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Abstract 
General modeling methods for representing and improving the quality of discrete data (Winkler 
2003, 2008) extend and connect the editing methods of Fellegi and Holt (1976) and the 
imputation ideas of Little and Rubin (2002).  This paper describes a modeling framework to 
produce synthetic microdata that better corresponds to external benchmark constraints on certain 
aggregates (such as margins) and on which certain cell probabilities are bounded both below and 
above to reduce re-identification risk.  Rather than use linear constraints (Meng and Rubin 1993), 
the modeling methods use convex constraints (Winkler 1990, 1993) in an extended MCECM 
procedure. 
 
1.  Introduction 
This paper describes modeling methods for discrete data.  The methods are closely related to 
general modeling/edit/imputation methods (Winkler 2008) in which models can easily be created 
using very fast, parameter-driven software.  The methods and generalized software are suitable 
for a wide range of discrete data.  The models are used in generalized production edit/imputation 
software that assure that the ‘corrected’ data satisfy both edit restraints and preserve joint 
distributions in a principled manner.  Furthermore, the modeling methods use convex constraints 
(Winkler 1993, 1990) in an EMH algorithm that generalize the linear constraints of the MCECM 
algorithm of Meng and Rubin (1993).  An advantage of the new modeling methods is that the 
microdata created via the methods can have aggregates that are adjusted to certain benchmark 
totals. 
   General convex constraints provide great flexibility in creating models that approximately 
preserve analytic properties and reduce the re-identification risk in synthetic microdata that are 
created from the models.  Convex constraints allow putting lower and upper bounds on individual 
cells or on groups of cells.  In earlier work, Winkler (2007) showed how to use more elementary 
methods to reduce re-identification risk by putting lower and upper bounds on both small cells 
and sampling zeros while still approximately preserving most aggregates needed for loglinear 
modeling and important joint and conditional probabilities.  At that time, Winkler (2007) felt that 
the risk of re-identification via record linkage experiments was greatly reduced in comparison to 
data from some previous synthetic-data-generation methods.   
   Epsilon-privacy represents a gold standard in terms of preventing leakage of information and in 
preserving privacy.  Much research is needed to justify analytic properties of epsilon-private data.  
Dwork, McSherry, and Talwar (2007b, first two paragraphs of section 5) provide an example 
from ‘census’ data  in which the amount of noise added to a table having on the order of 
1,000,000 cells must be on the order to 1,000,000 (plus or minus) in each cell.  In this situation 
and most others where rigorous epsilon-privacy has been applied, it is not clear that the resultant 
‘protected’ microdata will meet analytic standards acceptable to most economists and 
statisticians.  Additionally, Xaio and Tao (2008) raise serious concerns by demonstrating that it is 
impractical to verify epsilon-privacy in most situations.  Specifically, they prove that L1-
sensitivity of functions (Dwork et al. 2006) is NP-Hard computationally.  Dwork et al. (2006) 
showed that computing the L1-sensitivity of functions was needed to verify epsilon-privacy in 
most situations. 
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  The notable exception to the lack of suitable analytic properties is work by Machanavajjhala et 
al. (2008) that preserves an extended type of epsilon-delta privacy in a very narrowly analytically 
focused ‘on-the-map’ application.  Machanavajjhala et al. applied clever theoretical techniques 
and introduced exceptionally complex computational methods that may not be suitable for most 
general situations. 
   In this paper, we slightly extend the methods of Winkler (2008, 2007) in a manner that creates a 
model with a desired set of properties.  To do this we place a few pairs of upper and lower bounds 
on key aggregates needed for the loglinear modeling while placing upper bounds and lower 
bounds on a very large set of small cells and sampling zeros.  The idea is to target preservation of 
analytic properties in the creation of the model.  To produce synthetic data, we merely randomly 
draw from the model in the appropriate fashion.  Typically, this means almost exactly preserving 
the probabilities associated with originally larger cells.  Most small cells in the original data are 
replaced by sets of sampling zeros that have positive probability in the model and that 
approximately preserve the key aggregates needed for loglinear modeling. 
   There are several key points of the new methods.  First, any direct re-identification experiment 
will only match originally small cells with sampling zeros that have very small positive 
probability in the models.  Second, because we target preservation of a few analytic properties, 
we are not creating all of the key aggregates (functions) in a manner where each function satisfies 
epsilon-privacy.  We do create an alternative to a type of epsilon-delta-privacy that we believe 
would make it exceptionally difficult to reconstruct the original private data in manners suggested 
by Dwork (2006), Barak et al. (2007), Dwork et al. (2007a) and Dwork and Yekhanin (2008) 
   Although the computational algorithms needed for creating the models are sufficiently fast for 
the largest edit/imputation applications, the algorithms, in some situations, may require speeding 
up for even moderate size (500 million cells) modeling situations needed for producing synthetic 
data.  
   In the second section of this paper, we give cursory background on edit/imputation and some of 
the basic computational algorithms.  We also describe how a re-identification experiment is 
performed that assures that private data cannot be easily re-identified but may not satisfy 
reasonable epsilon-privacy or epsilon-delta privacy.  We describe how the models are created.  In 
the third section, we provide empirical results on ‘census’ data that has be downloaded from the 
UCI machine learning repository and used in some confidentiality research.  Although any 
synthetic data produced from the model can prevent most re-identification using record linkage 
and satisfies a condition that can be considered an alternative to very weakened-type of epsilon-
delta-type of privacy, the synthetic data do not satisfy rigorous epsilon-delta privacy.  An 
interesting experiment (beyond the scope of the present paper) would be for a cryptographer to 
apply some of the constructive methods (e.g., Dwork 2006, Barak et al. 2007, Dwork et al. 
(2007a), Dwork and Yekhanin 2008) to the synthetic data to reconstruct a reasonable 
approximation of the original private data.  The final sections consist of brief discussion and 
concluding remarks.  This experiment would be needed regardless of the type of auxiliary 
information (Ganta et al. 2008) that might be available to an adversary. 
 
