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Abstract
We consider assessment of nonresponse bias for the mean of a binary survey variable Y subject to

nonresponse. We assume that there are a set of covariates observed for nonrespondents and respon-
dents. To reduce dimensionality and for simplicity we reduce the covariates to a continuous proxy
variable X that has the highest correlation with Y, estimated from a probit regression analysis of
respondent data. We extend our previously proposed proxy-pattern mixture analysis for continuous
outcomes to the binary outcome using a latent variable approach, applying a pattern-mixture model
for the joint distribution of the proxy X and the underlying latent variable for the outcome Y. Meth-
ods are demonstrated through simulation and with data from the third National Health and Nutrition
Examination Survey (NHANES III).

Key Words: Nonignorable nonresponse; Nonresponse bias; Missing data; Survey data; Bayesian
methods,

1. Introduction

Response rates for large-scale surveys have been steadily declining in recent years (Curtain
et al. 2005), increasing the need for methods to analyze the impact of nonresponse on sur-
vey estimates. There are three major components to consider in evaluating nonresponse:
the amount of missingness, differences between respondents and nonrespondents on char-
acteristics that are observed for the entire sample, and the relationship between these fully
observed covariates and the survey outcome of interest. Current methods to handle non-
response in surveys have tended to focus on a subset of these components, however, the
impact of nonresponse cannot be fully understood without all three pieces. In addition,
historically the focus has been on situations were data are assumed to be missing at ran-
dom, with less attention paid to the case when missingness may be not at random, that is,
depend on the unobserved outcome itself (Rubin 1976). In this paper we propose a method
for estimating population proportions in survey samples with nonresponse that includes but
does not assume ignorable missinginess.

A limited amount of work has been done in the area of nonignorable nonresponse for
categorical outcomes in survey data. Some examples include Stasny (1991), who used
a hierarchical Bayes nonignorable selection model to study victimization in the National
Crime Survey. Extensions of this approach by Nandram and Choi (2002a) and Nandram
and Choi (2002b) use continuous model expansion to center the nonignorable model on an
ignorable model, in the manner of Rubin (1977). Similar methods are developed for multi-
nomial outcomes in Nandram et al. (2002) and Nandram et al. (2005) and used to study
health outcomes in the third National Health and Nutrition Examination Survey (NHANES
III). The main difference between our proposed approach and these previous methods is the
method of modeling the missing data. There are two general classes of models for incom-
plete data, selection models and pattern-mixture models (Little and Rubin 2002). Previous
work on nonresponse models in surveys has tended to favor the selection model; we use a
pattern-mixture approach. The pattern-mixture approach requires explicit assumptions on
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the missing data mechanism and naturally leads to a sensitivity analysis, whereas the selec-
tion model approach requires strong distributional assumptions to (often weakly) identify
parameters. In addition, methods for categorical nonresponse have tended to be limited
to the case when auxiliary data are also categorical. However, auxiliary variables may be
continuous; our proposed method does not require that continuous variables be categorized
before inclusion in the model.

The work in this paper is an extension of our previously described proxy pattern-
mixture analysis (PPMA) for a continuous outcome; In Section 2 we briefly review the
continuous outcome PPMA before describing its extension to binary outcomes in Sec-
tion 3. Section 4 discusses three different estimation approaches, maximum likelihood,
a Bayesian approach, and multiple imputation, and the sensitivity of each method to model
misspecification. These methods are illustrated first through simulation in Section 5 and
then by application to NHANES III data in Section 6. Section 7 presents some concluding
remarks.

2. Review of the Proxy Pattern-Mixture Model

Proxy pattern-mixture analysis was developed for the purpose of assessing nonresponse
bias for estimating the mean of a continuous survey variable Y subject to nonresponse.
For simplicity, we initially consider an infinite population with a sample of size n drawn
by simple random sampling. Let Yi denote the value of a continuous survey outcome and
Zi = (Zi1, Zi2, . . . , Zip) denote the values of p covariates for unit i in the sample. Only r
of the n sampled units respond, so observed data consist of (Yi, Zi) for i = 1, . . . , r and
Zi for i = r + 1, . . . , n. In particular this can occur with unit nonresponse, where the
covariates Z are design variables known for the entire sample or with item nonresponse.
Of primary interest is assessing and correcting nonresponse bias for the mean of Y .

