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Abstract3:  In masking microdata, two approaches – adding independent noise and 
multiplying by independent noise have been used.  The truncated distribution has been 
used for masking microdata. The random variable which follows the truncated 
distribution serves as the noise factor. For multiplicative noise method, the natural 
candidate distribution is the one which is centered at 1 and for additive noise method, it 
would be one centered at 0. Kim (2007) investigated triangular distribution truncated 
around 1 as noise distribution for multiplicative noise. In this paper we generalize his 
idea using copulas and correlated noise.  We show that by using correlated noise, we can 
protect the moments, that is, the moments of the perturbed variable will have the same 
values as the original variable. We present two examples, one using correlated noise from 
a triangular distribution and second, from a truncated uniform distribution.   
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1. Introduction 

 
Researchers have been investigating methods for releasing data for public use while 
protecting the confidentiality for a long time. Additive noise scheme (adding noise to the 
original data) has been investigated by many researchers [e.g., Spruill (1983), Kim 
(1986), Kim and Winkler (1995), Muralidhar, et al. (1999)] to protect the confidentiality 
of the records. Most common approach is to add noise to the original data. However, this 
approach results in the variance which is higher than the original data. To make the 
variance of the masked data the same as that of the original data, Kim (1986) suggested 
moving the masked data points toward the mean of the masked data using the linear 
transformation. 
 
Instead of adding noise to the original data, multiplying the original data by noise 
(multiplicative noise) has also been investigated. Evans, et al [1998] proposed the use of 
multiplicative noise to mask economic data. They considered noise which follows 
distributions such as the normal and truncated normal distributions. Kim and Winkler 
(2001) considered a noise distribution following the truncated normal distribution. The 
                                                 
3 Disclaimer: The findings and conclusions in this paper are those of the authors and do not necessarily 
represent the views of the National Center for Health Statistics, Centers for Disease Control and 
Prevention. 
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Bureau of the Census uses a truncated triangular distribution for masking the Commodity 
Flow Survey data. Kim (2007) developed the probability density function of the truncated 
triangular distribution and showed that the estimate from the data masked by the 
distribution is unbiased, if the triangular distribution is symmetric about 1 and truncated 
symmetrically also about 1.  
 
In this paper we extend Kim’s method of using truncated distributions for masking the 
data.  We generate correlated noise from the appropriate truncated distribution using 
Copulas and then use the resulting noise to mask the data.  This method guarantees that 
every observation has some minimum noise added to it and the researcher gets to control 
the minimum and maximum noise.  We show that this method approximately protects 
first two moments in additive case but only the first moment in the multiplicative case.   
 
We briefly summarize below the two methods.  
 
Additive Noise Method  The additive-noise methodology (Kim, 1986, Muralidhar, 
1999) for masking multivariate normal data that preserves confidentiality and preserves 
means can be described as follows. Let X be the original variable and Y the masked 
variable.  Then,  

Y = X + e, 
 

where e is noise chosen independent of X.  The distribution of e is usually chosen to be 
that of X.  Since, one would like to have E(Y) = E(X), it implies that E(e) = 0.   
 
Also,  

Var (Y) = Var (X) + Var(e). 
 
It means that Var (Y) ≥ Var(X). 
 
Multiplicative Noise Method  In this case, Y is defined as follows. 
 

Y = Xe, 
 
where e once again is chosen to be independent of X.  Since we want, E(Y) = E(X), it 
implies that E(e) = 1 and 
 

2 2( ) ( ) ( ) ( ) ( )e xVar y Var x Var e Var x Var e      

 
Once again, Var(Y) ≥ Var(X). 
 
Note that in both methods, there is a possibility that some of the observations could be 
unchanged leading to full disclosure.  In the additive noise method, this happens when the 
values of e are equal to zero and in the multiplicative noise method, when the values of e 
are equal to1.  To avoid these values, truncated distributions have been used for masking 
data (Kim, 2007).  So, values of e close to zero are truncated from the distribution of e for 
the additive noise method and values close to 1 are truncated from the distribution of e in 
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the multiplicative noise method.  The variance of the masked variable will still be higher 
than the variance of original variable, that is, Var(Y) ≥ Var(X).  
 
If one assumes that noise is correlated with the original variable (instead of being 
statistically independent of it), equality of variances can be achieved with the additive 
noise method. That is, as we will show below, it is possible to obtain both the equality of 
means and variances if you assume correlated noise in certain situations. Perhaps it is 
most important that, when the noise is correlated with the original variable, the noise that 
gets added (or multiplied) depends on the value of the original variable, which seems to 
be a very desirable property.  
 

