empirically in the important 

special case of a stratified simple random auditing sample.  For alternative, and more 

complex, treatments of auditing samples, see Bimpeh (2008) and the Panel on 

Nonstandard Mixtures of Distributions (1989).    

 

There are limitations to our methodology.  It does not produce confidence intervals, 

because it does not protect against the oscillations in discrete distributions.  Our intervals, 

at best, cover the true parameter at the designated level (e.g. 95% of the time) on average 

rather than (almost) always.   

 

The methodology simply speeds up the asymptotics in coverage interval construction.  

The key statistic is the skewness (τ) of the parameter estimate. The skewness converges 

to zero asymptotically, but we live in a finite world.  When this parameter is nonzero, our 

intervals will improve on the Wald.  Nevertheless, when the skewness is too large  say, 

greater than ½ in absolute value   our intervals may not be very reliable (because we 

assumed τ
2 
was ignorably small in our Edgeworth approximation, i.e, equation (2.1)).  

 

Another limitation of our method is that, although it increases the efficiency of the 

implicitly estimated variance of the parameter estimate, it does not remove all random 

noise from variance estimation, even asymptotically.   How much of a practical problem 

this is has yet to be seriously explored.  
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