
Cross-community Comparison and Multi-frame Weighting in REACH U.S.

Peter K. Kwok∗ Hee-Choon Shin† Whitney Murphy*

Colm O’Muircheartaigh* Angela Debello‡ Kari Carris‡

Abstract
REACH U.S. (Racial and Ethnic Approaches to Community Health Across the U.S.) is an umbrella
of community-based programs aimed to eliminate health disparities among racial and ethnic groups.
Five of the REACH U.S. programs are based in the Greater Los Angeles areas with various over-
lapping geographies and target populations, and with different combinations of scientific interests
in cardiovascular disease, diabetes mellitus, adult immunization, and breast and cervical cancer. We
will explore in this paper the potential of making cross-community comparisons, and discuss some
of the issues. In particular, we evaluate the performance of Lohr’s and Rao’s pseudo-maximum
likelihood estimator and Mecatti’s multiplicity estimator.

Key Words: REACH U.S., Address-based sampling, Community-based health program, Multi-
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1. Introduction

A traditional, multi-frame estimation problem usually begins with a single survey that can-
not satisfactorily cover its target population with just one frame. Additional frames are
then patched onto the same sampling base to remedy the deficiency in coverage. In other
situations, a frame with good coverage exists but is too expensive to be sampled alone. So
additional, cheaper frames are supplemented to reduce cost, even though they may induce
bias in coverage. At the end, there is still only one target population and only one estimator.

However, there is another type of multi-frame problem which is not primarily motivated
by coverage or cost considerations, but by the requirement to compare multiple surveys
intrinsically defined by different frames that just so happen to overlap. This time, the
surveys can potentially involve multiple target populations and, hence, multiple estimators.
But their objectives and designs may be just right for sharing data among them to form a
more efficient combined estimate. We will consider such an example in this paper, namely
the REACH U.S. Survey. Racial and Ethnic Approaches to Community Health Across the
United States (REACH U.S.) is a funding program sponsored by the Centers for Disease
Control and Prevention (CDC) to eliminate health disparities among various racial and
ethnic groups throughout the United States. Its survey distinguishes from other traditional,
multi-frame surveys in two important ways.

First, the REACH U.S. Survey is actually a group of independently owned surveys
rather than a single one. The REACH U.S. program itself has a number of participating
grantees that target different local populations across the U.S. for different public health
services and studies. For each year within a five-year period, surveys are conducted at
some of these communities to measure the health behaviors of the local residents. Instead
of conducting a single survey at the national level with a unified set of eligibility require-
ments, the grantees spread the surveys across their communities, keep each of their own
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requirements, but share similar sampling and questionnaire designs to reduce cost over-
heads. The questionnaire is consisted of a common module of general health questions,
such as diet and frequency of exercise, followed by additional modules that focus on other
more specific issues, such as adult immunization. Only the responses of a subset of these
modules are of interest to each grantee. Multiple surveys are usually hard to compare if
they ask different questions and adopt potentially very different sampling designs. This is
not the case for REACH U.S. Therefore, while the REACH U.S. Survey starts with multi-
ple frames and ends with multiple estimates, it creates a rare and unique opportunity to be
treated as a multiple-frame, single-estimator problem whenever the eligibility requirements
match. Since the REACH U.S. Survey has just begun calling at the time of submission of
the first draft, we will use only simulation data to make our points here. To make our simu-
lations more relevant to real applications, we base our set-up on the five surveys situated in
Los Angeles and Orange Counties, California, where the overlapping is the most complex
among all REACH U.S. localities.

Second, the REACH U.S. Survey provides enough details on the geographic domains
to make it feasible to combine the surveys together. The REACH U.S. Survey adopts an
address-based sampling (ABS) design in the sense that residential households are sampled
from an address frame before matching to their primary telephone numbers. This method is
contrasted to the traditional, random digit dialing (RDD), which samples randomly gener-
ated telephone numbers before screening the respondents for their geographic eligibilities.
While both approaches involve a step of geographic verification with the respondents, the
ABS approach used by the REACH U.S. Survey provides much greater precision and flex-
ibility during the planning and analysis stages. This point is particularly relevant when we
evaluate Mecatti’s multiplicity estimator later.