2.  Background 
In this section we provide background on modeling/edit/imputation, need for computational 
speed, re-identification using record linkage, and the general iterative fitting algorithm for 
creating the model. 
 
2.1  Modeling/Edit/Imputation 
Modern methods for edit/imputation began with the seminal paper of Fellegi and Holt (1976, 
hereafter FH).  With discrete data, an edit might be that a child of less than 16 could not be 
married.  Their paper provided three principles: (1) The minimum number of fields in each edit-
failing record r0 should be changed to create an edit-passing record r1 (error localization), (2) 
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Imputation rules should be derived automatically from edit rules, and (3) When imputation is 
necessary, it should maintain marginal and joint distributions of fields.   
   The FH paper was the first to provide a method that assured that an edit-failing record r0 could 
be changed into an edit-passing record r1.  To assure correct error localization, FH showed that 
implicit edits were needed.  Implicit edits are those that can be logically derived from explicitly 
defined edits.  Winkler (1997) provided set-covering algorithms that delineated the implicit edits, 
the set of which can be considered structural zeros for loglinear modeling.  Although a number of 
statistical agencies have implemented generalized FH production systems that assure the edit-
failing records can be ‘corrected’ to edit-passing records, none have provided FH methods that 
assure that the records also satisfy joint distributional characteristics from a model.  The FH 
suggestion that hot-deck could be used for (2) and (3) is not possible due to serious deficiencies 
in hot-deck that were not understood when the FH paper was written (Winkler 2008). 
   Winkler (2003) provided the theory connecting the edits of FH with the generalized imputation 
of Little and Rubin (2002).  An initial routine (Winkler 1997) finds the set of implicit edits 
(structural zeros) in a manner that is 100 times as fast as the previous fastest algorithms of 
Garfinkel, Kunnathur, and Liepins (1986) used by IBM in creating a large system for ISTAT 
(Barcaroli and Venturi. 1997).  A second routine (Winkler 2008) does standard loglinear 
modeling under a combination of linear and convex constraints in the presence of structural zeros.  
In the edit setting, the iterative fitting algorithm is a type of EM algorithm as in Little and Rubin 
(2002).  The key aspect of the second routine is having computational algorithms that are 
sufficiently fast for all of the survey data situations in the statistical agencies.  The final routine 
does the error localization (Winkler 1997) using either branch-and-bound or a greedy algorithm 
and then fills in missing or ‘to-be-changed’ values according to the model (contingency table) 
determined by the second routine.  All records are guaranteed to satisfy edits and the overall set 
of records preserve the probability distributions of the model.   
 
