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Abstract 
Although influential values are rare in economic surveys, they are problematic when they occur. 
An observation is considered influential if its value is correct but its weighted contribution has an 
excessive effect on the estimated total or period-to-period change.   Currently, the U.S. Census 
Bureau uses weight trimming to address influential values in several ongoing programs.  Mulry 
and Feldpausch (2007a, 2007b) showed that two methodologies, M-Estimation and Clarke 
Winsorization, had potential for improvements in detection and treatment of influential values in 
the Monthly Retail Trade Survey.  The program uses the Hidiroglou-Berthelot statistical edit to 
identify potential outliers on a flow basis prior to final identification of influential values. In this 
paper, we present a continuation of the earlier research by Mulry and Feldpausch by applying the 
recommended methods to simulated data to examine the statistical properties of the treated 
estimates obtained using each method over repeated sampling.  This paper describes the 
simulation methodology, illustrates with the initial results from one realistic scenario, and 
describes the other scenarios that will be addressed in future work.     
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1. Introduction 
 
Although influential values are rare in economic surveys, they are problematic when they occur. 
An observation is considered influential if its value is correct but its weighted contribution has an 
excessive effect on the estimated total or period-to-period change.   Failure to “treat” such 
influential observations may lead to substantial over- or under-estimation of survey totals, which 
in turn may lead to overly large or small decreases in estimates of change. 
 
This paper illustrates the use of a simulation methodology to investigate two statistical methods 
of identifying and treating influential observations: Clarke Winsorization and M-estimation.  The 
research continues work presented in Mulry and Feldpausch (2007a, 2007b). The previous studies 
examined a variety of outlier detection and treatment methods on 38 months of empirical data 
from the U.S. Census Bureau’s Monthly Retail Trade Survey (MRTS).  The further examination 
of the statistical properties of the previously recommended methods employs a simulation study 
                                                 
1 This report is released to inform interested parties and encourage discussion of work in progress.  
The views expressed on statistical, methodological, and operational issues are those of the authors 
and not necessarily those of the U.S. Census Bureau. 
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designed to produce data similar to that collected by the MRTS.  The goal is to find a method that 
improves or replaces current methodology and uses the observation but in a manner that assures 
its contribution does not have an excessive effect on the monthly totals or an adverse effect on the 
estimates of month-to-month change and year-to-year change. 
 
Each month, the MRTS surveys a sample of about 12,000 retail businesses with paid employees 
to collect sales and inventories.  The sample design is typical of business surveys, with 
stratification that is based on major industry further stratified by the estimated annual sales. The 
sample design includes differential allocation to strata.  The sample is selected every five years 
after the Economic Census and then updated as needed with a quarterly sample of births (new 
businesses) and removal of deaths (failed businesses).  A complete record is imputed for each 
nonresponding active business.  
 
When an influential observation appears in a month’s data, the current corrective procedures 
depend on whether the analysts believe the observation is a one-time phenomenon or a recurring 
situation. If the influential value appears to be a rare occurrence for the business, then the 
influential observation is replaced with an imputed value.  If the influential value represents a 
permanent change, then methodologists adjust its sampling weight using principles of 
representativeness or move the unit to a different industry when the nature of the business appears 
to have changed.  The MRTS processing already includes running the algorithm by Hidiroglou 
and Berthelot (1986) each month to identify within-imputation-cell outliers and create the 
imputation base (Hunt, Johnson, and King 1999).  The Hidiroglou-Berthelot statistical edit 
designates observations that should be reviewed by an analyst and sometimes suppressed from 
the imputation base.   Treatment of influential values is done as a final step of the estimate review 
process.  Hence, the methods described here are developed to complement, not replace, the 
Hidiroglou-Berthelot algorithm.  The expectation is that the appearance of influential values will 
be fairly rare. 
 
This paper describes the simulation methodology, illustrates with the initial results from one 
scenario, and describes the scenarios that future work will address.   Our analysis emphasizes the 
simulation’s estimates of relative bias for estimates of total sales and measures of change, in 
particular month-to-month change, when the influential value is adjusted and when it is not.  
Additional evaluation criteria include the number of influential observations that are detected, 
including the number of true and false detections made.  
 

