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Abstract 
In missing-data problems complicated not only by the underlying data-generating 
mechanism (e.g. multi-stage surveys) but also skip patterns, censored items and a diverse 
set of variable types, a variable-by-variable imputation strategy has been increasingly 
popular among practitioners. While this approach offers certain advantages, it does not 
necessarily follow a conventional joint modeling approach. Our work assesses the 
performance and compatibility of sequential approach to a joint modeling approach in 
multilevel settings. This sequential approach uses a set of hierarchical regression models 
each of which follows the appropriate format for the underlying variable subject to 
missingness. Computational techniques used to approximate the conditional posterior 
predictive distributions are based on Markov Chain Monte Carlo and/or numerical 
integration techniques to overcome the problem of intractability. We present a  
simulation study assessing the performance of the sequential approach. In most realistic 
applications, our simulations suggest that the sequential method lead to well-calibrated 
estimates and in some settings the performance is even better than the more conventional 
methods with well-defined joint model in some scenarios.  
 
Key Words: missing-data, multiple imputation, sequential imputation, hierarchical 
models, random-effects, clustered data 
 
 

1. Introduction 
 
1.1 Problems 
Missing data is one of the most pervasive problems in survey research. Many survey data 
have arbitrary structures of missingness due to item nonresponse. Further, they usually 
consist of variables measured on diverse set of scales (e.g. continuous, binary or count). 
Further structures that need to be incorporated in any missing-data technique include 
sampling design (e.g. clustering or multi-stage selection), skip patterns and censored 
items. 
 
Figure 1 depicts data structure we assume for the methods of this paper. The survey 
sample design includes clusters reflecting multi-stage selection. Y-variables can be of 
continuous, categorical and/or count nature, which are allowed to be missing (denoted by 
"?") under a missing-at-random (MAR) mechanism. Such missingness is due to item non-
response and the skip patterns (denoted by boxes) further complicate the data structure. 
When devising a methodology for dealing with such incomplete data, one must consider 
these special structures and relationships among variables within a cluster for each unit, 
relationship between incompletely observed variables and any additional covariates, and 
variation in any variable within a cluster across the units. 
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Figure 1:  Typical data structure for complex surveys 
 
Traditional imputation methods such as matching, regression imputation may work well 
in simple missing data problems where missingness is confined to a single variable or 
single item, or where the missing data follow a monotone pattern. However, the 
implementation of these methods in multilevel settings with the structured stated above 
often leads to serious inferential problems such as bias and failure to account for 
uncertainty due to missing data. 
 
More principled methods such as maximum likelihood (ML) estimation have also been 
popular using expectation-maximization (EM) algorithm (Dempster, Laird and Rubin, 
1977) or its variations (Little and Rubin, 2002), which incorporate uncertainty due to 
missing data. Unfortunately, there are several obstacles preventing practitioners from 
using EM-based ML inferences. First is the complexity of the models and potential for 
computational failure in structures considered here. Second, such methods tend to be 
problem-specific and thus lack the attractiveness of multiple imputation which is the 
ability to serve multiple analyses.  
 
1.2 Multiple Imputation 
Multiple imputation (MI) (Rubin, 1987) is a simulation-based approach to missing data. 
MI retains much of the attractiveness of single imputation from a conditional distribution 
but solves the problem of understating uncertainty. In MI, each missing value is replaced 
by a set of m>1 plausible values drawn from their predictive distribution (see Figure 2). 
 
 
  
 
 
 
 
 
 
 

Figure 2:  Multiple Imputation 
 
Each of the m data sets is analyzed in the same fashion by a complete-data method, and 
the results are then combined following Rubin’s rules(Rubin, 1987). MI can be highly 
efficient even for small m, and normally the limited computational power is often not 
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important as one good set of imputations can be used in many analyses. Under the model-
based MI, one must impose a probability model on the complete data (observed and 
missing values). This imputation model is then used to form posterior predictive 
distribution of missing data where the imputations are sampled from their underlying 
posterior predictive distribution. 
 
