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Abstract 
In this paper we discuss variance estimation for surveys where the number of first-stage 

sample units in one or more strata is one.  Unbiased variance estimation in such cases is 

not possible.  We review relevant ideas that have been discussed in the literature, 

particularly collapsing of strata.  We then propose a new approach based on components 

of variance from different stages of sampling.  The motivation and illustrations come 

from Statistics Canada’s Canadian Health Measures Survey, in which the number of 

PSUs per stratum is very small (in fact, just one for the Atlantic region) due to 

operational and financial constraints. 
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1. Introduction 

 
In this paper we consider the problem of variance estimation for surveys where the 

number of first-stage sample units in one or more strata is one.  When only one PSU is 

selected in some strata, design unbiased estimation of the variance is not possible, since 

we have no information about differences between the PSUs in such strata. 

 

This paper is motivated by the new Canadian Health Measures Survey (CHMS) which 

samples only a single PSU in one of its five strata.  Estimates from CHMS are required at 

the national level.  We also want to produce preliminary estimates based on the first half 

of the data collection, for which the problem appears in three strata. 

 

Variance estimation for CHMS is also complicated by the fact that exact second-order 

inclusion probabilities for PSUs are not easily calculated.  Some approximation to these 

probabilities is needed in order to estimate the variance. 

  

CHMS has a 3-stage design.  The first stage is an area frame with 257 collection sites 

(PSUs) stratified into 5 geographic regions.  A total of 15 PSUs are selected using PPS 

systematic sampling from ordered lists within strata (size measure is census population), 

which makes unbiased estimation of the first-stage variance impossible in principle.  

However, we will assume that randomized PPS systematic (RPPSS) or some similar 

sampling design was used.  This assumption seems not unreasonable, but does introduce 

an unknown bias into the variance estimation. 
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At the second stage, a list frame of dwellings is constructed for each site and stratified 

into 5 strata based on presence of individuals in different age groups from 2006 census 

data, and a sixth stratum for dwellings with no individuals in the target group at the time 

of the census.  The sample size is around 600 dwellings per site using SRS within strata. 

 

At the third stage individuals are selected within households.  If children aged 6 to 11 are 

present then one of them is selected randomly.  In addition, whether or not there are 

children aged 6 to 11 one person aged 12 to 79 is selected using probabilities that depend 

on age group: 12 to 19, 20 to 39, 40 to 59, and 60 to 79.  The age-group specific 

probabilities are designed to achieve equal respondent sample sizes in each age-sex group 

– see Dion and Giroux (2009) for more details.  The target sample size of respondent 

individuals is 350 to 375 per PSU. 

 

A significant challenge for variance estimation is the small number of PSUs selected.  In 

fact, for one of the strata (Atlantic region) only one PSU is selected.  Thus unbiased 

estimation of the first-stage design variance is a priori impossible, even under the RPPSS 

assumption.  Preliminary estimates are also required based on the first half of the data 

collected.  For operational reasons all of the data collection in a PSU is completed before 

moving on to the next PSU, so that having only half the data means having only half of 

the PSUS.  The first-stage strata and sample sizes are given in Table 1. 

 

Table 1: Strata and Sample PSUs for CHMS 

 

Region (Stratum) No. PSUs selected Preliminary PSUs  

Atlantic 1 1 

Quebec 4 2 

Ontario 6 3 

Prairies 2 1 

British Columbia 2 1 

 

The aim of this paper is to present different variance estimation methods for the CHMS, 

and to compare the resultant estimates.  It is motivated by the question of whether 

standard replication methods, such as the Rao-Wu bootstrap for complex surveys, give 

acceptable estimates of variance for this survey, in view of the small number of sample 

PSUs.  The answer seems to be a cautious “yes”. 

 

In the remainder of this paper we first introduce useful notation in Section 2.  In Section 3 

we develop variance estimation assuming at least two PSUs per stratum are selected.  In 

this section we also consider the problem of approximating the second-order inclusion 

probabilities under the PPS design. Then in Section 4 we discuss how the variance 

estimation can be adapted to the problematic case of strata with only one PSU selected.  

Finally, in Section 5 we compare some alternative variance estimators empirically using 

data from the preliminary sample. 