The remaining paper will be divided into four sections. The Methodology section
briefly introduces the two estimators and our evaluation set-up. Then the Results section
presents numerical evidences to highlight the strengths and weaknesses of these estimators.
As mentioned before, only simplified simulations will be considered here. But their set-
up should be realistic enough to reflect the challenges of actual multi-frame surveys. The
Discussions section will review what we learned from those evidences and the challenges
of adopting estimators primarily designed for estimation to solve data sharing problems.
Finally, we will end the Conclusions section with a few recommendations.

2. Methodology

Let Ys be the population responses for s = 1, . . . , N , where N is the number of persons
in the target population. In the following simulation, we will assume that each simulated
frame totally covers its target population. From here on, we will interchange the words
“frame” and “population” without any further qualification until we revisit this issue in the
Discussions section. In this study, we will simulate a key variable in the common module
that measures the respondent’s number of days in poor physical health during the past 30
days, that is,

Ys ∼ Poisson(3.4) i.i.d. (1)

Our objective variable is Y =
∑N

s=1 Ys , which can be interpreted as the community’s
monthly total of person-days in poor physical health. The mean value is based on real
figures interpolated from other studies. The total person-days variable may possibly have
implications for public health policy. But for our purpose, both can be treated as arbi-
trary devices chosen just for convenience while being plausibly close to values of practical
interests. The actual REACH U.S. Survey adopts a clustering design which samples the
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households randomly, and then selects various numbers of eligible household members ac-
cording to certain rules. Some communities also have stratification and/or oversampling
requirements. But for the sake of simulation, we will just simplify the whole scenario to
an one-stage, simple random sampling design. In essence, we consider the hypothetical
scenario in which every household has exactly one eligible respondent. We will assume no
missing data so that any variation in our simulation results is due to sampling error alone.

We will consider two estimators. The first one is Lohr’s and Rao’s pseudo-maximum
likelihood estimator. The use of pseudo-maximum likelihood (PML) in the dual-frame
estimator can be traced back to Skinner and Rao (1996); and the concept of dual-frame
estimator can be traced back to Hartley (1962, 1974). Hartley’s strategy is to partition two
sampling frames A and B into domains a = A\B, b = B\A, and ab = A ∩ B, and then
estimate a key measure Y by

Ŷ = Ŷa + Ŷb + θŶab est. on A + (1− θ)Ŷab est. on B ,

where the subscripts indicate the subset condition on which the measure is aggregated.
Building on the above expression, Fuller and Burmeister (1972) added a second parameter
θ′ for an additional adjusted difference

· · ·+ θ′(N̂ab est. on A − N̂ab est. on B) .

Skinner and Rao (1996) first applied the pseudo-maximum likelihood approach to estima-
tors of the form

(NA − N̂ab) Ŷ a + (NB − N̂ab) Ŷ b + N̂ab Ŷ ab .

Lohr and Rao (2006) later generalized the above form to any number of frames. We will
briefly explain Lohr’s and Rao’s estimator below, but refer interested readers to their origi-
nal paper (Lohr & Rao, 2006) for a full exposition.

From here on, dimension index i always ranges from 1 through d; and j, from 1 through
Q. Suppose we haveQ frames of sizes N(Q) =

[
N

(Q)
j

]
Q×1

. Their union can be partitioned
into d domains (i.e., nonempty, maximal subsets for each combination of frames) of sizes
N(d) =

[
N

(d)
i

]
1×d

. Let N = [Ni,j ]d×Q denote the sizes of domain i in frame j. In the
simulations, N will be pre-assigned two sets of values. Given N we independently draw
simple random samples of sizes n(Q) =

[
n

(Q)
j

]
Q×1

with sampling fractions f = [fj ]Q×1 =[
n

(q)
j /N

(q)
j

]
Q×1

. That is, we randomly draw n
(Q)
j out of N (Q)

j cases from frame j. Let

n = [ni,j ]d×Q, y = [yi,j ]d×Q, and y =
[
yi,j

]
d×Q

= [yi,j/ni,j ]d×Q denote the sample
sizes, totals, and means for each combination of domain and frame, respectively. Let Y =
[Yi,j ]d×Q be the population totals by domains and frames, and let Y(d) =

[
Y

(d)
i

]
d×1

=[∑Q
j=1 Yi,j/N

(d)
i

]
d×1

be the population means by domains. The fundamental strategy of

pseudo-maximum likelihood estimator is to re-write the true population total Y =
∑N

s=1 Ys

as Y = N(d)Y(d), and then estimate by

Ŷ = N̂(d)Ŷ
(d)
. (2)

For sufficiently large samples, we have approximately yi,j | ni,j ∼ N
(
Y

(d)
i , σ2

i /ni,j

)
.