In general, there are two approaches to specify an imputation: joint imputation models 
(Schafer, 1997; Little and Rubin, 2002) and sequential imputation models (Raghunathan, 
Lepkowski, and VanHoewyk 2001). Joint imputation model approach is preferable if the 
problem consists of small number of items, and it often uses  Markov Chain Monte Carlo 
(MCMC) type algorithms for drawing missing values from the “joint” posterior 
predictive distribution. However, the joint models may be difficult to impose if there is a 
large number of incompletely-observed variables, and/or many different types of 
variables measured with restriction and boundaries are present in the data.  An alternative 
approach considers a variable-by-variable approach where conditional models are used in 
a sequential fashion to approximate the joint posterior predictive distribution of the 
missing data. This approach produces the sets of imputations by fitting a sequence of 
models and drawing the missing values variable-by-variable from their perspective 
approximate posterior predictive distributions. Because these models can be tailored to 
approximate the unique features of the data (e.g. clustering, skip patterns or type of 
variable to be imputed), sequential approach can be advantageous in settings considered 
in our work (see Figure 1).  
 
Our primary goal in this work is to assess the performance of sequential imputation 
method in the clustered-data settings. We implement this method using mixed-effects 
models and employ computational techniques based on MCMC and/or numerical 
integration to draw imputations. We would then like to evaluate the feasibility of this 
approach as well as compatibility with the more “coherent” joint modelling methodology 
to drawing imputations. 
 
The remainder of this article is organized as follows. Section 2 outlines the variable-by-
variable imputation approach (called “Sequential Imputation”). Models used to impute 
missing values in the individual variables are stated and computational methods 
approximating the posterior predictive distribution under each of these models are given. 
Section 3 summarizes our findings from the simulation study assessing the performance 
of the sequential approach in relation to joint distribution. Finally, Section 4 discusses the 
strengths and limitation of this approach. 
 

2. Sequential Imputation 
 
One of the most difficult step is to postulate a model to be used as a basis for sampling 
missing data (i.e. imputations) from the implied posterior predictive distribution. Such 
models, also called imputer’s model, should be capable of preserving design features, 
relationships among variables subject to current/future analyses and should also be rich 
enough to account for causes of missingness so that the commonly assumed missingness 
mechanism MAR can be plausible. See Schafer (1997) and Little and Rubin (2002) for 
more discussion on selecting imputation models. In datasets with structures mentioned 
above (i.e. clustering, skip patterns/censoring, large number of variables measured at 
different scales, etc.), postulating one imputation model can be a daunting task. Rather 
than employing a large imputation model which may not even exist, sequential 
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imputation method (Raghunathan, Lepkowski, and VanHoewyk, 2001) offers a flexible 
solution that can potentially possess features of an ideal imputation model. Here we 
consider proposing a set of hierarchical models that are used sequentially for the purposes 
of imputations. In each of the sequence, the underlying posterior predictive distribution is 
simulated to draw to imputation.  

 
2.1 Models  
Imputation models are designed to reflect the levels of variation due to the multi-stage 
sampling. Here we focus on models for clustered sampling where there is only one 
clustering factor, and it could be extended to higher levels. Suppose U is a random 
variable subject to missingness and needs to be imputed. It could be continuous, 
categorical or count variable. Let uij denote a value of random variable for subject j = 1,2, 
…,ni in cluster i = 1,2, …,m. We assume that uij takes the following forms: 
 
                                                      ( | , ) u

ij u ijg u x θ η= ,                                                      (1) 
 
where g(•) denotes the link function of response uij to the linear predictors: 
 
                                                      u T T

ij ij i ix z bη β= + ,                                                        (2) 
 
where parameters β  are fixed-effects common to all clusters and parameters ib  are 
random-effects specific to a cluster i. ijx  and iz  are the associated covariates 
corresponding to individuals within clusters and cluster characteristics. In this work we 
assume that random-effects follow a multivariate normal distribution ~ (0, )i bb N ∑ . 
 