 

2. Notation 

 
In this section we define some notation and quantities of interest that will be used in the 

rest of the paper.  All of the variables, totals, means and estimates are in terms of person 

level variates.  Y is the population total of a person level variate y. 

 

Regions – index r (i.e. first-stage stratum). 
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∑= r rYY    ∑= r rYY ˆˆ     

 

PSUs (sites) within regions – index p, sr  is the sample of mr  PSUs selected from the 

M r  PSUs within region r. 

 

wp  is the weight for PSU p in the sample = the inverse probability of selection of PSU p 

1 / pπ= . 

 ∑= ∈rp pr YY    ∑= ∈sp ppr r YwY ˆˆ  

 

Strata within PSUs – index u,  

 

 ∑= ∈pu up YY    ∑= ∈pu up YY ˆˆ  

 

Households – index h, su  is the sample of mu  households h selected from the M u  

households in stratum u. 

 

wh  is weight for household h conditional on the PSU containing h being in the sample 

 

mMw huhuh )()( /=  where )(hu is the stratum containing h, m hu )(  is the number 

of  households selected in stratum )(hu , and M hu )(  is the total number of  

households  in stratum )(hu .  Note that m hu )(  may be adjusted for household 

level non-response. 

 

 ∑= ∈uh hu YY    ∑= ∈sh hhu u YwY ˆˆ    

 ∑= ∈uh uhu MYY /   ∑= ∈sh uhu u
mYY /ˆˆ  

 

Individuals – index  j, sh  is the sample of individuals j selected from household h. 

 

jω  is weight for individual j (may be adjusted for non-response and calibrated, but we 

ignore that).  hY  is the total of variate y for household h 

 

Define jw  by j p h jw w wω = , so jw  is something like the inverse probability weight of 

individual j given household h is in the sample, but may be distorted by calibration or 

other adjustments to the weights.  In subsequent developments we will implicitly assume 

that ˆ
hY  remains unbiased for hY  despite the effects of these adjustments. 

 

∑= ∈hj jh yY    ˆ jjh jsh
ywY ∈= ∑  
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Putting all of this together we can write  

 

 r p r u p h u j h j
Y y∈ ∈ ∈ ∈= ∑ ∑ ∑ ∑ ∑ , and 

 

ˆ
r u h r u h

j jp hr p u p h j r p u p h js s s s s sj j
y yY ww w ω∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈= =∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ .  

 

 

3. Variance Estimation 

 
Now we can write 

 

ˆ ˆ ˆ
r rp pr p u r pu ps s

Y w wY Y∈ ∈= =∑ ∑ ∑ ∑ ∑ . 

 

It is useful to break down the variance as the variance due to the first-stage sampling 

(first-stage variance) and the variance conditional on the first-stage sample (variance due 

to second and subsequent stages of sampling).  Estimation procedures can then be 

developed for these two terms separately.  

 

( ) ( ){ } ( ){ }ˆ ˆ ˆ
r rVar Y Var E Y E Var Ys s= +  

 

 { } ( ){ }2 ˆ
r rpp pr p r p u us s

Var E Varw wY Y∈ ∈= +∑ ∑ ∑ ∑ ∑   (1a) 

 

 { } { }∑ ∑+∑ ∑= ∈∈ r sp pppr sp p rr YVarwEYwVar )ˆ(2    (1b) 

 

It is also possible to break the variance down into components representing each stage of 

sampling by writing 

 

 ( ) ( ){ } ( ){ }ˆ ˆ ˆ
u uu u uVar Y Var E Y E Var Ys s= +   

 

and substituting this expression into (1a) above.  However, this further breakdown is not 

very useful.  In particular, the third stage variance, ( )sYVar uu
ˆ , cannot be directly 

estimated since at the third stage of sampling only one unit is selected per stratum (the 

strata for the third stage of sampling consist of the sets of 6 to11 year-olds and the 12 to 

79 year-olds, and one individual is selected from each non-empty stratum within a 

household).  As we will see later, this further breakdown of the variance is also not 

necessary. 

