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Abstract
Parameter estimation with nonignorable missing data is a challenging problem in statistics. Fully parametric approach for

joint modeling of the response model and the population model can produce results that are very sensitive against the failure
of the assumed model. We consider a more robust approach of modeling by describing the model for the nonresponding part
as a exponential tilting of the model for the responding part, which can be justified under the assumption that the response
mechanism can be expressed as a logistic regression model. The model for the responding part can be estimated using a
nonparametric method. Thus, the overall model can be called semi-parametric.

In this paper, based on the exponential tilting model, we propose a fractional imputation method that can be a useful
computational tool for missing data analysis with non-ignorable missing data. To estimate the parameters of the response
mechanism, we assume that a validation sample is randomly selected from the nonrespondents and provides full responses.
Using the nonparametric model for the respondents, the imputed values are generated from the responding parts and then
are applied with fractional weights that have exponential tilting components. The resulting fractionally imputed data can
be used to estimate the parameters using the software based on the complete response by treating the imputed values as if
observed. Variance estimation using a replication is also considered. Results from a limited simulation study are presented.

Key Words: Follow up; Not missing at random; Survey Sampling.

1. INTRODUCTION

Missing data is frequently encountered in many areas of statistics. Statistical analysis in the presence of missing data
has been an area of considerable interest because simply ignoring the missing part of the data often destroys the
representativeness of the remaining sample. Non-response is ignorable if the probability of missing y is independent
of y conditional on other auxiliary variable x; hence, it follows that non-response is non-ignorable if the probability
of y being missing depends on y itself, even after controlling on x. This situation exists, for example, in surveys
of income, of alcohol consumption behavior, and in clinical studies of elderly, where cognitively impaired persons
may be less willing to participate. If nonresponse is nonignorable, standard nonresponse adjustments such as
stratification, reweighting, and imputation assuming an ignorable response mechanism will fail to correct the bias due
to nonresponse. In non-ignorable nonresponse problems, it is widely recognized that without additional conditions
on the models or additional information (direct information on the nonrespondents, or indirect information relating
them to the respondents), estimation is sensitive to the unobserved distribution of the outcome variable (Little 1982;
Murnane, Newstead, and Olsen 1985).

Parameter estimation under nonignorable missing is a challenging problem because the response mechanism
is generally unknown. When the response mechanism is known, as in the censored regression model with known
censoring points, all the parameters are identified and they can be estimated using a maximum likelihood method.
When the response mechanism is known up to an unknown parameter φ, then the parameters in the observed
likelihood are not fully identified in general without additional observation or prior information. Nordheim (1984)
showed that if some information of the probabilities of uncertain classification is obtained, then the category is
identified under the nonignorable missing data mechanism. Baker and Laird (1988) used the EM algorithm to
estimate the maximum likelihood estimators of the expected cell counts under a log-linear model for categorical
missing data with nonignorable missing. Glynn, Laird and Rubin (1993) used so-called the pattern mixture model of
Little (1993) to analyze nonignorable missing data with a follow-up. Park and Brown (1997) proposed the maximum
likelihood estimating method with constraints for categorical data using a data-dependent prior, which amounts
to adding additional observation for the missing data. Chen (2001) and Tang et al (2003) discussed identifiability
conditions under some situations. When the parameters are not identified, then the maximum likelihood estimates
of the parameters are no longer consistent.

In this paper, we propose a new approach for modeling nonignorable nonresponse based on so-called the exponen-
tial tilting model. Using the exponential tilting model for the nonresponse part of the data, we decompose the model
into two components, one is a parametric component and the other is a nonparametric component. The parametric
component is obtained by assuming a logistic regression model for the response probability and the non-parametric
component is obtained by a nonparametric regression approach for missing data considered in Cheng (1994). By
adopting a nonparametric part of the model, the estimation method can be made robust. To avoid the unnecessary
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issue of non-identifiability of the parameters, we assume that a validation sample, a subset of nonrespondents, is
randomly selected and observed with full response. For parameter estimation, we use the idea of Monte Carlo ap-
proximation by fractional imputation, as considered in Kim (2009). The fractional imputation method can be easily
applied to the general purpose estimation. For variance estimation, a replication method is considered.

The paper is organized as follows. In Section 2, basic setup is introduced. In Section 3, we propose a parameter
estimation method under the nonignorable missing data mechanism with the follow-up data using the parametric
fractional imputation and discuss variance estimation method. In Section 5, results from a limited simulation study
are presented.