It is often sufficient to assume a random-intercept model to account for the variation due 
to clustering sampling. It may be necessary to include more structures such as random-
slope to correctly capture variation in other applications (longitudinal studies). 
Depending on the nature of the variable, the following specific imputation models are 
used for imputing binary, ordinal, continuous, count and nominal variables, respectively:  
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In the above models, ijx means all potential covariates that may carry useful information 
including observed and imputed variables computed during the cycle of the sequential 
imputation.  
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We impose inverted Wishart prior on the variance for general random-effects term 
(inverted chi-square for the random-intercept models). Gelman (2006) suggested to use 
half-t family prior on the hierarchical standard deviation, which is another good choice. 
For fixed-effects we assume improper uniform density as prior. It is desirable to use a 
vague proper prior distribution on the fixed-effects parameters to avoid unidentifiability 
or overparameterization problems. Our findings suggest that the role of the priors should 
be negligible in most settings. 
 
Imputation procedures typically assume that the missing values are missing at random 
(MAR) in the sense of Rubin (1976). Under MAR, the probability that any data value is 
missing may depend on quantities that are observed but not on quantities that are missing. 
Defining the missingness indicator as rij = 1 if the unit j in cluster i is observed and 0 
otherwise, MAR means that P(r|y,x,θ) = P(r| yobs,x,θ ). The MAR assumption becomes 
more plausible as the models are enriched to include more information related to 
nonresponse, which is the main motivation behind the rich imputation models.  
 
2.2 Computations  
In the sequential imputation, each step in imputation cycles consists of finding maximum 
likelihood estimate of the unknown parameters which are used to build approximations to  
the posterior predictive distribution for the missing values. Below we describe the 
computation method in each of the specific conditional model. 
 
2.2.1 Linear Mixed-effects Regression Models 
Continuous variables are assumed to be related to the other variables in the following 
linear format which is also known as the mixed-effects models (here we are using a 
generic y variable to indicate the variable to be imputed): 
 
                                                   T T

ij ij i i ijy x z bβ ε= + + ,                                                   (8) 
 
where xij and zi are covariates of fixed effects and random effects for clusters i. Random-
effects are assumed to follow a multivariate normal distribution ~ (0, )i bb N ∑  and 

errors are assumed to follows normal distribution 2~ (0, )ij eNε σ . The unknown 

parameters in the model are fixed effects β , random effects ib , variance of random 

effects b∑  and variance of error 2
eσ . Conditional posterior distributions for each of these 

parameters need to be derived so that the Gibbs sampling method can be used to simulate 
the joint posterior of the unknowns which are 2, , ,i b ebβ σ∑  and ymis. We employ Fisher 
scoring algorithm to get the approximated posterior distributions, and empirical Bayes 
estimates:  
 
                                      2

1| , ,..., , , ~ ( , ( ))m b ex b b N Vβ σ β β∑ ,                                      (9) 

                                      2| , , , ~ ( , ( )),   1, 2....i ii b eb x N b V b i mβ σ∑ = ,                        (10) 

                                     2 2
1| , ,..., , , ~e m b DFx b bσ β χ −∑ ,                                                   (11) 

                                     2 2 2
1| , ,..., , , ~ ( )b m e i m

i
x b b b λβ σ υ χ−

+∑ +∑ ,                               (12) 
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The missing values in y are drawn under equation (13) using the draws of the 

2, , ,e b ibβ σ ∑  from their perspective posterior distribution (obtained after the Markov 
chain defined by (9)-(12) has converged). Let j misy ∈  denote the missing values in cluster 

i, then j misy ∈  is drawn from: 
 
     2 2| , , , , , ~ ( , )T T T

j mis j mis j mis e b i j mis j mis i j mis b j mis ey x z b N x z b z zβ σ β σ∈ ∈ ∈ ∈ ∈ ∈ ∈∑ + ∑ + ,    (13) 
 
where j misx ∈  and j misz ∈  are the associated covariates corresponding to the positions of 
missing values in y.  
 