Furthermore, ni,j roughly follows a multinomial distribution with sample size n(Q)
j and

success probability Ni,j/N
(Q)
j . The joint likelihood L

(
N(d),Y(d)

)
can then be approxi-

mated by the marginal product L
(
N(d)

)
L
(
Y(d)

)
. The term pseudo-maximum likelihood
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signals that maximization is taken over this approximated function rather than the true like-
lihood. Maximizing L

(
Y(d)

)
leads to a self-weighted estimate in closed form:

Ŷ
(d)

=

 Q∑
j=1

yi,j

fj


d×1

. (3)

However, maximizing L
(
N(d)

)
involves solving for a linearization Ñ of the optimal esti-

mate N̂(d) of N(d) through the following iterative matrix equation:(
(I−MM+)(diag Ñk)−1(diag Mf)

M′

)
Ñk+1 =

(
(I−MM+)(diag Ñk)−1(diag Ĥf)

N(Q)

)
,

(4)
where k is the iteration index at most 100; M = [δi,j ]d×Q is the domain-in-frame indicator
matrix, such that δi,j = 1 or 0 according to whether domain i is in frame j or not; M+, the
Moore-Penrose inverse of M; and Ĥ = [fini,j ]d×Q. The initial estimate Ñ0 is chosen to
be [maxj ni,j ]d×1 . If case s is in domain i, then its pseudo-maximum likelihood weight is

w̃s =
Ñi

n
(d)
i

(5)

on all frames. The estimated total is then

Ỹ =
Q∑

j=1

∑
s∈sample j

w̃sys,i . (6)

The second estimator to be evaluated is Mecatti’s multiplicity estimator (Mecatti, 2005,
2007). In addition to the previous conventions, we need a variable m = [m1, . . . ,mN ] to
indicate the number of frames to which each case belong. The multiplicity weights are then
defined by

w(j)
s =

δj(s)
fjms

, (7)

where δi(s) = 1 or 0 according to whether case s is in frame j or not. Unlike their pseudo-
maximum likelihood counterparts, the multiplicity weights for the same case are different
across frames. Under our simple random sampling design, the variance of the estimated
population total can be estimated by

V̂ar(Ŷ ) =
Q∑

j=1

(
1
fj
− 1
)

1

fj(N
(Q)
j − 1)

N (Q)
j

∑
s∈samplej

y2
s

m2
s

− 1
fj

 ∑
s∈samplej

ys

ms

2  .

(8)

3. Results

We chose to simulate for Q = 5 frames and, among their combinations, d = 8 domains.
The domain sizes are set in two ways to generate simulation frames Data Set 1 and Data
Set 2. For reasons to be explained shortly, we draw 1000 rounds of samples from Data
Set 1, but only one round from Data Set 2. In each round, a simple random sample of size
between 901 to 905 is drawn from each of the 5 frames. Note that the sampling fractions
are small (and all less than 1%) under this set-up.
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Table 1: Simulated Results (First Round) of Data Set 1 (Converged)

Community True Values Unrestricted PMLE
A B C D E N (d) %N (d) Ñ %Ñ
0 0 0 0 1 1,000,000 44.8 1,000,115 44.8
0 0 0 1 1 1,000,000 44.8 999,817 44.8
0 0 1 1 1 10,000 0.4 10,068 0.5
0 1 0 0 1 10,000 0.4 10,170 0.5
0 1 0 1 1 100,000 4.5 99,830 4.5
1 0 0 0 1 1,000 0.0 715 0.0
1 0 0 1 1 10,000 0.4 10,353 0.5
1 0 1 1 1 100,000 4.5 99,932 4.5

Data Set 1 (Table 1) simulatedN = 2, 231, 000 cases, and converged within 6 iterations

in all rounds when the tolerance at iteration k is
√

1
d

∑d
i=1

[
(Ñi)k − (Ñi)k−1

]2
< 1. The

first 5 columns of the table correspond to the domain-in-frame indicator matrix M. The
estimated domain sizes are quite close to the true values. Table 3 below is an example of
one of the rounds. Comparing the pseudo-maximum likelihood estimate 7, 621, 918 to the
true population total 7, 585, 350, the relative difference is only 0.48%.