 

3.1.  First-Stage Variance 

  

The first term in (1) is problematical because only a small number of PSUs is selected, 

only one for Atlantic region, only two in each of BC and prairie regions.  However, 

ignoring that problem for the moment we can write the first stage variance of Ŷ  as 
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{ }
ππ

πππ
q

q

p

p
qpr rp rq pqpr sp p

YY
YwVar

r
)( −∑ ∑ ∑=∑ ∑ ∈ ∈∈    (2a) 

 
2

1
( )

2

p q
pq p qr p r q r

p q

Y Y
π π π

π π
∈ ∈

 
= − − −∑ ∑ ∑   

 
,  (2b) 

 

where π p  is the probability that site (PSU) p is included in sample sr , and π pq  is the 

probability that both p and q are in sr .  Form (2a) is the general form of the variance 

under sampling without replacement; form (2b) is the Sen-Yates-Grundy form and 

applies only if the sample size in each stratum is fixed. 

 

Based on (2a) the Horvitz-Thompson unbiased estimator of variance is  

 

{ }ˆ
r r r

pq p q p q
ppr p r p qHT s s s

pq p q

Y Y
Var w Y

π π π
π π π

∈ ∈ ∈
−

=∑ ∑ ∑ ∑ ∑ , 

 

and from (2b) the Sen-Yates-Grundy variance estimator is given by  

 

{ }
2

1ˆ
2r r r

pq p q p q
ppr p r p qSYG s s s

pq p q

Y Y
Var w Y

π π π
π π π

∈ ∈ ∈

 −
= − −∑ ∑ ∑ ∑ ∑   

 
. 

  

Neither of these two estimators is available since Y p is not observed, only Y p
ˆ .  We may 

define  

 

{ }
ˆ ˆ

ˆ ˆ
r r r

pq p q p q
pr p r p qHT ps s s

pq p q

Y Y
Var w Y

π π π
π π π

∈ ∈ ∈
−

=∑ ∑ ∑ ∑ ∑    (3) 

 

and show that  

 

{ }ˆ ˆ
r p rr pHT ps

E Var w sY∈
 ∑ ∑   

  { } 2

1
ˆ ˆ( )

r r

p
ppr p r pHT ps s

p

Var Varw Y Y
π

π
∈ ∈

−
= +∑ ∑ ∑ ∑ . 

 

For the Sen-Yates-Grundy form we may define 

 

{ }
2

ˆ ˆ1ˆ ˆ
2r r r

pq p q p q
pr p r p qSYG ps s s

pq p q

Y Y
Var w Y

π π π
π π π

∈ ∈ ∈

 −
= − −∑ ∑ ∑ ∑ ∑   

 
 (4) 

 

and it can be shown that  
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{ }ˆ ˆ
r p rr pSYG ps

E Var w sY∈
 ∑ ∑   

 

{ } ∑
−

∑ ∑−∑ ∑= ≠∈∈∈ pqsq
pq

qppq
r sp

p

p
r sp ppSYG rrr

YVar
YwarV ,2

)ˆ(
ˆ

π

πππ

π
. 

 

In either case, whether we use the Horvitz-Thompson estimator (3) or the Sen-Yates-

Grundy estimator (4), we have an estimator whose expectation, conditional on the first 

stage sample sr , is equal to an unbiased estimator of the first term of (1) plus a bias term 

involving variances from the later stages of sampling.  We could estimate the variances in 

the bias term in order to adjust for it. 

 

3.1.1. Calculation of π pq s 

 

Estimation of the first-stage variance using either equation (3) or (4) requires the first- 

and second-order inclusion probabilities for the PSUs in the sample.  The first-order 

inclusion probabilities, π p , are simply equal to / rr pN Nm , where mr  is the number of 

PSUs selected in stratum r, and rN  and pN  are, respectively, the census populations of 

region r and PSU p.  This is true since the PSUs are selected using PPS within regions 

with size measure N p .  Exact calculation of the second-order inclusion probabilities, 

π pq , is practically impossible under the RPPSS approximation to the first-stage design, 

and various approximations have been suggested in the literature.  One possible approach 

is to simply substitute approximations for π pq  directly into (3) or (4).  A different 

approach taken in the literature is to use approximations to π pq  to derive approximations 

to the actual variance in (2a) or (2b), and then to derive estimates of these 

approximations. 