2. BASIC SETUP

For simplicity, consider two variables, x and y, where x is always observed and y is subject to missing. Under the
existence of nonresponse, the original sample A can be decomposed into A = AR ∪ AM , where AR is the set of
respondents and AM is the set of nonrespondents. Let ri be the original response indicator for yi, defined by

ri =
{

1 i ∈ AR

0 i ∈ AM .

We assume that the response mechanism is independent and

ri | (xi, yi) ∼ Bernoulli (πi) (1)

where

π (xi, yi) =
exp (φ0 + φ1xi + φ2yi)

1 + exp (φ0 + φ1xi + φ2yi)
(2)

for some φ = (φ0, φ1, φ2). If φ2 = 0, then the response mechanism is called ignorable.
Under the ignorable response mechanism (or MAR),

Pr (yi ∈ B | xi, yi, ri = 0) = Pr (yi ∈ B | xi, yi, ri = 1) , (3)

for any measurable set B. Thus, under MAR, the conditional distribution of the yi given xi among the nonrespon-
dents is the same as the conditional distribution among the respondents. Let f1 (yi | xi) be the conditional density
of yi given xi and ri = 1 and let f0 (yi | xi) be the conditional density of yi given xi and ri = 0. Under MAR, we
have

f1 (yi | xi) = f0 (yi | xi) .

If the MAR condition does not hold, then (3) does not hold. Using the Bayes formula, we have the following
relationship:

Pr (yi ∈ B | xi, ri = 0) (4)

= Pr (yi ∈ B | xi, ri = 1)× Pr (ri = 0 | xi, yi ∈ B) /Pr (ri = 1 | xi, yi ∈ B)
Pr (ri = 0 | xi) /Pr (ri = 1 | xi)

.

Thus, we can write

f0 (yi | xi) = f1 (yi | xi)× O (xi, yi)
E1 [O (xi, Yi)]

, (5)

where

O (xi, yi) =
Pr (ri = 0 | xi, yi)
Pr (ri = 1 | xi, yi)

and
E1 {O (xi, Yi)} = E {O (xi, Yi) | xi, ri = 1} .

Note that (4) and (5) implies that

Pr (ri = 1 | xi) =
E1 {O (xi, Yi)}

1 + E1 {O (xi, Yi)} . (6)

If the response probability model is a logistic regression model (2), then we have

O (xi, yi) = exp (−φ0 − φ1xi − φ2yi) (7)
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and the expression (5) can be simplified to

f0 (yi | xi) = f1 (yi | xi)× exp (γyi)
E [exp (γYi) | xi, ri = 1]

, (8)

where γ = −φ2. Model (8) states that the density for the nonrespondents is an exponential tilting of the density
for the respondents. The parameter λ is the tilting parameter that determines the amount of departure from the
ignorability of the response mechanism.

Thus, we need to know the two models to estimate the parameters: f1 (yi | xi) and Pr (ri = 1 | xi, yi). The only
parameter that is not identified is γ. To avoid the non-identifiability problem, one can perform a sensitivity analysis
as in Rotnitzky et al (1998) or assume a follow-up study in that a further attempt is made to obtain responses in a
subset AV of AV . Throughout this paper, we assume that there exist an

√
n-consistent estimator γ̂ of γ such that

√
n (γ̂ − γ∗) = Op (1) (9)

holds, where γ∗ = −φ∗2 and φ∗2 is the true value of φ2 in (2). In the sensitivity analysis, we assume that γ̂ is given.
The initial estimator γ̂ satisfying (9) can be obtained from a follow-up study. A method of obtaining the initial

estimator satisfying (9) shall be discussed later.

3. FRACTIONAL IMPUTATION

Under the setup describe in Section 2, suppose that we have a consistent estimate of f1 (yi | xi), denoted by
f̂1 (yi | xi). The estimate of the conditional density is obtained by a non-parametric method. Following the idea
of Kim (2009), let M imputed values, y

∗(1)
i , · · · , y

∗(M)
i , are generated from h (y), which has the same support as

f1 (yi | xi). The fractional weights are constructed by

w∗ij1 ∝ w∗ij0 exp
(
γ̂y
∗(j)
i

)
(10)

and

w∗ij0 ∝
f̂1

(
y
∗(j)
i | xi

)

h
(
y
∗(j)
i

) (11)

where γ̂ is an
√

n-consistent estimator γ̂ of γ in (9) and
∑M

j=1 w∗ij0 =
∑M

j=1 w∗ij1 = 1. The initial fractional weight
w∗ij0 in (11) is essentially the fractional weights that can be used under ignorable missing mechanism, as in Kim

(2009), and the second factor, exp
(
γ̂y
∗(j)
i

)
, can be used to account for the non-ignorable missing mechanism. The

fractional weights in (10) are computed in a semi-parametric approach in the sense that we use a nonparametric
model for f1 (yi | xi) but use a parametric model (2) for the response mechanism.