2.2.2 Generalized Linear Mixed-effect Regression Models 
Here we consider binary variable only. Other types of variables such as Poisson, nominal 
or ordinal variables follow the similar computational techniques. The marginal log-
likelihood for a binary variable U is 
 

   ( ) ( )11( | ( , ,..., , )) ( ) 1 ( )ij iju uT T T T
m b ij i i ij i i

i j

l u b b F x z b F x z bθ β β β
−

= ∑ = + − +∏∏ ,  (14) 

 
where ( )F η  is either ( )ηΦ  or 1(1 )e η− −+  for probit or logistic regression, respectively. 

Our interest lies in maximizing the marginal likelihood function ( | ) ( )
b
l u f b dbθ∫ , 

where ( )f b  represents the probability distribution for the random effects, we normally 
assume  (0, )bN ∑ . This likelihood has to be evaluated using numeric method since there 
is no close-form solution to this maximization problem. There are several methods 
available to evaluate this integral, such as Gaussian quadrature method and  Laplace 
approximation. We employ Gaussian-Hermite Quadrature method (Stoer, 2002), which 
can be fast and accurate under random-intercept-only model. Laplace approximation 
might be preferable if more structure to be introduced in the random-effects. Once we 
calculate the log-likelihood, we use Fisher scoring algorithm to obtain a proposal 
distribution of the regression parameters. Then Metropolis-Hastings algorithm is 
employed to perform the sampling from this proposal distribution. The estimated 
regression parameters are obtained after the sampler chain reaches its convergence. 
Finally, the missing values are drawn from the following Bernoulli distribution: 
 

1| , , , , ,... ~ ( ( ))T T
j mis j mis j mis b m j mis j mis iu x z b b Bernoulli G x z bβ β∈ ∈ ∈ ∈ ∈∑ + ,       (15) 

 
where ( )G η  is either ( )ηΦ  or 1logit ( )η−  for probit or logistic regression, respectively. 
 
Imputation stage occurs in a cyclical manner and consists of a pre-determined c cycles. In 
the first cycle, we regress the variable with least number of missing values, say Y1, on all 
completely-observed variables, and impute the missing values under an appropriate 
model discussed above. When imputation on Y1 is completed, we continue to impute the 
variable with second least number of missing values, say Y2, using the regression model 
of Y2 on all other complete variables (observed and imputed Y1 and the covariates). This 
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process is repeated until all variables have been imputed. Once the first cycle is 
completed, second cycle begins with Y1 using all other variables including most recent 
imputed values and observed values. The new set of imputed values overwrite on the 
imputed values from first cycle. This process is repeated for all variables in second cycle, 
using the most recent imputed values. These cycles are repeated for a pre-determined 
number of c cycles. After all cycles are completed, we take the last several sets of 
imputed data and conduct multiple imputation inference following MI combining rules 
(Rubin, 1987). 

 
3. Simulation Study 

 
3.1 Design  
3.1.1 Data generation 
Our strategy of evaluating the performance of the sequential imputation method consists 
of the following steps:  
 
(1) Simulate a complete data under general location model with random effects 
corresponding to unobserved cluster effects. Note that the sequential model is potentially 
incoherent with this data-generating mechanism. This step can be implemented by the 
following two steps. We assign i = 1,2,….50, j = 1,2,…,500, and only random-intercept 
models are considered in both steps:  
 
a. Draw a continuous variable Y from the following linear model: 
 