 

Hartley and Rao (Annals, 1962) derive asymptotic approximations to the π pq  for single-

stage RPPSS sampling using Edgeworth series.  They then derive expressions for the 

variance and for variance estimates that are accurate to order )( 0
NO , and simplified 

expressions accurate to )( 1
NO .  To order )( 0

NO  their estimator takes the form: 

 

{ },0
ˆ

r ppr pHR s
Var w Y∈ =∑ ∑  

 

2
2

)(1
1

1

2

1











−∑ ∑ ∑












Κ+

∑
++−

− ∈ ∈
∈

ππ

π
ππ

q

q

p

p
r sp sq r

r

rd d
qp

r

YY

mm
r r

 

where 

 

 ( ) ∑+∑++∑−+−=Κ ∈∈∈ rd d
r

rd dqp
r

rd d
r

qp
r

r
mmmm

πππππππ 3
2

2
2

22
3

22 2
)(

12
)(

1
 

 

To order )( 1
NO  they obtain the simplified estimator 
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{ },1
ˆ

r ppr pHR s
Var w Y∈ =∑ ∑  

 

2
2

)(1
1

1

2

1











−∑ ∑ ∑











 ∑
++−

− ∈ ∈
∈

ππ

π
ππ

q

q

p

p
r sp sq

r

rd d
qp

r

YY

mm
r r

 (5) 

 

where the Κr  term is dropped. 

 

Brewer and Donadio (2003) consider the problem from a different perspective; namely, 

they try to find useful approximations to the π pq  that depend only on the first-order 

inclusion probabilities, π p .  They consider high entropy designs, that is, designs for 

which knowledge that unit p is in the sample gives very little knowledge of what other 

units are in the sample - RPPSS is one example of a high-entropy design.  For such high 

entropy designs they propose approximations of the form 

 

 ( ) / 2pq pq p q p qc cπ π π π≅ = +ɶ      (6) 

 

and consider different possible values of c p  suggested by various identities that second-

order inclusion probabilities must satisfy.  One of the values of c p  that they consider, 

namely  

 
( )

1 2
( ) ( )

1

2

r p
p

r p p r p qq r

m
c

m mπ π−
∈

−
=

− + ∑
 ,     (7) 

 

is an approximation to asymptotic expressions derived by Hartley and Rao (1962) and by 

Asok and Sukhatme (JASA, 1976).  Under SRSWOR this value of c p , when substituted 

in (6), yields the exact value for π pq .  It is also interesting to note that if 1)( =m pr   then 

0=c p .  In fact, this is true for all of the values of c p  considered by Brewer and 

Donadio.  Through some rather ingenious algebraic manipulations, and using the 

approximation (6) they derive the following approximation to the first-stage variance: 

 

{ }
2

(1 )
r

p r
pp p p pr p r p rBD s

p r

Y Y
Var w cY

m
π π

π
∈ ∈

 
= − −∑ ∑ ∑ ∑   

 
ɶ  .  

 

They then derive an approximate design-unbiased estimator for this expression: 

 

 { }
2

1
~

)(
~̂

∑ ∑ 









−−=∑ ∑ ∈

−
∈ r sp

r

r

p

p
pppr sp pBD rr

m

YY
cYwarV

π
π  .  (8) 

 

where ∑= ∈sp ppr r
YY π/~ .  Finally, considering model properties of the estimator (8) 

under a ratio-type regression model in which the expected value of Y p  is proportional 

π p , they propose a slightly modified version of  c p , namely 
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( )

11 2
( )( ) ( ) ( )

1

( 1)(2 1)( 1)

r p
p

r pr p r p r p p qq r

m
c

mm m m π π
−−

∈

−
=

−− − − + ∑
 (9) 

 

With this value of  c p  the model bias of the variance estimator (8) is of order )( 2
nNO − , 

while with other proposed values of c p  it is of order )( 1
nNO − .  