2.  Methods 
 
A preliminary study (Mulry and Feldpausch 2007a) examined several methods with one month of 
MRTS data and identified two methods that appeared to have promise for the MRTS data, Clarke 
Winsorization and generalized M-estimation.  Subsequent work with the two methods and MRTS 
data showed further promise (Mulry and Feldpausch 2007b). 
  
Before describing the methods, we first introduce the notation.  For the ith business in a survey 
sample of size n for the month of observation t, Yti is its revenue, wti is its final weight (which 
may or may not be equivalent to the inverse probability of selection), and Xti is a variable highly 
correlated with Yti, such as previous month’s revenue or its monthly revenue from a pre-entry 
questionnaire.   The total monthly revenue Yt is estimated by Y  defined by    t̂
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For ease of notation, we suppress the index for the month of observation t in the remainder of this 
section. 
 
2.1 Clarke Winsorization 
Winsorization procedures replace extreme values with other, less extreme values, effectively 
moving the original extreme values toward the center of the distribution.  Winsorization methods 
offer adjustments for the observed influential value but may be interpreted as inspiring how to 
adjust the survey weight if that is needed instead.  Winsorization procedures may be one-sided or 
two-sided, but the method developed by Clarke (1995) and described by Chambers et al (2000) is 
one-sided.  The approach assumes a general model where the Yi are characterized as independent 
realizations of random variables with E(Yi) = μi and var(Yi) = σi

2 .   
 
The general form of the one-sided Winsorized estimator of the total is designed for large values 
and is written as 
 

   

where Zi = min{Yi, Ki + (Yi - Ki)/wi}. 
 
Clarke suggests approximating the Ki that minimizes the mean squared error under the general 
model by Ki = μi + L(wi- 1)-1 , which requires estimating μi and L. 
 
For an estimate of μi, Chambers et al (2000) suggest using the results of a robust regression.  
Then the estimate of μi is bXi where b is the regression coefficient and Xi is the previous month’s 
observation. To estimate L, the Clarke Winsorization first uses the estimate of μi to estimate 
weighted residuals   
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Next the method arranges the estimates of the residuals in decreasing order  Then 

the Clarke method finds the last value of k, called k*, such that is positive.  

Finally, the method estimates L by . 
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2.2 Weighted M-Estimation 
Robust methods are useful for studying influential observations because they relax the 
assumption in parametric statistics of a strict parametric model to allowing a “neighborhood” of 
parametric models (Hampel et al 1986). Thus, robust methods can be applied to a variety of 
parametric models instead of being strictly limited to one. In contrast, nonparametric statistics 
makes much weaker model assumptions, such as continuity and symmetry. In a sample survey 
setting, robust methods or nonparametric methods are quite appealing because the survey data are 
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generally not from a simple random sample, and consequently it is difficult to validate any 
assumed originating distribution. 
 
M-estimators (Huber 1964) are robust estimators that come from a generalization of maximum 
likelihood estimation. The application of M-estimation examined in this investigation is 
regression estimation. The weighted M-estimation technique proposed by Beaumont and Alavi 
(2004) is able to modify the weights for influential observations or adjust values of the influential 
observations. The approach for adjusting the values uses a compromise between the generalized 
regression estimator and the best linear unbiased estimator of the population total (Beaumont and 
Alavi 2004, Beaumont 2004). Briefly, the method estimates , which is implicitly defined by 
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Q is a constant that is specified. The variable hi is a weight that may or may not be a function of 
xi. Section 4.1 contains a discussion of the settings for these parameters used in this investigation. 
 