Once the final fractional weights are constructed, then we can use the fractionally imputed data to estimate
the parameters by applying the standard formula for parameter estimation to the fractionally imputed data. For
example, the imputed estimator of β, the regression coefficient for the regression of y on x, can be computed from

∑

i∈A

M∑

j=1

wiw
∗
ij

{
y
∗(j)
i − x′iβ

}
xi = 0. (12)

Here, it should be understood that y
∗(j)
i = yi if yi is observed.

More generally, under complete response, let the solution to
∑

i∈A

wiU (xi, yi; θ) = 0 (13)

lead to a consistent estimator of θ0. Under some regularity conditions, the solution to the fractionally imputed
estimating equation

∑

i∈A

M∑

j=1

wiw
∗
ijU

(
xi, y

∗(j)
i ; θ

)
= 0 (14)

is consistent and is asymptotically distributed as normal with mean θ0 and

Section on Survey Research Methods – JSM 2009

2605



We now discuss the estimation of the
√

n-consistent estimator λ̂ satisfying (9). We consider the case when a
validation sample, AV , is randomly selected and the responses are obtained all the elements in AV . In this case, we
can use the idea of Horvitz-Thompson estimator to obtain the following weighted score equation for φ:

∑

i∈AR

{ri − g (xi, yi; φ)} (x′i, yi)
′ +

nM

nV

∑

i∈AV

{ri − g (xi, yi;φ)} (x′i, yi)
′ = 0′, (15)

where nM is the size of set AM and nV is the size of set AV . The solution to (15) is consistent because the selection
probability for the elements in AV is nM/nV .

Instead of (15), one can apply an unweighted score equation
∑

i∈AR

wi {ri − g (xi, yi; φ)} (x′i, yi)
′ +

∑

i∈AV

wi {ri − g (xi, yi; φ)} (x′i, yi)
′ = 0′, (16)

to get φ̂ =
(
φ̂0, φ̂1, φ̂2

)
. It can be shown that the choice of γ̂ = −φ̂2 leads to the maximum likelihood estimator.

4. VARIANCE ESTIMATION

For variance estimation of the fractionally imputed estimator, we consider a replication method. Under complete
response, let θ̂n be the solution to (13). To estimate the variance of θ̂n, replication method is commonly used. Let
w

(k)
i be the k-th replication weight of wi such that

L∑

k=1

ck

{
θ̂(k)

n − θ̂n

}2

consistently estimates the variance of θ̂n, where θ̂
(k)
n is the solution to

∑

i∈A

w
(k)
i U (xi, yi; θ) = 0. (17)

Now, to estimate the variance of θ̂FI that is the solution to (14), we need to compute the replicated fractional
weights w

∗(k)
ij . To compute the replication fractional weights, we also need two steps. In the first step, the replicates

for the initial fractional weights (10) are computed by

w
∗(k)
ij0 ∝

f̂
(k)
1

(
y
∗(j)
i | xi

)

h
(
y
∗(j)
i

) exp
(
γ̂(k)y

∗(j)
i

)
(18)

where f̂
(k)
1

(
y
∗(j)
i | xi

)
is the replicated version of the nonparametric estimator of f

(
y
∗(j)
i | xi

)
and γ̂(k) is the

replicated values of γ̂, computed from
∑

i∈AR∪AV

w
(k)
i {ri − g (xi, yi; φ)} (x′i, yi)

′ = 0′, (19)

to get φ̂(k) and γ̂(k) = −φ̂
(k)
2 . Computing for the solution to (19) requires an iterative method, which can be

cumbersome because we have to solve (19) for each replicate k. To reduce the computational burden, we can
consider one-step approximation of φ̂(k) by

φ̂(k) ∼= φ̂ +

{ ∑

AR∪AV

w
(k)
i ĝi (1− ĝi) (x′i, yi)

′ (x′i, yi)

}−1 ∑

i∈AR∪AV

w
(k)
i {ri − ĝi} (x′i, yi)

′ (20)

where ĝi = g
(
xi, yi; φ̂

)
.