2.2  The EMH algorithm 
The general iterative fitting algorithm is extended to an EMH algorithm (Winkler 1993, 1990) for 
convex constraints that allow putting upper bounds on cells or convex combinations of cells.  
Because the set of probabilities must add to one, lower bounds can also be put on cell 
probabilities or simple sums of cell probabilities that might correspond to a marginal constraint.  
The general EMH algorithm has been used for unsupervised learning of optimal record linkage 
parameters (Winkler 1993) in which certain probabilities are estimated within restricted ranges 
based on a priori knowledge.  The general EMH algorithm has also been used in statistical 
matching to create microdata that better corresponds to (external) benchmark constraints 
(D’Orazio et al. 2006). 
   In the application of this paper, we apply the EMH algorithm with several constraints.  First, we 
perform standard loglinear modeling to determine the set of interactions needed to get suitably 
close-fitting model.  The model is the final set of probabilities associated with the cells 
corresponding to the entire set of data patterns.  Second, we take the set of counts associated with 
the small cells (here either 1 or 2) and disperse all of the counts across the entire set of small cells 
and the entire set of sampling zeros.  The intent is to assure positive probability of sampling zeros 
in a manner that preserves most of the characteristics of the best-fitting set of interactions under 
purely linear constraints.  Third, we place upper bounds (say 0.000004) on the probabilities 
associated with the originally small cells that assure that the final fitted probabilities are zero to 
five decimal places.  Fourth, if necessary, we can place upper and lower bounds on a few of the 
marginal probabilities in the final fitted contingency table that deviate substantially from the 
marginal probabilities in the original, private data.   
    To create the synthetic data, we randomly draw from the contingency table probability 
proportional to size, possibly with a suitable Dirichlet prior that is chosen to better preserve 
analytic properties.  If necessary, we can create multiple copies of the synthetic data.  
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2.3  Re-identification via Record Linkage 
After modeling and creation of synthetic data Y from the original data X, we can perform re-
identification experiments.  To do this we merely match data Y directly against data X.  The re-
identification experiment is conservative in the sense that it that any intruder would likely have 
data Y1 that is more difficult to match against X than Y.  In a real-world situation, the intruder 
would have names and other identifying information associated with individual records in data 
Y1.  Based on the worst-case re-identifications, it is possible to extrapolate downward explicit re-
identifications of individual records or of overall re-identification rates.  The downward 
extrapolation can be based on assumed typographical error rates or the record linkage metrics that 
are used to compare individual fields.  With discrete data, we might only do exact comparison of 
individual fields and use an EM-latent class algorithm for estimating the best record linkage 
parameters (i.e., unsupervised learning).  Kim and Winkler (1995) and Winkler (1998) used the 
EM algorithm and different field-comparison metrics for re-identification with continuous data.  
For convenience, we assume that we are using entire populations so that we need not extrapolate 
for different sampling scenarios.   
   Any record corresponding to a small cell in the data Y that can be associated via record linkage 
with the correct corresponding cell in X with high matching probability can be considered a re-
identification.  With continuous data scenarios, both Fuller (1993) and Winkler (1998) showed 
how to perform the matching to get explicit re-identification.  Discrete-data re-identification is 
much more straightforward under the complete population scenario of this paper.  Typically, if 
we randomly draw synthetic data from the model of section 2.2, we will not get any re-
identification using record linkage.  The key issue with the synthetic data is whether the synthetic 
data preserves a few analytic constraints so that someone using the synthetic data Y would 
approximately reproduce results that could be obtained from the original data X. 
   With epsilon-privacy (e.g., Dwork 2006), individuals make similar assumptions about the best 
possible data Y1 ( or Y) that might be matched against data X.  Epsilon-privacy goes further in 
that it assures almost no leakage of information that prevents re-identification but does not 
presently preserve analytic properties in any clearly established manner.  Ganta et al. (2008) 
explicitly bring in the use of auxiliary information in demonstrating that epsilon-privacy prevents 
any type of re-identification. 
 
2.4  The Empirical Data and Restraints Used for Modeling 
Data are from the University of California at Irvine machine learning respository.  The specific 
data set is ‘Adult’.  The variables (fields) downloaded were age, WorkClass (8 values), Education 
(16 values), MaritalStatus (7 values), Occupation (14 values), Race (5 values), Sex (2 values), 
and Country (41 values).  For initial testing purposes, we used WorkClass (7 values), 
MaritalStatus (7 values), Race (5 values), and Sex (2 values) that yielded 490 (7 × 7 × 5 × 2) data 
patterns.  There are 45221 data records and there are no missing fields within data records.  
WorkClass is reduced to 7 values because one of its values (NoWork) never occurs in the data 
set. 
   The data have 80 small cells having count 1 or 2, 191 cells that are sampling zeros, and 290 
cells having count above 2.  The total count associated with the small cells is 103.  We determine 
that the all 3-way interaction model gives good fits with linear constraints only.  We use an EM 
fitting procedure in which we disperse the total count of 103 associated with the small cells across 
all 271 (80 + 191) cells having small or zero counts.  The starting value is 103/271 in each cell 
and the expected E-values are based on the current set of the parameters from the M-step.  The 
counts of the larger cells are not varied in the modeling because we are assuming that we will not 
be able to effectively re-identify individual large cells in synthetic data Y randomly drawn from 
the model with the individual large cells in data X.  After the initial fitting under linear restraints, 
we repeat the fitting were we place additional convex constraints (upper bounds of 0.000004) on 