2. Masking Using Correlated Noise 
 
Consider the additive noise method.  Let X be the original variable and Y the masked 
variable.  The correlated additive noise method implies that Y = X + e, and X and e are 
correlated.  We want the first two moments of X and Y to be identical. That is, E(Y) = 
E(X)) and Var(Y) = Var (X).  E(Y) = E(X)) implies that  
 

 E(e) = 0.                            (1) 
 
Also 

Var (Y) = Var(X) + Var(e) + 2 Cov(X,e). 
 
Since we want Var(Y) = Var (X), 
 

Var(Y) = Var(X) = Var(X) + Var (e) + 2*Cov(X,e)  
or  

Cov(X,e) = - Var(e) / 2.                            (2) 
 
This implies that to mask X and protect first two moments, we need to generate e so that 
e has mean zero and correlated with X with covariance given by equation (2).  Since 
correlation between any two variables is bound by 1, applying this to equation (2), we get  
 

                              
( , )

| ( , ) |
x e

Cov X e
Corr X e

 
 1 

  
Substituting for Cov(X, e) in the above equation, we get  
 
   2e x   

 
So, there is a bound on the variance of e, it cannot exceed four times the variance of X. 
 
Consider the multiplicative noise method.  Here, Y = Xe and once again, X is correlated 
with e.  Since we want the first moments to be the same, it implies that  
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E(e) =0                                  (3) 
 
and we want this to be equal to E(X). 
 
Note that  

Cov(X,e) = E(Xe) – E(X)*E(e)  
 
or  

E(Xe) = Cov(X,e) + E(X)*E(e),                        (4) 
 
Substituting this in equation (3) for E(Xe) and also substituting E(X) for  E(Y), we get 
 

E(X) = Cov(X,e) + E(X)*E(e) 
 
Solving for Cov(X,e), we get 
 

Cov(X,e) = E(X) – E(X)*E(e) = E(X)* (1 – E(e))              (5) 

 
This implies that the E(e) cannot be equal to 1 if we want correlated noise.  It is not easy 
to achieve equality of variances in this case. 
 
We will use copulas to generate correlated noise from a specified distribution for 
masking the data.  We will first briefly describe copulas and in particular the Gaussian 
copula and then the algorithm for generating correlated noise. 
 

3. Copula 
 
Copulas are useful for describing multivariate non-normal distributions.  They describe 
the dependence structure between the variables.  Marginal distribution functions are used 
as inputs to the copula and these can be any set of disparate distributions.  Thus, a copula 
is very realistic way of describing the multivariate distributions as one normally has a 
good idea on the distribution of the marginals and seldom on the joint distribution of 
these variables.  The concept of a copula is to divide the multivariate distribution into two 
parts: (1) one that describes the dependence structure, and (2) one that describes the 
marginal distributions.  This concept of defining the multivariate dependence structure 
(and hence the copula) is based on Sklar theorem which states: 
 
Sklar’s Theorem (1959)  Let F be a n-dimensional joint cumulative function for random 
variables X1, X2, ……Xn with marginal distribution functions F1(X1), …….,Fn(Xn), then 
there exists a Copula such that  
 

F(x1,x2,…….xn) = C[F1(x1), …….,Fn(xn)]. 
 
where C(..) is a copula.  If the marginal distributions, F1, F2, …Fn,  are continuous, then 
C is unique.  If they are discrete, then C is uniquely defined on the 
Ran(F1)×Ran(F2)×…..Ran(Fn), where Ran(Fi) is the range of Fi. 
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Sklar’s theorem states that a copula of the random variables X1, X2, ……Xn is the joint 
distribution function C() of the marginal cdf’s. It produces a new multivariate distribution 
based on what distributions are used to describe marginal distributions.  The dependence 
structure is defined by the copula.  So, in the case of continuous distributions, the 
multivariate dependence structure and univariate marginal distributions can be separated 
and the copula can be considered ‘independent’ of the univariate margins (Joe 1997, page 
12-13).  The copula thus allows one to combine arbitrary continuous marginal 
distributions and describe their dependence structure by forming a multivariate non-
normal distribution.   
 