The functionψ may have a two-sided or one-sided form. We focus on two choices for the 
functionψ , Type I and Type II Huber functions, and investigate both the one- and two-sided-
forms. The one-sided Type I Huber function is 
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whereϕ  is a positive tuning constant. This form is equivalent to a Winzorization of r . In the 

two-sided Huber I function  is replaced by its absolute value 
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The weight adjustment corresponding to the Type I Huber function ψ above is 
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An undesirable feature of using Type I Huber function is that the unit’s adjusted weight may be 
less than one if the influential value is very extreme, thereby not allowing the influential value to 
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represent itself in the estimation. The Type II Huber function ψ  ensures that all adjusted units 
are at least fully represented in the estimate.  The one-sided Type II Huber function is 
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whereϕ  is a positive tuning constant. In the two-sided Type II Huber function r  is 

replaced by its absolute value 
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the Type I Huber function.  
 
An interesting feature of using the one-sided Type II Huber function in the M-estimation method 
is that the parameters can be set to mimic the assumptions of the Clarke Winsorization outlined in 
Section 2.1 (Beaumont 2004). However, the results will not be identical because the method used 
to estimate  is different.  
 
Solving for  requires the Iteratively Reweighted Least-Squares algorithm in many 
circumstances when using the M-estimation method. For certain choices of the weights and 
variables, the solution is the standard least-squares regression estimator. 
 
The weight adjustment for the above Type II Huber function above, which is the default in 
Beaumont’s program, is 
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For an adjustment to the influential value, Beaumont and Alavi (2004) use a weighted average of 
the robust prediction  and the observed value yi of the form               
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When the set of weights that includes the adjusted weight{ are calibrated to maintain 
their total, then the sum of the original y-values weighted by the calibrated adjusted weights 
equals the sum of the y-values weighted by the original weights when the influential value is 
replaced by the adjusted y-value. 
 
The adjusted value corresponding to the Type II Huber function is 
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Beaumont (2004) finds an optimal value of the tuning constantϕ  by deriving and then 
minimizing a design-based estimator of the mean-square error that does not require a model to 
hold for all the data as in the Clarke Winsorization.  It does not require a model to hold for the 
influential value, in particular. Beaumont uses numerical analysis to solve for the optimal value of 
the tuning constantϕ .  

   
3.  Simulation Methodology 

 
We used simulation methodology to investigate the statistical properties of the Clarke 
Winsorization and M-estimation methods that detect influential values and calculate adjustments.  
This approach allows us to estimate performance measures for the methods over repeated 
samples.  We focused on one particular industry that was recommended by subject-matter 
(MRTS) experts because of its volatility.  The simulation used one month of empirical sample 
data and sample estimates of autocorrelation to generate a 16-month series for a bivariate 
population of retail sales and inventories, (Y1,V1), …., (Y16, V16 ) where Yt is the total sales and Vt 
is the total inventory for the tth month for a particular industry.1 The series is stationary except for 
Month 4, where we induced outliers in two percent of the population.  To easily maintain 
stationarity in the simulated population, we did not include births and deaths in the simulation 
procedure. 
 
 
3.1 Population 
To obtain the simulated population, we began by generating the population values for Month 1 by 
using U.S. Census Bureau software that applies a nonparametric resampling algorithm described 
in Thompson (2000) to the (real) training data. To obtain the complete industry population, we 
applied the resampling algorithm separately in each MRTS stratum. Subsequent data for Months 
2 –16 were generated as a stationary time series essentially as a forecast going forward from 
Month 1. The series was generated using an ARMA series with historical standard errors and 
autocorrelations to develop the AR(1) models.   
  
The AR(1) model for the stationary time series for Months 2 to 16 is given by   

ttt amymy +−Φ=− − )(* 1

2σ

Φ

                                                

, for t = 2, …16.                    

where 

y1 – m = 0 and m is the series mean;  

at ˘ N (0, ) (white noise process)  

 is estimated using the sample-based lag one autocorrelation for the selected industry.   

The scenario we chose to investigate first is encountered most often in practice: a unit with a 
large sampling weight has an excessively high value in one month. To study the performance of 

 
1 Although inventory data were simulated, the analyses presented in Section 4.2 investigate only sales. 
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the considered methods under this scenario, after developing the population that was “influential 
value free,” we induced extreme values in Month 4 by randomly adding two percent high outliers 
to the population data. The strategy was to add a large value to the simulated value of sales to the 
appropriate number of units in the stratum with the lowest sampling rate, which also have the 
largest weights in the sample. These high outliers only occur in Month 4, but are large enough to 
affect the total for that month.   