To reduce dimensionality and for simplicity we reduce the covariates Z to a single
proxy variable X that has the highest correlation with Y , estimated from a regression anal-
ysis of Y on Z using respondent data. Let ρ be the correlation of Y and X , which we
assume is positive. If ρ is high (say, 0.8) we call X a strong proxy for Y and if X is
low (say, 0.2) we call X a weak proxy for Y . In addition to the strength of the proxy as
measured by ρ, an important factor is the deviation from missing completely at random
(MCAR) as measured by the difference between the overall mean of the proxy and the
respondent mean of the proxy, d = x̄ − x̄R. The distribution of X for respondents and
nonrespondents provides the main source of information for assessing nonresponse bias
for Y . We consider adjusted estimators of the mean of Y that are maximum likelihood
for a pattern-mixture model with different mean and covariance matrix of Y and X for
respondents and nonrespondents, assuming missingness is an arbitrary function of a known
linear combination of X and Y . This allows insight into whether missingness may be not
at random (NMAR).

Specifically, we let M denote the missingness indicator, such that M = 0 if Y is ob-
served and M = 1 if Y is missing. We assume that the joint distribution of [Y,X,M ]
follows the bivariate pattern-mixture model discussed in Little (1994). This model is un-
deridentified, since there is no information on the conditional normal distribution for Y
given X for nonrespondents (M = 1). However, Little shows that the model can be iden-
tified by making assumptions about how missingness of Y depends on Y and X . For the
proxy pattern-mixture we assume that,

Pr(M = 1|Y,X) = f(X

√√√√σ
(0)
yy

σ
(0)
xx

+ λY ) = f(X∗ + λY ), (1)
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where X∗ is the proxy variable X scaled to have the same variance as Y in the respon-
dent population. By a slight modification of the arguments in Little (1994), the resulting
maximum likelihood estimate of the overall mean of Y is,

µ̂y = ȳR +
λ+ ρ̂

λρ̂+ 1

√
syy

sxx
(x̄− x̄R), (2)

where x̄R and ȳR are the respondent means of X and Y , sxx and syy are the respondent
sample variances of X and Y , and x̄ is the overall sample mean of X .

The parameter λ is a sensitivity parameter; there is no information in the data with
which to estimate it. Different choices of λ correspond to different assumptions on the
missing data mechanism. We assume that λ is positive, which seems reasonable given that
X is a proxy for Y . Then as λ varies between 0 (missingness depends only on X) and
infinity (missingness depends only on Y ), g(ρ̂) = (λ + ρ̂)/(λρ̂ + 1) varies between ρ̂
and 1/ρ̂. When λ = 0 the data are MAR, since in this case missingness depends only on
the observed variable X . In this case g(ρ̂) = ρ̂, and (2) reduces to the standard regression
estimator. In this case the bias adjustment for Y increases with ρ̂, as the association between
Y and the variable determining the missing data mechanism increases. On the other hand
when λ = ∞ and missingness depends only on the true value of Y , g(ρ̂) = 1/ρ̂ and (2)
yields the inverse regression estimator proposed by Brown (1990). The bias adjustment
thus decreases with ρ̂, reflecting the fact that in this case the bias in Y is attenuated in the
proxy, with the degree of attenuation increasing with ρ̂.

For assessing potential nonresponse bias in the mean of Y , we suggest a sensitivity
analysis using λ = (0, 1,∞) to capture a range of missingness mechanisms. In addition to
the extremes, we use the intermediate case of λ = 1 that weights the proxy and true value
of Y equally because the resulting estimator has a particularly convenient and simple inter-
pretation. In this case g(ρ̂) = 1 regardless of the value of ρ̂, implying that the standardized
bias in ȳR is the same as the standardized bias in x̄R. In general, the stronger the proxy, the
closer the value of ρ̂ to one, and the smaller the differences between the three estimates.