There are several bi-variate and multivariate copula distributions discussed in the 
literature.  Hutchinson and Lai (1990), Nelson (1999) and Joe (1997) are excellent texts 
that discuss various properties of bi-variate copula distributions.  Paul Embrechts, et. al 
(2002) uses copulas to show how Pearson correlation coefficients can be misleading.  
Klugman, S. A. and Parsa, R. (1999), Frees, E.W., and Valdez, E. (1998) use copulas in 
modeling insurance data.  
 
Multivariate Normal or Gaussian Copula 
 
We will use a Gaussian copula for generating the correlated noise as it is fairly easy to 
implement.  We describe below its distribution and density.  
 
Let G be a k-dimensional distribution function with margins G1, …..Gk, then the copula is 
of the form  
 

 )(.,),........()....( 1
1

1
1,1 kkkG uGuGGuuC                                  (6) 

 
assuming that G-1 exists, and u = (u1, …..uk) is the uniform vector.  A special case of this 
distribution is multivariate normal copula which is of interest in this paper.  It is based on 
k-variate normal distribution N(0,), with unit variances (ii = 1 for all i) and obtained 
by substituting Gi  = iIts distribution function is thus given by (Song 2000)  
 

)}(...),........({)....,( 1
1

1
11 kkk uuuuC 

        (7) 

 
 and its density function is given by   
 

f (u1,u2,…….uk /) = }
2

)(
exp{

1
)/,.......,(

1

2/11

yIy
uuc

t

k










                (8) 

 
where y is a vector with elements yi, and yi = -1(ui),  = [ij], ij = corr[-1(ui), -

1(uj)],  is the usual distribution function of a normal, N(0,).  Here,  determines the 
level of dependence.  
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If the marginal distributions are continuous then the density function of a vector x = 
(x1,x2,…….xk) with arbitrary marginals, Fi(xi), is obtained by substituting ui = Fi(xi) in 
equation (8) and is given by (Clemen and Riley 1999, Song 2000) 
 

5..0
1

2211

2211111

2

)(
exp)(...)()(

)(...)()(*}/)(,,.........({),........,(













 





R
yIRy

xfxfxf

xfxfxfxFxFcxxf
t

kk

kkkkk 
           (9) 

where yi = -1[Fi{xi)] and Rij = corr[-1(Fi(xi)), -1(Fj(xj))]. 
 
 
Generating random numbers from a multivariate normal copula is fairly straight forward.  
Let R* denote the matrix of relationships among the variables measured with Kendall’s  
or Spearman’s rank correlation,  . Note that Pearson correlation no longer adequately 
measures dependence between non-normal random variables.  Then, for each element of 
R *, calculate the corresponding product-moment correlation rij of R using the 
relationship rij = sin(π ij/2) or rij = 2*sin(π ij/6), where rij is the Pearson correlation 
coefficient. Then, generate random k-vectors z ~ N(0,R) and secondly, obtain random 
variables x1,x2,…….xk by   The resulting x)).((1

jjj zFx  
1,x2,…….xk will have the 

dependencies given by R*. 
 
Algorithm for generating correlated noise: 
 
In our case, we have to generate only one variable that is correlated with the given 
variable.  Let X denote the original variable with distribution function Fx and let r be the 
desired product-moment correlation between X and e.   
 

1.   ~ Normal (0,1) distribution 1
1 [ ( )]xV F  x

2. Generate V2 that is correlated with V1 with specified correlation. 
3. e =  1

2[ ( )]eF V 
4. Resulting e will have dependence with X given by r* corresponding to r.   

 
 
For the purpose of exposition of our methodology, we chose the truncated triangular 
distribution and the truncated uniform distribution for e.   
 

4. Truncated Triangular Distribution 
 
When multiplicative noise is used for masking data, one must avoid using a number close 
to one (1) for noise because multiplying by a number very close to 1 does not change the 
original value much, and, thus, the original value may not get sufficient protection. We 
also note that when use is made of the triangular distribution symmetric about the value 
1, the probability density for noise (e) is the greatest when e is near 1 if that is the mode. 
Thus, in this latter case, one would expect that a significant proportion of the values 
would not get a lot of protection. For reasons like these, we surmise that Evans, et. al. 
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(1998) have suggested truncating the mid-section, or the section near 1, of the symmetric 
triangular distribution with mode 1. For similar reasons, in case of the additive noise 
method, we would suggest avoiding the use of numbers close to zero (0) for noise. 
 