 

If either (5) or (8) is used to estimate the first-stage variance, then the quantities Y p  and 

Y r
~  would need to be estimated based on subsequent stages of sampling.  Replacing Y p  

by Y p
ˆ  and Y r

~  by Y r
ˆ  we get, from (5), the Hartley-Rao variance estimator as  

 

{ },1
ˆ ˆ

r pr pHR ps
Var w Y∈ =∑ ∑  

 

2
2 ˆˆ

)(1
1

1

2

1











−∑ ∑ ∑ 
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++−

− ∈ ∈
∈

ππ

π
ππ

q

q

p

p
r sp sq

r

rd d
qp

r

YY

mm
r r

 (10) 

 

and it can be shown that 

 

{ } { },1 ,1
ˆ ˆˆ

r r pp r pr p r pHR HRps s
E Var Varw s w YY∈ ∈
  =∑ ∑ ∑ ∑    

  

∑ ∑












∑−











 ∑
+−−

−
+ ∈ ≠∈

∈
r sp pqsq q

r

rd d
pr

p

p

r
r r

m
m

YVar

m
,

2

2
1)1(

)ˆ(

1

1
π

π
π

π
. (11) 

 

Similarly from (8), defining the Brewer-Donadio estimator as 

{ }
2

1
ˆˆ

)(ˆ
~̂

∑ ∑ 









−−=∑ ∑ ∈

−
∈ r sp

r

r

p

p
pppr sp pBD rr

m

YY
cYwarV

π
π   (12) 

 

it can be shown that 

 

{ } { }ˆ ˆˆ
r r pp r pr p r pBD BDps s

E Var Varw s w YY∈ ∈
  =∑ ∑ ∑ ∑  
ɶ ɶ  

 

∑ ∑ 












∑ −+−








−+ ∈ ≠∈

−−
r sp pqsq qq

r
pp

rp

p

r r
c

m
c

m

YVar

,
1

2
1

2

2
)(

1
)(

1
1

)ˆ(
ππ

π
  (13) 

 

Again, in the case of the Hartley-Rao estimator (10) or the Brewer-Donadio estimator 

(12), we have an estimator whose expectation, conditional on the first stage sample sr , is 

equal to an approximately unbiased estimator of the first-stage variance plus a bias term 

involving variances from the later stages of sampling.  We could estimate the variances in 

the bias term in order to adjust for them. 
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It should also be noted that both the Hartley-Rao and the Brewer-Donadio estimators are 

based on the Sen-Yates-Grundy form of the variance, so they assume implicitly that the 

first stage sample sizes are fixed within strata. 

 

3.2.  Second and Third Stage Variance 

 

The second term in (1) represents the variance due to second and subsequent stages of 

sampling.  It can be estimated by ( )2 ˆ ˆ
r pr p u us

Varw Y∈∑ ∑ ∑  where ( )YarV u
ˆˆ  is any 

suitable estimator of ( )YVar u
ˆ .   

 

Note that )ˆ()ˆ( ∑= u up YVarYVar  so that if we can estimate ( )YVar u
ˆ , then we can also 

estimate and adjust for  the bias of the first-stage variance estimators in (3), (4), (10) and 

(12). 

 

Now  ( ) { }∑= ∈sh hhu u YwVarYVar ˆˆ  

 

 { } ( ){ }YVarwEYwVar hsh hsh hh uu
ˆ2∑+∑= ∈∈  

 

 ( ) ( )∑+∑ −
−








−= ∈∈ uh h

u

u
uh uh

u

u

uu
YVar

m

M
YY

M

M

Mm
ˆ

1

11 2
2

 

 

It can be shown that 

 

( ) ( ) ∑+∑ −
−

=







∑ −

− ∈∈∈ uh h
u

uh uh
u

sh uh
u

YVar
M

YY
M

YY
m

E
u

)ˆ(
1

1

1
ˆˆ

1

1 22
 

 

so that 
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∑ −
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( ) ∑







−+∑ −
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u
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u

u
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YVar

m
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YY

M

M
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)ˆ(1

1

11 2
2

 

 