                                                             0ij i ijy uα ε= + + ,                                              (16) 
 
where i indexes the cluster, ui is the random intercept term for cluster i effect, which is 
assumed to follow the normal distribution 2(0, )byN σ , ijε is the error term assumed to 

follow the normal distribution 2(0, )eN σ . Here we assign 0 1α = , byσ varies from 0.5 to 

3 and eσ varies from 2 to 5. The purpose of assigning different variance values is to 
obtain different intracluster correlation coefficient (ICC) values ranging from 0.01 to 0.7. 
 
b. Conditioning on Y, draw binary variable X from following logit mixed-effects model:  
 
                                                 0 1logit(P( 1))ij ij ix y bβ β= = + + ,                                 (17) 
 
where i indexes the cluster, bi is the random intercept term for cluster i effect, which is 
assumed to follow the normal distribution 2(0, )bxN σ . Here we assign 0 1β = − , 1 0.5β = , 

bxσ  varies from 0.1 to 1. Similar to step (a), the purpose of assigning different variance 
values is to obtain different ICC values ranging from 0.01 to 0.5. 
 
(2) Estimate certain regression parameters of interest (an example is given below) on the 
data sets generated in the first step, and then combine them as the “true” parameters for 
the regression. These are “before-deletion” parameter estimates. This step considers the 
estimation of a regression model that often serves the substantive research objectives, 
which is also called analyst’s model. Suppose the researchers are interested in the 
following random-intercept analysts models: 
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                                                    0 1 ,ij ij i ijy x uα α ε= + + +                                            (18) 

                                                    0 1logit(P( 1))ij ij ix y bβ β= = + + ,                              (19)  
 
where 2~ (0, )i uu N σ , 2~ (0, )i bb N σ , 2~ (0, )ij N εε σ , the parameters of interest in 

these models are 0 1( , )α α α= , 0 1( , )β β β= , 2
uσ  and 2

bσ . These parameters are 
estimated for each simulated data using complete-data before deletion (BD) and after 
deletion (AD). 
 
(3) Impose missingness on the complete data under MCAR mechanism. 
 
                                                        0logit(P( 1)) x

xr γ= = ,                                             (20) 

                                                        0logit(P( 1)) y
yr γ= = ,                                             (21) 

 
where xr  and yr  are missingness indicators for X and Y respectively, which indicate the 
average rates of missingness.  
 
(4) Use the sequential imputation method to create multiple imputations of the missing 
values. Compare the results with R PAN (Schafer and Yucel 2002) package. PAN is a 
multivariate generalization of the linear mixed-effects models, which assumes 
“normality” on the binary variable. Note that due to lack of software for handling binary 
and continuous variable imputation via joint model approach, we are using PAN as an 
approximation for binary data imputation, which generally works satisfactorily (Schafer, 
1997, Ch. 5). 
 
(5) Perform MI inference on the regression parameters using these two approaches. In 
each simulated data, both methods in step (4) are used to create 10 imputed data from 
which the analyst’s model given in (18) and (19) are estimated. The estimates and 
standard errors are then combined using Rubin’s rules (Rubin, 1987). 
 
3.1.2 Assessing the performance   
The performance of the sequential imputation method is assessed by evaluating the 
coverage rates of the parameters of the models given in (18) and (19). We also investigate 
several factors that may influence the performance of sequential imputation method in 
multilevel settings, such as ICCs and rates of missingness.  
 
3.2 Summary of the results 
 
Results given in Table 1 suggest that the performance of the sequential imputation 
method in multilevel settings is reasonable well for continuous variables in all scenarios, 
with at least 90% coverage rate for 95% nominal confidence interval. For binary 
variables, the sequential imputation method outperforms PAN in almost all scenarios. 
The moderate missingness rates do not have much impact on the performance. Similarly, 
the role of the priors can be negligible in most settings. 
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Table 1: Simulation Results on Coverage Rates  