Finally, we selected 5,000 stratified simple random samples without replacement of size n from 
the simulated population, where n is also the sample size for the industry in the MRTS. The 
sample followed the MRTS sample design as closely as possible (i.e., the same allocations to 
strata). 
 
In each of the 5,000 samples, we applied M-Estimation and Clarke Winsorization to Months 2 
through 16 using the prior month data as auxiliary data. In each sample, we computed total and 
change estimates using unadjusted (untreated) and adjusted data from each method. This allowed 
us to compute relative bias measures for each method.   
 
3.2 Measures of Performance 
We used the measures of performance outlined below to assess each method’s performance over 
repeated samples. Due to the nature of the considered scenario (which only contained one month 
of data with influential values), we calculated the Type II error rate and the Hit rate for only 
Month 4, but the Type I error rate was calculated for all months.   

Detection Measures 

• Hit Rate = the percentage of induced influential values that were detected. 

• Type I error rate = the percentage of observations that were not induced influential values 
that were designated as influential (false positive). 

• Type II error rate = the percentage of induced influential values that were not detected 
(false negative). Note that the Type II error rate is equal to 0 in Months 1-3 and 5-16 
since no influential values were induced in those months. 

 
All measures are averaged over the 5,000 samples.  

Relative bias estimates 

To estimate the relative bias, we needed to define the estimate of monthly population total for 
sales when no treatment is applied and the estimate of monthly population total for sales when a 
treatment is applied.  We also needed a measure of the “true” population total (truth). 
 
For the definitions, we let 

=tUY ,
ˆ

=tTY ,
ˆ

Untreated estimate of total Y from month t 

Treated estimate of total Y from month t 
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Since we started with a stationary series and then induced large (influential) values in two percent 
of the population in Month 4, the expected value of the total sales is equal for all months except 
for Month 4.  This large percentage of influential values in the population is not necessarily 
realistic, but it ensures that a high proportion of replications will contain an influential value, thus 
facilitating the simulation. The induced influential values in Month 4 yield an atypically large 
population total for the series by design. They also illustrate the problem in our programs' 
"reality," i.e., exaggerated estimates of change for the months preceding and following the month 
containing the influential value. With our simulation data, the high values in Month 4 are an 
appreciable phenomenon in the population – for that month and that month only – rather than an 
isolated occurrence. To strike a balance between the ease of the simulation and finding a realistic 
standard of comparison for the performance measures, we define the “true” monthly total sales to 
be the mean of the population total sales over the 16 months. This definition allows the influential 
values in Month 4 to increase the overall level of the true monthly total sales slightly as it would 
in any time series with a single divergent estimate. Therefore, we define the “true” monthly total 
sales to be 
 

16
ˆ

∑
= t

tY
Y = True monthly total sales.  

 
Next we define the relative bias estimates for the untreated and treated data from a particular 
sample in month t to be  
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 = Relative bias in month t of treated estimate.  

 
The relative bias for each method is obtained by averaging these sample statistics over the 5,000 
samples. 
 
 
 
Month-to-Month Change Estimates 
 
We define the true month-to-month change to be 
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The month-to-month change may be estimated for Months 2 to 16 using 
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The relative bias in the estimate of month-to-month change for each method is obtained by 
averaging these sample statistics over the 5,000 samples. 
 
Year-to-Year Change Estimates 
 
We define the true monthly year-to-year change to be 
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YY  = True monthly year-to-year change. 

 
The monthly year-to-year change may be estimated for Months 13 to 16 using 
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The relative bias in the estimate of year-to-year change for each method is obtained by averaging 
these sample statistics over the 5,000 samples. 
 