( ) )ˆ(ˆ ∑−= ∈uh hu YVarYVar  

 

which is almost equal to ( )YVar u
ˆ .  If the second stage sampling fraction 

M

m

u

u  is small 

then the difference, )ˆ(∑ ∈uh hYVar , is negligible.  In CHMS the sampling fraction would 

be quite small, since the average PSU size must be around 50,000 dwellings, from which 

about 600 are selected at the second stage, so a typical second-stage sampling fraction 

would be around 1.2%.  In any case, the difference is impossible to estimate since, as 
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noted above, for sampling within households h we select only one individual j per 

stratum.  Let us therefore define 

( )
2 21 1ˆ ˆ ˆ( ) ˆ
1 u

u
hu hs u

uu u

M
Var Y Y Y

m mM
∈

 
= − −∑  − 

   (14) 

 

and  

 

)ˆ(ˆ)ˆ(ˆ ∑= u up YarVYarV .      (15) 

 

3.3. Overall Variance Estimation 

 

Assuming that the first-stage sample size in each stratum is at least 2, for overall variance 

estimation we may use any of the estimators (3), (4), (10) or (12) for the first-stage 

variance, and then use (14) and (15) to adjust for the bias in first-stage variance 

estimation and to estimate the variance from subsequent stages of sampling.   However, it 

should be noted that the Horvitz-Thompson estimator (3) and the Sen-Yates-Grundy 

estimator (4) require the second-order inclusion probabilities π pq  which are generally 

unknown. 

 

Based on the Horvitz-Thompson estimator (3) and its bias, the overall variance in (1) can 

be estimated by  

 

{ } 2

1
ˆ ˆˆ ˆ( )

r r

p
pr p r pHT p ps s

p

Var Varw Y Y
π

π
∈ ∈

−
−∑ ∑ ∑ ∑     (16) 

( )2 ˆ ˆ
r pr p ps

Varw Y∈+∑ ∑  

where )ˆ(ˆ
YarV p  is as defined in equations (14) and (15). 

 

Based on the Sen-Yates-Grundy estimator (4) and its bias, the overall variance can be 

estimated by  

 

{ }ˆ ˆ
r pr pSYG ps

Var w Y∈∑ ∑     

( )2
,2

ˆ ˆ( )
ˆ ˆ

r r r

p pq p q
pr p q q p r p ps s s

p pq

Var Y
Varw Y

π π π
π π

∈ ∈ ≠ ∈
−

+ +∑ ∑ ∑ ∑ ∑ .   (17) 

 

Based on the Hartley-Rao estimator (10) and its approximate bias in (11), the overall 

variance can be estimated by  

 

{ } ( )2ˆ ˆˆ ˆ
r rp pr p r pHR p ps s

Var Varw wY Y∈ ∈+∑ ∑ ∑ ∑  

 

∑ ∑
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∈
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m
,

2

2
1)1(
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1

1
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π
π

π
  (18) 
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Finally, based on the Brewer-Donadio estimator (12) and its approximate bias in (13), the 

overall variance can be estimated by  

 

{ } ( )2ˆ ˆˆ ˆ
r rp pr p r pBD p ps s

Var Varw wY Y∈ ∈+∑ ∑ ∑ ∑ɶ  

 
2

1 1
,2 2

ˆ ˆ( ) 1 1
1 ( ) ( )

r r

p
p p q qr p q q ps s

p r r

Var Y
c c

m m
π π

π
− −

∈ ∈ ≠

   
− − − + −∑ ∑ ∑  

   
  (19) 

 

where c p  is as given in equation (9).  Because of the superior model-based properties 

under a reasonable ratio-type regression model, as noted in Section 2.1, this is the 

recommended estimator. 

 

 

4. Variance Estimation When Some Strata Have Only One PSU Selected 

 
4.1. Variance Formulas with Collapsed Strata 

 

When one or more of the first stage strata have only one PSU selected, a popular 

approach to variance estimation is to collapse the problem strata with other strata and 

estimate the variance as if the sample had been selected from the combined strata.  All of 

the collapsed strata will have at least two PSUs selected so that the estimators (3), (4), 

(10) or (12) can be calculated, provided that suitable values for the joint inclusion 

probabilities, π pq , can be defined for the collapsed strata. 