Section on Survey Research Methods – JSM 2009

2571



the small cells.  The synthetic data is created reproducing the counts of the non-small cells and 
randomly sampling from the remaining cells (both small and sampling zeros) with a probability 
proportional to size procedure until we achieve synthetic data Y of size 45221. 
   In earlier work, Winkler (2007) showed that the fitting and modeling methods had great 
flexibility in a small situation representing 48 (4 × 3 × 4) cells where nearly half of the cells were 
structural zeros.  In more recent work, Winkler (2008) showed that the modeling methods had 
somewhat greater flexibility in a situation with 96 (4 × 3 × 4 ×2) cells.  The point is that, with the 
smallest situations, we have very little flexibility in the modeling to preserve the analytic 
properties.  With more cells (490 data patterns), we have considerably greater flexibility in 
preserving analytic properties.  With an even greater number of cells (580,160 = 74 × 7 × 7 × 16 
× 5 × 2), we have even greater flexibility in preserving analytic properties but may encounter 
computational issues (45 seconds for the general fitting procedure to converge).   
 
3.   Results 
The results presented in this section are intended to represent a small situation (490 cells or data 
patterns) that is still quite cumbersome to present because of the large size of the tables.  We 
present the 490-cell situation because we believe that it is adequate for illustrating how analytic 
properties are preserved while significantly reducing re-identification risk. 
   Fitting the 3-way interaction model M1 (with linear but no convex constraints), we have that 
the maximum possible likelihood is -3.234682 and that the likelihood that we achieve is -
3.234982.  The maximum deviation allowed by the fitting software is 0.0000000000100.  If we fit 
with the same interaction restraints and an additional restraint with an upper bound of 0.000004 
on each originally small cell (model M2), we get the likelihood of -3.241030 that indicates a 
reasonably good overall fit.  As our fitting uses all 3-way interactions, we need to examine how 
closely the 3-way margins from the limiting solution under model M2 agree with the 3-way 
margins from the original data.  In indexing cells, we use a lexicographic ordering in which 
(0,0,0,0)=0, (0.0,0,1)=1, …, (6,6,4,1)=489.  We obtain this with the mapping (a1, a2, a3, 
4)=a1*24+a2*8+a3*2+a4*1.  
If Xi, 1≤i≤4, is the ith variable, then {X1=i1, X2=i2, X3=i3, X4=i4} = (i1, i2, i3, i4).  
   Table 1 represents original and fitted probabilities associated with a few selected individual 
cells.  It is an excerpt from the full Table A.1 that is available as Winkler Paper2 at 
http://fdz.iab.de/en/FDZ_Events/SDC-Workshop/Downloads.aspx.  A cell with a count of 1 has 
probability 0.00002 and a cell with count of 2 has probability 0.00004.  All of the probabilities in 
the table are rounded to five digits.  Cells 0000-0007 show that the individual cell probabilities 
are reasonably close to each other.  Cells 0020, 0021, and 0301 have the largest deviations.  Cell 
0107 is an original cell with count 1 that is given a fitted probability above zero and below 
0.000004.  Cells 0485-0489 are sampling zeros that are given a positive probability of 
approximately 0.00001.  When we randomly sample from Table A.1, we have positive 
probability of sampling each cell but originally small cells will seldom appear in the set of 
synthetic records.  All of the greatest deviations are associated with cells that have total 
probability of less than 0.003.  The greatest multiplicative deviation in the remaining cells is well 
less than 1.0.  The key issue is how well are the margins preserved. 
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Table 1.  Original and Fitted Probabilities  
               for Selected Cells 
_____________________ 
Cell                Original  Fitted_ 
0000 0 0 0 0   0.02859  0.02876  
0001 0 0 0 1   0.25344  0.25328  
0002 0 0 1 0   0.00172  0.00163  
0003 0 0 1 1   0.00781  0.00790  
0004 0 0 2 0   0.00031  0.00037  
0005 0 0 2 1   0.00181  0.00175  
0006 0 0 3 0   0.00042  0.00042  
0007 0 0 3 1   0.00210  0.00210  
0020 0 2 0 0   0.09670  0.09636  
0021 0 2 0 1   0.12426  0.12460 
0107 1 3 3 1   0.00002  0.00000  
0301 4 2 0 1   0.00637  0.00610  
0485 6 6 2 1   0.00000  0.00001  
0486 6 6 3 0   0.00000  0.00001  
0487 6 6 3 1   0.00000  0.00001  
0488 6 6 4 0   0.00000  0.00001  
0489 6 6 4 1   0.00000  0.00001  
 