4.  Results 
 
4.1 Application of Methods 
To perform the Clarke Winsorization, we used the in-house SAS software developed by Roxanne 
Feldpausch for previous research. For the M-estimation, we used SAS software developed by 
Jean-Francois Beaumont of Statistics Canada (Beaumont 2007). The program has default settings 
for all but one of the parameters but also allows for specifying different values of the parameters. 
The program does not have a default for the required initial value for ϕ, the parameter for which 
it finds an optimal value, so we set the initial value equal to 200 million, as recommended by our 
prior research.  
 
Notice that when we use the program default settings Q = 1 and iii xwh )1( −= along with 

setting vi = xi for all units in sample, then )ˆ)(1( M
iiii Bxywr −−= . Under these conditions, ri  

has the same form as iD̂ in the Clarke Winsorization. However, the b in the Winsorization and 
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MB̂  in the M-estimation method usually are not going to be equal because they use different 
estimation methods. 
 
The program default setting for vi is vi = 1. However, we also consider vi = xi and ii xv = . 

When setting Q = 1 and iii xwh )1( −= , using vi = 1 tends to give the residuals for large 
weighted values of xi more influence in fitting the regression line than when vi = xi. 
Setting ii xv =  also gives more influence to large weighted values of xi but not as much as 
setting vi = 1.    
 
We apply the following M-estimation treatments with the default Q = 1 : (1) two-sided Huber I ψ 
function with vi = xi, (2) two-sided Type II Huber function ψ with vi = xi,  (3) two-sided Type I 

Huber function ψ with vi =1  (the default), (4) two-sided Type II Huber function ψ  with vi = 1 
(the default), (5) two-sided Type II Huber function ψ with ii xv = , for all sample units i. 

 
4.2 Simulation Estimates 
Table 1 shows performance measures for estimates of total sales from Clarke Winsorization and 
two-sided M-estimation methods used to detect influential values. The true total sales for each 
month, as defined in Section 3.2, are 48,395 million. The Type II error rates and the Hit rates are 
not shown because all methods detected the induced influential values (Hit rate = 100 percent) 
and none of the methods failed to detect induced outliers (Type II error rate = 0 percent). 
Although previous research found that the algorithm used by the M-estimation method does not 
converge in every situation (Mulry and Feldpausch 2007b), the algorithm converged for all five 
versions of M-estimation in every replicate in every month. 
 
The Clarke Winsorization and all five two-sided versions of the M-estimation method detect the 
influential values induced in Month 4. All six methods have a relative bias in the estimate for 
Month 4 that is closer to zero than the relative bias in the unadjusted estimates, which was 0.57 
percent. The relative bias closest to zero occurs for the Clarke Winsorization at 0.34 percent.  
Since the true estimate is 48, 395 million, the difference in the relative bias translates into a 
difference of 111 million in the estimate of total sales between the unadjusted and Clarke 
Winsorization estimates. The three variations of the Type I Huber M-estimation method has the 
same relative bias at 0.38 percent and therefore, are 20 million higher than the Clarke 
Winsorization estimate. The relative bias observed for the two Type II Huber M-estimation 
methods is 0.39 percent, implying they are 21 million higher than the Clarke estimate. 
 
Since both M-estimation and Clarke Winsorization use observations from the previous month in 
fitting their robust regression lines, the adjustment of influential values in Month 4 may affect the 
results of both methods in Month 5. The relative bias for all five versions of M-estimation in 
Month 5 is 0.07 percent.  Although the relative bias of the unadjusted estimate, which is –0.05 
percent, has a different sign, the absolute difference in the relative bias is only 0.12 percent. For 
the Clarke Winsorization in Month 5, the relative bias is -0.06 percent.   
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The adjustment of influential values in Month 4 affects the results for Month 5 on rare occasions 
for the M-estimation methods. All five versions of the M-estimation method have a Type I error 
rate of 0.06 percent in Month 5, which translates into detecting non-induced influential values in 
three of the 5,000 replicates. The Type I error is zero for all the months other than Month 4 for all 
versions of the M-estimation method.   
 