Using the replicated fractional weights in (18), we can compute the replicate of θ̂I which is the solution to (14),
denoted by θ̂

(k)
I , as the solution to

∑

i∈A

M∑

j=1

w
(k)
i w

∗(k)
ij U

(
xi, y

∗(j)
i ; θ

)
= 0. (21)
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5. Simulation Study

In this section, simulation studies were conducted to examine if the proposed semi-parametric fractional imputation
(Semi-FI) method can effectively identify the unknown parameters of interest when models are either correctly or
wrongly specified.

In the first simulation, B=2,000 Monte Carlo samples each of size n = 200 were generated from a distribution

xi ∼ N(4, 1)

yi = 0.5 + xi + N(0, 1) (22)

and the response indicator variable ri for original missing is distributed as

ri =
{

1 with probability πi

0 with probability 1− πi

where logit(πi) = −5.8 + xi + 0.5yi and i = 1, ..., n. Under this model setup, the average response rate for original
response model is about 58%. We also assume that 26% of the nonrespondents are followed up to get the full
response. Thus, the actual response rate is 69%. We are interested in estimating the following parameters.

1. β1: the slope for the linear regression of y on x.

2. µy: the marginal mean of y.

3. Pr(y < 5): the proportion of y less than 5.

To estimate each parameter of interest, the following three approaches were adopted in the simulation study.

1. Using complete sample: Under the complete case, the marginal mean and the proportion were simply estimated
by n−1

∑n
i=1 yi and n−1

∑n
i=1 I(yi < 5) respectively. Simple linear regression was used to identify the slope

β1.

2. Using Monte Carlo EM algorithm (MCEM): The MCEM method was conducted under the parametric as-
sumption that f(yi|xi) is a normal distribution with mean β0 + β1xi and variance σ2. For each EM iteration,
y
∗(j)
i were simulated from N(β̂0(t) + β̂1(t)xi, σ̂(t)2) where β̂0(t), β̂1(t) and σ̂(t) were the parameters estimated

from previous iteration t.

3. Using semi-parametric fractional imputation. Under the Semi-FI method, y
∗(j)
i were generated from a normal

distribution with mean α0 + α1xi and variance η2, where α0, α1 and η were obtained using simple linear
regression on the respondent data only. The imputation needs to be done just one time and there is no
iteration involved in the estimation.

We used M = 100 for the MCEM method and M = 10 for the proposed Semi-FI method. Table 1 reports
the Monte Carlo mean and standard deviation of the estimates, as well as the root mean squared errors of the
three parameters under each approach. The MCEM method estimate all three parameters very accurately because
the parametric model is correctly assumed in this case. The proposed Semi-FI method with M = 10 can work
also effectively in the sense that all the “true” parameters 1 can be captured within one standard deviation of the
Semi-FI estimators. Not surprisingly, the Semi-FI method shows less efficiency than the MCEM method which is
considered as the best under correct parametric model assumption for a given amount of missing data. The relative
less efficiency of the Semi-FI estimator is the price to be paid as the parametric inference “knows” more about the
model than the non-parametric approach which does not assume any parametric model.

In order to further verify the validity of the Semi-FI method when models are misspecified, two more simulations
were formulated. Instead of model (22), we consider the following two models,

yi = xi(xi − 2)(xi − 3) + N(0, 1) (23)

and
yi = xi(xi − 2)(xi − 3) + SN(0, 1, ξ), (24)

where SN(0, 1, ξ) is a skewed normal distribution with mean 0, variance 1, and skewness index ξ = −4. Model (23)
allows cubic curvature in the regression mean function with symmetric error, while model (24) imposes nonlinearity
in the mean function contaminated with negatively skewed noises.

1We consider the estimates from the full responses as the true values.
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Table 1: Point Estimators from Model (22). The mean and SE are the Monte Carlo average and standard deviation
of the point estimates, and the RMSE is the root mean squared errors.

Method Mean SE RMSE
β1 Complete Data 1.0000 0.0716 0.0716

MCEM (M=100) 1.0045 0.0973 0.0974
Semi-FI (M=10) 0.9540 0.1024 0.1122

µy Complete Data 4.5031 0.1005 0.1005
MCEM (M=100) 4.5063 0.1266 0.1266
Semi-FI (M=10) 4.5332 0.1266 0.1308

Pr(y < 5) Complete Data 0.6374 0.0341 0.0341
MCEM (M=100) 0.6364 0.0371 0.0371
Semi-FI (M=10) 0.6270 0.0393 0.0407

Table 2: Point Estimators from Model (22). The mean and SE are the Monte Carlo average and standard deviation
of the point estimates, and the RMSE is the root mean squared errors.