Scenarios Methods       

        
 Prior: flat prior for all parameters AD* 95.2 95.6 94.5 94.2 95.3 95.8 
 ρx = 20%, ICCx = 0.01 Sequential 94.3 94.6 94.9 94.0 95.3 95.0 
 ρy = 20%, ICCy = 0.01 PAN 97.4 94.6 91.0 80.4 93.5 89.4 
        
                
 Prior: flat prior for all parameters AD 94.4 93.4 91.5 91.4 92.8 92.6 
 ρx = 20%, ICCx = 0.5 Sequential 93.7 92.7 80.6 39.9 92.1 98.0 
 ρy = 20%, ICCy = 0.7 PAN 94.6 93.5 92.1 88.0 93.8 94.4 
                
        
 Prior: half-Cauchy on α,β, flat on σb, σu AD 94.1 93.8 94.5 90.6 93.3 94.9 
 ρx = 20%, ICCx = 0.5 Sequential 93.3 91.2 92.0 85.7 90.1 92.3 
 ρy = 20%, ICCy = 0.2 PAN 95.9 91.0 91.3 62.4 92.5 89.2 
                
        
 Prior: flat prior for all parameters AD 93.8 94.3 95.1 90.0 94.1 94.4 
 ρx = 20%, ICCx = 0.5 Sequential 94.9 93.1 93.7 86.4 90.5 93.9 
 ρy = 20%, ICCy = 0.2 PAN 97.6 92.9 92.0 62.1 93.7 89.0 
                
        
Prior: flat prior for all parameters AD 92.4 89.0 95.1 89.5 96.0 95.0 
 ρx = 40%, ICCx = 0.5 Sequential 90.5 91.7 89.6 76.4 92.1 94.7 
 ρy = 40%, ICCy = 0.2  PAN 94.1 93.0 88.1 66.0 93.1 84.1 
                
        
Prior: flat prior for all parameters AD 92.3 93.1 91.1 91.0 93.4 97.2 
 ρx = 60%, ICCx = 0.5 Sequential 85.4 93.9 83.8 77.5 91.3 91.6 
 ρy = 60%, ICCy = 0.2  PAN 94.2 93.8 84.9 67.1 90.5 86.0 
                

* AD: after deletion, it represents the complete case analysis for incomplete data 
 
 
Figure 3 shows the coverage rates of the regression parameters for different ICC’s. We 
can see that ICC has a great effect on the performance of sequential imputation method 
for binary variable. Generally, the smaller ICC, the better performance. 
 

4. Discussions 
 
Our primary goal was to assess the performance of the sequential imputation method in 
the multilevel settings, such as clustered sampling involving many types of variables, 
restrictions and bounds. Our major finding was that in most scenarios, sequential 
approach performs as good as its alternatives. In itself, this is a significant findings as the 
alternatives often fail to be an MI tool in datasets of complexities considered here. 
Several of the simulation scenarios indicated that when the ICC was high, binary part of 
the sequential approach failed. This is somewhat unexpected, and is probably due to 
failure of the models estimating probabilities that are close to the boundaries. In real 
applications, when this is suspected, practitioners might want to consider pooling the 

xμ 0β 1β 1α0αyμ
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clusters together to prevent the estimation problems. Alternatively, models specifically 
designed for such cases (e.g. negative binomial) can be considered for imputation. 
 

              

              
 

Figure 3: Coverage Rates for Regression Parameters vs. ICCx and ICCy 
 
 
Our current work focuses on several important extensions of this work. First extension 
pertains to allowing higher number of variables measured in different scales. Second 
extension is the software development and interactive use of software products for the 
sequential imputation to take advantage of unique computational advantages offered by 
each of the products. Third extension consists of considering methods allowing a 
sequential modeling of missingness mechanism. Assuming one single missingness 
mechanism may not be realistic as in some application MAR, and MNAR may occur in a 
conditional fashion (e.g. MNAR given MAR or MCAR). Final extension is to make the 
methods flexible enough to handle unique data features such as higher levels of nesting. 
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