For Clarke Winsorization, the effect of the adjustment in Month 4 on the results for Month 5 is 
not clear because the Type I error for all months is non-zero, implying that non-induced outliers 
are being detected.  For Month 5, the Type I error is 0.27 percent and is within the range of 0.25 
percent to 0.32 percent observed for months other than Month 4 and 5. The lowest Type I error 
rate, is 0.14 percent in Month 4. The Type I error rates for the other months range from 0.25 
percent in Month 10 to 0.32 percent in Month 2. From the 5,000 replicates, the number of 
replicates where the Clarke Winsorization detected non-induced influential values ranged from 3 
in Month 4 to 16 in Month 2. These adjustments in all the months except Month 4 cause the 
relative bias of the Clarke Winsorization to be 0.01 percent to 0.02 percent further from zero than 
the relative bias of the unadjusted estimate.   
 
For month-to-month change, Table 2 shows the relative bias in the estimates and that the true 
month-to-month change, as defined in Section 3.2, is 99.995 percent. The adjustment of the 
influential values induced in Month 4 appear to affect the relative bias in the estimates of month-
to-month change for Months 3 to 4 and Months 4 to 5 for the Clarke Winsorization and all five 
versions of M-estimation. The relative biases in the unadjusted estimates for Month 4 to Month 5 
and for Month 5 to Month 6 are 0.760 percent and –0.610 percent, respectively. The relative bias 
for the Clarke Winsorization method’s estimate of change from Month 3 to Month 4 at 0.547 
percent has the opposite sign and is closer to zero than all the M-estimation methods where the 
relative biases range from –0.577 percent to –0.579 percent.   
 
However, for the change from Month 4 to Month 5, the relative bias for Clarke Winsorization is 
considerably further from zero than the relative bias for all the M-estimation methods. For the 
estimate of change from Month 5 to Month 6, the adjustment in Month 4 may still have an effect 
on the relative bias in estimates from all five versions of the M-estimation method. The Type I 
error rates in Table 1 show that the Clarke Winsorization and the M-estimation methods detect 
influential values that were not induced in some replicates in Month 5. However, in five other 
instances, the identification by the Clarke Winsorization of influential values that were not 
induced appears to cause a small effect on estimate of month-to-month change. Twice the relative 
bias in the estimates of month-to-month change was slightly further from zero, and three times 
the relative bias was slightly closer to zero. 
 
For year-to-year change, Table 3 shows the relative bias in the estimates and that the true year-to-
year change, as defined in Section 3.2, is 99.774 percent. The adjustment of the influential values 
induced in Month 4 appears to affect the relative bias in the estimates of year-to-year change for 
Months 4 to 16.  The relative bias in the unadjusted estimate of change from Month 4 to Month 
16 is –0.586 percent. The relative bias in the estimated change from the Clarke method is –0.375 
percent, which is closer to zero than the relative bias for all the M-estimation methods. The 
relative bias in the estimates of change from Month 4 to Month 16 are –0.405 percent for the 
three M-estimation methods that use the Type I Huber function and –0.407 for the two that use 
the Type II Huber function.
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Table 1.  Performance measures for estimates of total sales from Clarke Winsorization and two-sided M-estimation methods to detect influential 
values from simulation with 5,000 replicates when influential values are induced in Month 4. 