 
   Table 2 contains a few selected marginal probabilities for variables 1, 3, and 4.  The largest 
deviations 0.000210, 0.00105, and 0.000100 occurred at marginal cells 0067, 0014, and 0054, 
respectively.  No other specific marginal probabilities for the other interaction patterns were this 
large.  We also give the first eight marginal probabilities.  Examination of table A.2 indicates that 
most marginal probabilities from the fitted data are very close to the marginal probabilities from 
the original data.  The closeness of the marginal probabilities indicates that association-rule 
mining and other elementary analyses of the joint and conditional probabilities should yield 
results from synthetic data created that agree quite closely with comparable results from the 
original confidential data.   
 
 
Table 2.  Original and Fitted 3-way Margins 
                 for Selected Marginal Cells 
___________________ 
Pattern = 3, Variables 1,3,4 
 00000  0.205988  0.205988  
 00001  0.427102  0.427102  
 00002  0.007607  0.007589  
 00003  0.013511  0.013518  
 00004  0.002211  0.002223  
 00005  0.003936  0.003925  
 00006  0.002410  0.002423  
 00007  0.004179  0.004146  
 00014  0.000133  0.000028  
 00054  0.000199  0.000099  
 00067  0.000000  0.000210  
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4.  Discussion 
Re-identification experiments may not be effective in proving the privacy of synthetic data 
produced according to the methods of this paper.  The synthetic data do not appear to satisfy any 
rigorous type of epsilon- or epsilon-delta privacy.  If a cryptographer were to reconstruct a 
moderate subset of the originally-private microdata from the synthetic data, then the 
reconstruction should prove that re-identification experiments are not valid in verifying the 
privacy of synthetic microdata in most situations.   
   Any reconstruction of the original data from the synthetic data would be computationally 
challenging in moderate size situations.  In the 6-variable scenario, there are 588,160 data 
patterns, 9447 cells having counts of 1 or 2, and 3098 cells having counts of greater than 2.  The 
total from all the cells is 45221.  Because there are so many sampling zeros (~98% of 588,160 
possible cells), we have great flexibility in assigning positive probabilities to the sampling zero 
cells in a manner in which analytic properties are approximately preserved (much better than with 
the 490-cell example of this paper).  After the random sampling, we have a synthetic data set (or 
multiple synthetic data sets) in which the small counts from 9447 cells in the original private data 
are placed in a suitable set of sampling zero cells. 
   More research needs to be done to on what it means to preserve analytic properties.  In 
particular, there needs to be more agreement among researchers on what it means to preserve 
analytic properties.  This paper merely shows that the overall fit of the data and almost all of the 
3-way margins having larger probability agree quite closely between the fitted and original data. 
   The computational algorithms may need to be speeded up and altered.  In testing on the larger 
data (588,160 cells), the fitting with both linear and a very simplified set of convex constraints 
needed 45 seconds CPU time.  With a very large set of convex constraints and a variant of the 
current set of algorithms for the convex constraints, the fitting takes 10-100 times as long. 
  In an additional test with on the order of 500,000,000 cells, the fitting took approximately 1000 
minutes.  In the larger situations, care must be taken to preserve analytic properties.  I does that 
seem that any special care must be taken in respect to re-identification risk which is greatly 
reduced.  Of the ‘small’ cells that appear in the final synthetic data fewer than 0.001 are actual 
small cells from the original, confidential microdata. 
 
5.  Concluding Remarks 
This paper provides methods for modeling discrete data that generalize standard loglinear 
modeling to methods that also include convex constraints.  When properly applied, the convex 
constraints allow significantly reduced chance of re-identification using record linkage methods.  
The synthetic data randomly drawn from the models approximately (but very closely) preserve a 
few analytic characteristics whereas epsilon-privacy methods (Dwork et al. 2007b, first two 
paragraphs of section 5) have not been demonstrated to preserve analytic properties.  The 
synthetic data created by the methods of this paper do not necessarily satisfy epsilon-privacy or 
epsilon-delta-privacy (Machanavajjhala et al. 2008) but might be exceptionally difficult to re-
identify using cryptographic protocols and exceptionally large amounts of computation. 
 
1/   This report is released to inform interested parties of (ongoing) research and to encourage discussion 
(of work in progress).  Any views expressed on (statistical, methodological, technical, or operational) 
issues are those of the author(s) and not necessarily those of the U.S. Census Bureau.   
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