However, not every set-up can run so smoothly. Data Set 2 (Table 2) simulated N =
4, 365, 000 cases, and failed to converge within 100 iterations even when the tolerance is
relaxed to values as large as d. A more serious concern is that the PML algorithm, when

Table 2: Simulated Results of Data Set 2 (Diverged whether Unrestrictd or with Lower
Bound Imposed)

Community True Values Unrestricted PMLE LB-Imposed PMLE
A B C D E N (d) %N (d) Ñ %Ñ Ñ∗ %Ñ∗

0 0 0 0 1 2,500,000 57.3 1,600,417 36.7 1,835,115 38.3
0 0 0 1 1 1,000,000 22.9 1,252,083 28.7 984,154 20.5
0 0 1 1 1 50,000 1.1 697,500 16.0 730,731 15.2
0 1 0 0 1 50,000 1.1 449,167 10.3 50,673 1.1
0 1 0 1 1 500,000 11.5 100,833 2.3 499,327 10.4
1 0 0 0 1 5,000 0.1 505,417 11.6 669,212 14.0
1 0 0 1 1 10,000 0.2 157,083 3.6 26,519 0.6
1 0 1 1 1 250,000 5.7 −397, 500 −9.1 6 0.0

run without any restriction, led to a negative value in some domain estimate of Ñ (d). This
result is probably the price paid for linearizing the optimal estimate in order to open up
the possibility of solving the iterative matrix equation. For simplicity, we considered only
one alternative to try to remedy the above issue, that is, we imposed a lower bound on
the estimates so that all elements of Ñ (d)∗ are non-negative. More precisely, we reset all
negative domain sizes during the iterations to a uniform random number between 2 and 10
to try to avoid being trapped at a suboptimal point. However, with all the efforts mentioned
above, the algorithm still did not converge. Surprisingly, in spite of the divergence, the
lower-bound-imposed pseudo-maximum likelihood estimate has value 15, 402, 326 and is
still within 3% of the true total 14, 844, 712. This suggests that, while the domain size
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estimates may be biased, the bias is linear in a sense that overestimation in one domain will
likely be balanced out by underestimation in another domain. This feature can be a strength
of this method.

Data Set 2 experienced difficulties for other choices of samples. Thus, the two esti-
mators were only stress-tested against Data Set 1. More precisely, we drew 1000 rounds
of samples, and calculated the pseudo-maximum likelihood and multiplicity estimates for
each round’s total sample. We then derived the relative error (Ŷ − Y )/Y . Figure 1
shows that the two estimators have very similar distributions (left) and are highly correlated
(right). The relative error of the PML estimator ranges from −0.041 to 0.048; while that
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Figure 1: Comparison of Two Estimators: (left) both pseudo-maximum likelihood and
multiplicity estimators have similar distributions; (right) both estimators follow the same
trend.

of the multiplicity estimator ranges from −0.055 to 0.050. Also, he multiplicity estimator
has smaller absolute relative error only 41.3% of the time. Thus, the pseudo-maximum
likelihood estimator performs just slightly better in terms of being consistently close to the
true value in this particular setup. But for all practical purposes, the accuracy advantage is
not obvious.

Figure 2 shows that 94.9% of the multiplicity estimates fall within 1.96 times the stan-
dard error under a bell-shaped curve (left), and that the Shapiro-Wilk test of the critical
values has p-value 0.883 (right). Both lend support to its normality and ultimately to the
applicability of the asymptotic variance.