Method Mean SE RMSE
β1 Complete Data 1.0000 0.0716 0.0716

MCEM (M=100) 1.0045 0.0973 0.0974
Semi-FI (M=10) 0.9540 0.1024 0.1122

µy Complete Data 4.5031 0.1005 0.1005
MCEM (M=100) 4.5063 0.1266 0.1266
Semi-FI (M=10) 4.5332 0.1266 0.1308

Pr(y < 5) Complete Data 0.6374 0.0341 0.0341
MCEM (M=100) 0.6364 0.0371 0.0371
Semi-FI (M=10) 0.6270 0.0393 0.0407

Table 2 and 3 present the Monte Carlo mean, standard deviation and the root mean squared error of all three
parameters for the second and third simulation. Both tables show that, for parameters µy and β1, the Semi-FI
estimator outperforms the MCEM estimator a lot, i.e. not only it produces much less biased estimates, but also
is more efficient. For parameter Pr(y < 5), although the Semi-FI method gives estimates that are more closer to
the true on average, its standard error is higher than that of the MCEM, due to the randomness from the non-
parametric part in the estimation. When models are misspecified, the bad performance of the MCEM estimator is a
price paid to borrow wrong parametric information. Although y

∗(j)
i in the Semi-FI method are also generated from a

wrong model, the weights associated with y
∗(j)
i will be adjusted using the non-parametric component f̂1(y|x), which

contains the information reflected by the data. What is definitely working in such situation is the idea of allowing
data to speak for itself (or using data as its own “model”).

For variance estimation, the delete-one Jackknife variance estimator discussed in Section 3 was used to evaluate
the quality of the proposed variance estimator. We simulated B = 2, 000 Monte Carlo samples from model (22)
and considered the Semi-FI method only. Table 4 reports the Monte Carlo variance of the point estimators (which
is called “true variance” in the table), the Monte Carlo average, and the relative bias of the variance estimators.
Relative bias of the variance estimators were computed by dividing the Monte Carlo bias of the variance estimators
by Monte Carlo variance of the point estimator. The proposed variance estimator for the Semi-FI are nearly unbiased
for all parameters with all relative biases below 3%.
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Appendix

A.1: Description of the kernel estimator

We used the kernel smoothing method to estimate f1(y|x). The kernel method is an instrument for constructing
nonparametric curve estimates. It allows the data to speak for themselves, therefore more objective than parametric
methods.

Let K(·) be a kernel function which is a symmetric probability density function, hx (or hy) is a smoothing
bandwidth for variable x (or y) such that hx → 0, hy → 0, and nhxhy → ∞ as n → ∞. The kernel estimator of
f1(y|x) is

f̂1(y|x) =
1
hy





∑

j∈AR

K

(
x− xj

hx

)



−1
∑

j∈AR

K

(
y − yj

hy

)
K

(
x− xj

hx

)
(25)

where AR is the set of observations when the y variable is not missing. Equation (25) can also be written as

f̂1(y|x) =
f̂(x, y)

f̂(x)
,

where f̂(x, y) = (nRhxhy)−1 ∑
j∈AR

K
(

y−yj

hy

)
K

(
x−xj

hx

)
and f̂(x) = (nRhx)−1 ∑

j∈AR

K
(

x−xj

hx

)
.

Choices of the bandwidth will be discussed later. There is very little to choose between the various kernels on
the basis of mean integrated square error (MISE) as the function K(·) plays a lesser role than the bandwidth h in
determining the performance of the kernel estimators. The choice of the kernel function is always based on other
considerations, such as differentiability and computation effort. If the true curve has bounded support, the kernel
estimator will suffer boundary biases and the choice of K(·) becomes important. In our simulation study which does
not involve any bounded support, we picked Gaussian kernel

K(t) =
1√
2π

e−t2/2 (26)

for smoothing throughout the paper.
The reference to normal distributions (Scott 1992) was used to guide the selection of the bandwidth. The reference

to normal distributions methods assumes the data comes from a distribution “close” to normal distributions. If the
Gaussian kernel is used, the optimal bandwidth is

h∗ = 1.06σ̂n−1/5, (27)

where σ̂ = min(s, 1.35−1interquartile) is the robust estimator of σ, and s is the sample standard deviation of the
data. This “subjective” choice works effectively if the assumed normal distribution is close to the real one. We used
this method to choose bandwidths for both variable x and y in our simulation studies.

Under our simulation set up, an alternative bandwidth choosing method, the Cross-Validation (Silverman 1986)
was also attempted. The bandwidths prescribed by both methods were similar. To save computation time, we
applied the reference to normal distributions method to pick the suitable bandwidths.
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