 

Since we are supposing that sampling is done using RPPSS within strata (regions), it 

would be good to define the π pq  as if RPPSS sampling had been done in the collapsed 

strata.  We should also define the PPS size measure for the collapsed strata in such a way 

that the first order inclusion probabilities are preserved, since we want to estimate the 

variance of ˆ ˆ ˆ /
r rp pr p r pp ps s

Y w Y Y π∈ ∈= =∑ ∑ ∑ ∑ .  The original selection was done 

using population as a size measure, but using this size measure in the collapsed strata will 

probably not preserve the first order inclusion probabilities, because of small differences 

in the average sizes of PSUs in different strata.  However, if we take the original π p s as 

the size measure for RPPSS sampling in the collapsed strata then the first order inclusion 

probabilities are preserved.  The second order inclusion probabilities π pq  can then be 

calculated as if the samples in the collapsed strata had been selected using RPPSS with 

size measure proportional to π p . 

 

The most serious problem with collapsed stratum estimates of variance is that they are 

usually biased, since the mean of the variable of interest is usually different for different 

strata.  In the context of multistage sampling that we have here, with collapsing of first 

stage strata for estimation of the first stage variance using either equation (3) or (4), it is 

the differences among the stratum means of { }ˆ /pp ppEN Y Y π=  that lead to the bias.  

It has therefore been suggested that this bias be reduced by combining “similar” strata. 
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The approximate first variance estimators in (10) and (12) depend only on first-order 

inclusion probabilities, and do not involve the second-order inclusion probabilities.  

Nevertheless, these estimators cannot be calculated if one or more of the strata have 

1=mr , since the estimator in (10) has a factor 
11)( rm

−−   while the estimator in (12) 

involves c p
1−  and 0=c p  for strata with 1=mr .  Collapsing strata with 1=mr  with 

other strata will fix this problem; however, it will introduce some bias as discussed 

above. 

 

Another idea developed by Hartley, Rao and Keifer (JASA, 1969) is to reduce the bias of 

the collapsed stratum estimator of variance by replacing the common stratum mean in a 

standard variance formula by a regression predictor based on some concomitant 

variables.  However, they develop this in the context of SRS within strata, where the 

variance estimator is expressed as a weighted sum of squared residuals (observations 

minus mean) in which the mean can be replaced by an alternative predictor.  Extending 

this idea to PPS sampling requires that the variance estimator can be written in this form.  

 

The Brewer-Donadio estimator in (12) is a weighted sum of squared residuals, 
2

ˆp r

p r

Y Y

mπ

 
−  

 
.  However, the value of pc  as given in either (7) or (9) is 0 for strata r in 

which only one PSU is selected (i.e., 1rm = ), so the estimator in (12) could still not be 

computed.  This difficultly could perhaps be dealt with by some ad hoc fix, but we will 

not pursue it further here. 

 

4.2.  Resampling With Collapsed Strata   

 

The development in Section 4.1 is based on approximating exact expressions for variance 

under the collapsed stratum design, as developed in Section 3.  Another general approach 

to variance estimation is based on resampling methods, with the Jackknife method or the 

Rao-Wu bootstrap (Rao, Wu and Yue, 1992) methods being quite popular when the 

sampling design is multi-stage stratified PPS.  It is quite straighforward to apply these 

resampling methods after collapsing of strata.  It is simply a matter of assuming that the 

sample PSUs were drawn from the collapsed strata rather than the original strata, and 

calculating the resulting resampling estimate of the variance. 

 

4.3. Variance Components Modelling Approach 

 

A third approach to variance estimation for strata with only one PSU selected is to model 

the first stage variance as a function of known characteristics of the design and other 

quantities that are known or that can be estimated from the sample.  For example, for 

CHMS it may be reasonable to assume that the proportion of total variance due to the 

first stage of sampling is constant across strata, since the PSU sizes, the first-stage 

sampling rates and the within-PSU sampling designs are all similar across strata. 

 

To be more specific, we can get a synthetic estimator for the total variance of strata in 

which only one PSU is selected by modeling the ratio of the total variance to the within-

PSU variance as a constant across strata.  This is equivalent to assuming that the ratio of 

the first-stage variance to the within-PSU variance is constant.  In the empirical 
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comparisons in Section 5 we use the estimator (19) based on Brewer and Donadio (2003) 

for the total variance, but we could also have used (16), (17) or (18). 