4. Discussions

Our simulation frames are set up to perfectly cover the hypothetical target population. Of
course, actual frames are almost never perfect in that way. We can imagine Data Set 1 to
be a frame that undercovers a hypothetical target population defined by Data Set 2. Then
the deficiency in the sampling frames may provide an illusion of computational stability
(or lack thereof) while the use of the full target population could have led to a different
conclusion. This problem is especially severe in the presence of any small domain that
spans across many frames.
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Figure 2: Multiplicity Estimator Alpha: (left) the distribution of α values for the multiplic-
ity estimator has the normal curve shape; (right) the QQ plot also suggests close fit to the
normal theory.

Lohr and Rao explored the domain collapsing technique to avoid unstable estimates
from domains where no or very few sample units are found. This could potentially alle-
viate the divergence problem. However, there are two limitations to this approach in the
context of our data sharing problem. First, different orders of frame merging would result
in different sets of weights (Lohr & Rao, 2006, p. 1023). Second, their simulations were
based on randomly generated frames. While this tends to cover a variety of domain combi-
nations and sizes, real applications usually involve only a few domains– all with fairly large
sizes. Take Data Set 2 for example. Although its domain sizes are artificially chosen, its do-
main combinations and sizes closely resemble the actual ones in the REACH U.S. Survey.
It turns out the pseudo-maximum likelihood method requires more involved computational
considerations as convergence is not guaranteed for unrestricted maximization. While we
do not rule out the existence of more sophisticated (and, hence, more complicated) meth-
ods that may remedy the negative estimate problem, we did show that any other solutions,
if they exist at all, are probably not straightforward. Although the PML method does not
require knowing the true domain sizes (or even frame sizes), this is not a distinct advan-
tage in our case as the frames are already believed to closely resemble the true population
distributions.

In contrast, Mecatti’s method is more straightforward. Since only the multiplicity is
required, this method is less sensitive to domain misclassification. However, this advantage
seems to be less relevant to ABS because 1) multiplicity in ABS usually cannot be deter-
mined without making some assumptions about the domain membership; and 2) the risk
of domain misclassification is small when the ABS frames have good coverage, as in the
case of REACH U.S. All in all, the multiplicity method still appears to be a good tradeoff
in handling the stability problem that the pseudo-maximum likelihood method is less able
to avoid.

Between the two methods, Mecatti’s estimator is easier to calculate. It is also con-
ceptually simpler, as it just averages the self-weighted domain size estimates. However,
since the multiplicity weights change across frames, they can be cumbersome to report.
For traditional, multiple-frame estimation problems, this is not a concern because they usu-
ally consider only two or three frames. But, if the REACH U.S. model becomes a viable
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option for data sharing among smaller surveys, then perhaps more than 5 surveys will be
packed into the same area. In that case, management and reporting issues will need to
be addressed. Aside from such potential inconvenience, the computational simplicity and
stability of Mecatti’s estimator make it very competitive for data sharing problems that
combine many relatively small frames together.

In the simulations considered so far, we have always assumed that the five simulation
frames (and, hence, the corresponding surveys) are comparable. We justified this by ap-
pealing to a question in the common module. Although the geographic overlaps appear
to be large, the total overlaps required to make meaningful comparisons are small, be-
cause the communities usually have different demographic targets and scientific aims. In
the REACH U.S. Survey, it turns out that only one larger community intersects two other
smaller ones geographically, demographically, and teleologically. The two smaller ones
are geographically disjoint. Therefore, if the larger community turns out to have run an
effective intervention, then the other two smaller communities would appear to be more
successful. This implies that, if we want to fully resolve the overlapping issue, then it is
not enough to just combine surveys together.

5. Conclusions

Based on the limited simulation evidences that compared against only one alternative (i.e.,
pseudo-maximum likelihood weighting), Mecatti’s multiplicity weighting is computation-
ally more efficient and more stable for data sharing. However, even when additional infor-
mation appears to be available, extra care must be taken to ensure the cross-survey com-
parison makes sense in the first place. And even when comparison is warranted, estimators
primarily designed for coverage enhancement and cost reduction may not be good fits for
multi-survey projects such as REACH U.S. It is because, while those traditional multi-
frame estimators are good at handling uncertain domain membership and unknown frame
sizes, they tend to anticipate large overlaps among frames, a condition often unfulfilled or
even unwanted in our data sharing problems. Further research is needed to explore the right
type of estimator to meet the new demands.
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