True total sales = 48,395 (in millions). 
months 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Unadj est 48,322 48,269 48,634 48,335 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias unadj -0.08% -0.19% 0.57% -0.05% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Clarke    
Adj est  48,316 48,263 48,525 48,329 48,261 48,261 48,270 48,260 48,266 48,282 48,305 48,289 48,290 48,294 48,234
rel bias  -0.09% -0.20% 0.34% -0.06% -0.20% -0.20% -0.18% -0.21% -0.19% -0.16% -0.11% -0.15% -0.14% -0.13% -0.26%
Type I error 0.32% 0.30% 0.14% 0.27% 0.25% 0.26% 0.28% 0.28% 0.25% 0.28% 0.28% 0.30% 0.27% 0.28% 0.28%
Huber I  v = x    
Adj est 48,322 48,269 48,545 48,393 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias  -0.08% -0.19% 0.38% 0.07% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Type I error 0 0 0 0.06% 0 0 0 0 0 0 0 0 0 0 0
Huber II v = x    
Adj est 48,322 48,269 48,546 48,393 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias  -0.08% -0.19% 0.39% 0.07% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Type I error 0 0 0 0.06% 0 0 0 0 0 0 0 0 0 0 0
Huber I   v =1    
Adj est 48,322 48,269 48,545 48,392 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias  -0.08% -0.19% 0.38% 0.07% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Type I error 0 0 0 0.06% 0 0 0 0 0 0 0 0 0 0 0
Huber II v =1    
Adj est 48,322 48,269 48,546 48,393 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias  -0.08% -0.19% 0.39% 0.07% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Type I error 0 0 0 0.06% 0 0 0 0 0 0 0 0 0 0 0
Huber I  v=sqrt(x)   
Adj est 48,322 48,269 48,545 48,393 48,268 48,267 48,276 48,266 48,273 48,288 48,311 48,295 48,296 48,300 48,239
rel bias  -0.08% -0.19% 0.38% 0.07% -0.19% -0.19% -0.17% -0.19% -0.18% -0.15% -0.10% -0.13% -0.13% -0.12% -0.25%
Type I error 0 0 0 0.06% 0 0 0 0 0 0 0 0 0 0 0
Note:  Cells in bold indicate a difference from the entry for the unadjusted estimate.
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Table 2.  Relative bias in estimates of month–to-month change rate for total retail sales. 
True month-to-month change = 99.995 percent. 

Months unadjusted Clarke Huber I    
v = x 

Huber II   
v = x 

Huber I   
v = 1  

Huber II   
v = 1 

Huber I 
xv =    

2 to 3 -0.104% -0.104% -0.104% -0.104% -0.104% -0.104% -0.104% 
3 to 4 0.760% 0.547% 0.577% 0.579% 0.577% 0.579% 0.577% 
4 to 5 -0.610% -0.400% -0.309% -0.310% -0.310% -0.311% -0.308% 
5 to 6 -0.133% -0.135% -0.254% -0.255% -0.253% -0.253% -0.254% 
6 to 7 0.003% 0.004% 0.003% 0.003% 0.003% 0.003% 0.003% 
7 to 8 0.024% 0.024% 0.024% 0.024% 0.024% 0.024% 0.024% 
8 to 9 -0.016% -0.016% -0.016% -0.016% -0.016% -0.016% -0.016% 
9 to 10 0.018% 0.017% 0.018% 0.018% 0.018% 0.018% 0.018% 
10 to 11 0.037% 0.038% 0.037% 0.037% 0.037% 0.037% 0.037% 
11 to 12 0.053% 0.052% 0.053% 0.053% 0.053% 0.053% 0.053% 
12 to 13 -0.029% -0.028% -0.029% -0.029% -0.029% -0.029% -0.029% 
13 to 14 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 
14 to 15 0.014% 0.014% 0.014% 0.014% 0.014% 0.014% 0.014% 
15 to 16 -0.121% -0.121% -0.121% -0.121% -0.121% -0.121% -0.121% 
Note:  Cells in bold indicate a difference from the entry for the unadjusted estimate. 
 
    Table 3.  Relative bias in estimates of year–to-year change rate for total retail sales. 

True year-to-year change = 99.774 percent. 
months unadjusted Clarke Huber I   

v = x 
Huber II   

v = x 
Huber I   
v = 1  

Huber II   
v = 1 

Huber I 
xv =     

2 to 14 0.173% 0.172% 0.173% 0.173% 0.173% 0.173% 0.173% 
3 to 15 0.291% 0.291% 0.291% 0.291% 0.291% 0.291% 0.291% 
4 to 16 -0.586% -0.375% -0.405% -0.407% -0.405% -0.407% -0.405% 

Note:  Cells in bold indicate a difference from the entry for the unadjusted estimate. 
 