The truncated triangular distribution has the following shape. 
 

a b c d

Figure 1. Truncated Triangular Distribution

e

f(e)

m

 
Suppose the distribution is truncated at  and c , c , as shown in Figure 1. In this 
case, the pdf has the following form: 

b b

     

 
2 2

2 2

2( )
( ),

( ) ( ) ( ) ( )
( )

2( )
( ),

( ) ( ) ( ) ( )

d m
e a a e b

b a d m d c m a
f e

m a
d e c e d

b a d m d c m a







   
    




.  
    

  (10) 

 
In the above equation, let 
 

2 2

2

( ) ( ) ( ) (
k

b a d m d c m a


     )

.

. 

 
Then equation (10) can be re-expressed as 
 

      (11) 
( ) ( ),

( )
( )( ),

k d m x a a x b
f x

k m a d x c x d




   


   
 
The cumulative distribution function of the truncated triangular distribution after some 
algebra is 
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 

 

     

2

2

2 2 2

( ) ,
2

( ) ( ) ,
2

( ) ( ) ,
2 2

k
d m e a a e b

k
F e d m c a b e c

k k
d m c a m a d c d e c e d

    

    

            

 

(12) 
 
We will assume that the triangular distribution is symmetric about m and the truncation is 
also symmetric about m.  This is a reasonable assumption for a noise distribution as we 
want noise to be symmetrically distributed.  Then, 
 

2

2

( )
,

( )
( )

( )
,

( )

e a
a e b

b a
f e

d e
c e d

b a







  



  


                (13)               

and 
 
 

   

2

2 2

2

20.5 2 )

( )
,

2( )

( ) 0.5,

1
(2 ,

2( )
dc c

e a
a e b

b a

F e b

de e c e d
b a






   


  


  e c

  


   (14) 

 
The mean and variance of e are 
 

                           
2 2

( )
6

a b c d
E e

  
                                                                      (15) 

 
and  
 

.
2 2 2 25 2 2 5 2 2 4 2 2 4

( )
36

b ab a c cd d ac ad bc bd
Var e

        
  (16) 

 
5. Truncated Uniform Distribution 

 
Once again, we will consider a symmetric distribution.  The density is given by  
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0.5
,

( )
( )

0.5
,

( )

b e a
b a

f e
a e b

b a







   



 



    (17) 

 
and the cumulative distribution is given by  
 

      

0.5

0

0.5( )
,

( )

( ) 0.5,

0.5( )
,

( )

1

e b

e b
b e a

b a

e a e a

e a
a e b

b a








 


e b


 
    


   


F

 




                 (18) 

 
The mean and variance are given by  
 

E(e) = 0 and 
2 2

( )
3

a ab b
Var e

 
 .       (19) 

 
Examples: 
 
For X, we generated 2000 observations from a gamma distribution with mean 8 and 
variance 32.  We applied both additive and multiplicative noise methods to mask the 
2000 observations.   Also, we used both truncated triangular distribution and truncated 
uniform distribution for correlated noise e.  We present below one set of the results. 
 
 
 
                         Additive Noise Method 
Distribution      a    b   c   d Mean Of Y Variance of Y 
Truncated 
Triangular 

-6.6 -1 1  6.6   8.027588 
 

34.26451 
 

Truncated 
Uniform 

-10 -5 5  10   8.054353 41.47306 

                        Multiplicative Noise Method 

Truncated 
Triangular 

-6.6 -1 1 6.6 8.000259 1119.277 

Truncated 
Uniform 

-2 -5.8 2 5.8 8.041039 
 

1662.549 
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In the additive noise method, we were able to control both the mean and variance.  We 
used several combinations of values for a, b, c and d and we always got similar results. 
 
In the multiplicative noise method we were able to control the mean as expected.  
Unfortunately, we failed to obtain these results for all possible values of a, b, c and d.  At 
this point it is not clear to us why it is not working.  We do realize the covariance and 
correlation are not good measures of association for non-normal variables but we are not 
completely satisfied with this reasoning.  We believe this problem needs further 
investigation.   
 

6. Conclusions 
 
If a public use microdata file is masked by additive or multiplicative noise, it is desirable 
to have first two moments protected.  We have shown that the masking using correlated 
noise protects first two moments in additive noise method but only the first moment in 
the multiplicative noise method.  We used copulas to obtain the correlated noise.  We 
used a Gaussian copula to generate the correlated noise and we showed how to use 
truncated triangular distribution and truncated uniform distribution to model the 
correlated noise. 
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