 

Let 

 

( ) ( )ˆˆ ˆˆ ˆ
r rr within PSUVar VarY YA −=       (20) 

 

where ( )ˆ ˆ
r

Var Y  is calculated from (19) but without summing over strata r and is 

calculated only for those strata r for which more than one PSU is selected, and 

( ) ( )2 ˆˆ ˆ ˆ
r pp ur uwithin PSU s

VarwVar Y Y∈− =∑ ∑  with ( )ˆ ˆ
u

Var Y as given in (14).  ˆ
rA  can be 

calculated for each region r for which more than one PSU is selected.  We may then take 

Â  to be either the average of ˆ
rA  or (more conservatively) as the maximum observed 

ˆ
rA .  For the empirical comparisons in Section 5 we use the maximum.  The synthetic 

estimator of the total variance is then defined as  

 

 ( ) ( )ˆˆ ˆˆ ˆ
r rsyn within PSUAVar VarY Y−= .     (21) 

 

 

5. Empirical Comparison of Variance Estimation Methods 
 

Using the preliminary dataset, in which data from only about half of the sample PSUs is 

available, as described in Table 1 of Section 1, we calculated variance estimates for 

various characteristics using the methods described in the previous sections.  Since the 

preliminary dataset has data from only one sample PSU in three of the five strata, some 

form of collapsing or modelling is required in order to produce variance estimates at the 

Canada level.  For the collapsed-stratum methods, we collapsed the Atlantic stratum with 

Quebec and combined the Prairies and British Columbia strata. 

 

This empirical test had two aims: (1) to compare estimates of variance given by the 

different methods, and (2) to investigate the appropriateness of the variance components 

modelling approach described in Section 4.3.  All of the methods apart from this 

modelling approach are based on the collapsed strata. 

 

Table 2 shows various estimates of variance, as described in the previous sections, for 

three CHMS variables –blood cadmium, blood lead and blood mercury.  For the Horvitz-

Thompson estimators and the Sen-Yates-Grundy estimators, the first-stage joint inclusion 

probabilities are replaced by approximations based on (6) with pc  taking either the value 

in (7) or (9). 

 

The different variance estimation methods produce largely comparable results.  The 

estimates based on the Horvitz-Thompson estimator, given in (16), tend to be somewhat 

larger; however, with a single sample and such a small number of PSUs it is not clear that 

this difference means anything.  The fact that some quite different approaches all yield 

comparable results should increase our confidence in those results.  The estimates from 

the resampling methods, bootstrap and jackknife, are in good agreement with the other 

estimates, confirming that these methods are as valid as any. 
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Table 2:  Variance Estimates from Preliminary CHMS Data Using Different Methods 

(Numbers in parentheses refer to equations in the text) 

 

Method\Variable Total Blood 

Cadmium (
1410× ) 

Total Blood 

Lead (
1010× ) 

Total Blood 

Mercury (
1510× ) 

HT1 – (16), (6), (7)       9.06       5.37       1.54 

HT2 – (16), (6), (9)     12.05       9.89       1.92 

SYG1 – (17), (6), (7)       6.24       2.06       1.28 

SYG2 – (17), (6), (9)       6.20       2.05       1.23 

HR – (18)       6.24       2.07       1.28 

BD – (19), (9)       6.20       2.12       1.27 

Bootstrap       6.86       3.14       1.53 

Jackknife       6.90       2.40       1.43 

Variance Components       6.20       2.12       1.27 

 

The main misgivings about the variance estimates in Table 2 arise from the small number 

of sample PSUs, and in particular from the three out of five design strata for which the 

preliminary sample had data from only one sample PSU.  It will be important, once the 

full dataset is available, to redo these analyses to confirm that the different methods yield 

consistent estimates.  This would strengthen the mutual validation of the different 

approaches and, in particular, confirm the validity of the bootstrap method for this 

survey. 

 

The full dataset could also be used to calculate variances both with and without 

collapsing of the Prairies and British Columbia strata.  This would allow some 

assessment of the effect of stratum collapsing, though it would still not be possible to 

calculate an uncollapsed variance estimate for the Atlantic. 
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