4.3.  Summary of initial results 
Our initial simulation analyses examined the Clarke Winsorization method and five versions of 
the M-estimation method for the detection and adjustment of influential values under a scenario 
that is encountered the most often. Under this scenario, all methods detected the induced 
influential values.   
 
However, the Clarke Winsorization appears to be more sensitive in that it identified non-induced 
influential values in several replicates. These values could be considered outliers in their 
respective strata but not for the whole population. The effect of the additional designations 
appears to be minor. All the methods identified non-induced influential values in the month after 
the month with the induced influential values. 
 
For the estimates of month-to-month change, we saw differences between the methods in relative 
biases for the estimates of change for Months 3 to 4, Months 4 to 5, and Months 5 to 6. Note that 
Month 5 to 6 effects demonstrate residual correction effects: for example, if the influential Month 
5 value(s) are not sufficiently reduced, the monthly total will be too large, as will the monthly 
change estimate. For all five versions of the M-estimation, the relative bias in the change from 
Months 4 to 5 was closer to zero than observed for the Clarke Winsorization. The relative bias in 
the same change for the unadjusted estimates was further from zero than all the methods.  
However, the relative biases for all the M-estimation methods for the estimated changes from 
Months 3 to 4 and Months 5 to 6 were further from zero than the Clarke Winsorization. For all 
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methods, the relative bias in the estimated change from Months 3 to 4 was closer to zero than the 
unadjusted estimates. However, the relative bias in the estimated change from Months 5 to 6 was 
further from for all methods than for the unadjusted estimates, demonstrating residual correction 
effects for all methods. The adjustment of the non-induced influential values by the Clarke 
Winsorization may be the reason its relative bias was only slightly further from zero than 
observed for the unadjusted estimates. 
 
For the estimates of year-to-year change, we have examined only the change from Month 4 to 
Month 16. The relative bias from the Clarke Winsorization is closer to zero than the relative bias 
in all the M-estimation methods, but the difference is small and ranges from 0.030 percent to 
0.032 percent. The relative bias in estimates from all the methods is closer to zero than the 
relative bias in the unadjusted estimates.   
 

5.  Future Work 
 
Both the Clarke Winsorization and the five versions of M-estimation studied each appear to have 
advantages and disadvantages. Clarke Winsorization is very easy to use. However, it has a 
tendency to detect false influential values in this scenario although the adjustments for the false 
detections are small.  Determining the parameters for the M-estimation is not easy. M-estimation 
parameters that work well for one scenario (e.g., unusually large values) may not be effective in 
others (e.g., unusually small values), which could impact effective usage in a production 
environment. Moreover, in previous research, the algorithms have not converged or have not 
offered a helpful adjustment in some circumstances. However, in this scenario, which is the most 
likely scenario to encounter, there were no problems with convergence of the algorithm.                    
M-estimation has the advantage of the capacity to be implemented as a one-sided or two-sided 
method. Having the capability to adjust influential values deemed too small is also an important 
goal of the research. The design of the Clarke Winsorization only provides the ability to adjust an 
influential value that is too large. We intend to investigate whether the Clarke Winsorization can 
be adapted to treat influential values that are too small. 
 
Having only investigated one scenario over repeated samples, we do not have enough information 
to recommend one method over another. We are presently continuing this research using 
simulations with other realistic influential value scenarios and are also examining year-to-year 
change further out in the series. The other influential value scenarios under investigation include 

• Inducing influential values in Month 4 that are too low rather than too high. 
• Inducing influential values in Month 4 in the stratum with the lowest weight and 

continuing through Month 10 as evidence of a permanent change rather than a one-time 
event. 

• Inducing some influential values that are too high and some that are too low in Month 4. 
 

To date, our analysis has focused on detection and treatment of influential values on one series.  
However, the MRTS publishes data on two items, and any recommended method for this survey 
should take this into consideration. Consequently, other scenarios may include inducing 
observations where the sales report has an influential value, but the inventory report does not and 
vice versa.  In such cases, there will have to be a decision about whether to adjust the unit’s final 
weight for both or the individual item values. 
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