3. Extension of PPMA to a Binary Outcome

The proxy pattern-mixture analysis described above strictly only applies to continuous sur-
vey variables, where normality is reasonable. However, categorical outcomes are ubiqui-
tous in sample surveys. In this section we extend PPMA to binary outcomes using a latent
variable approach. Let Yi now denote the value of a partially missing binary survey out-
come, and Zi = (Zi1, Zi2, . . . , Zip) denote the values of p fully observed covariates for
unit i in the sample. As before, only r of the n sampled units respond, so observed data
consist of (Yi, Zi) for i = 1, . . . , r and Zi for i = r+1, . . . , n. Of interest is the proportion
of units in the population with Y = 1.

For simplicity and to reduce dimensionality, we replace Z by a single continuous proxy
variable X , estimated by a probit regression of Y on Z using the respondent data,

Pr(Y = 1|Z,M = 0) = Φ(α0 + αZ). (3)

We take X = α̂0 + α̂Z to be the linear predictor from the probit regression, rather than
the predicted probability, so that its support is the real line. The regression coefficients α
are subject to sampling error, so in practice X is estimated rather than known. The choice
of the probit link, rather than alternatives such as the logit link, is due to the latent variable
motivation of probit regression. We assume that Y is related to a continuous normally
distributed latent variable U through the rule that Y = 1 when the latent variable U > 0.
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The latent (respondent) data are then related to the covariates through the linear regression
equation, U = α0 + αZ + ε, where ε ∼ N(0, 1).

This latent variable approach motivates application of the normal proxy pattern-mixture
(PPM) model to the latent variable U and proxy X . If we could observe U for the respon-
dents, application of the PPM model would be straightforward. Taking M to be the miss-
ing data indicator, we assume that the joint distribution of [U,X,M ] follows the bivariate
pattern-mixture model:

(U,X|M = m) ∼ N2

(
(µ(m)

u , µ(m)
x ),Σ(m)

)
M ∼ Bernoulli(1− π)

Σ(m) =

 σ
(m)
uu ρ(m)

√
σ

(m)
uu σ

(m)
xx

ρ(m)

√
σ

(m)
uu σ

(m)
xx σ

(m)
xx

 ,
(4)

where N2 denotes the bivariate normal distribution. Note that the parameter ρ(m) is the
correlation between the latent variable U and the constructed proxy X . As with the con-
tinuous outcome PPM model the parameters µ(1)

u , σ(1)
uu , and ρ(1) are unidentifiable without

further model restrictions. Since U is completely unobserved, σ(0)
uu is also not identifiable

and without loss of generality can be fixed at an arbitrary value. Following convention we
set σ(0)

uu = 1/(1− ρ(0)2) so Var(U |X,M = 0) = 1.
We identify the model by making assumptions about how missingness of Y depends on

U and X . As with the continuous outcome PPM model, we modify the arguments in Little
(1994) and assume that

Pr(M = 1|U,X) = f(X

√√√√σ
(0)
uu

σ
(0)
xx

+ λU) = f(X∗ + λU), (5)

where X∗ is the proxy variable X scaled to have the same variance as U in the respondent
population. An important feature of this mechanism is that when λ > 0, i.e. under NMAR,
the missingness in the binary outcome Y is being driven by X and by the completely
unobserved latent U . This allows for a “smooth” missingness function in the sense that
conditional on X the probability of missingness may lie on a continuum instead of only
taking two values (as would be the case if missingness depended on Y itself). Of primary
interest is the marginal mean of Y , which is given by,

µy = Pr(Y = 1) = Pr(U > 0) = πΦ
(
µ(0)

u /

√
σ

(0)
uu

)
+ (1− π)Φ

(
µ(1)

u /

√
σ

(1)
uu

)
, (6)

where Φ(·) denotes the standard normal CDF.

3.1 Summary of Evidence about Nonresponse Bias

The information about nonresponse bias in the mean of Y is contained in the strength
of the proxy as measured by ρ(0) and the deviation in the proxy mean, d = x̄ − x̄R.
Strong proxies (large ρ(0)) and small deviations (small d) lead to decreased uncertainty and
higher precision in estimates, even under NMAR, while weak proxies (low ρ(0)) and large
deviations (large d) lead to increased uncertainty, especially when missingness depends on
Y . In the case of the continuous outcome, both ρ(0) and d were directly interpretable, since
ρ̂(0) was the square root of the R2 from the regression model that built the proxy X and
the deviation d was on the same scale as the (linear) outcome Y . With a binary outcome,
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we lose these neat interpretations of ρ(0) and d, though their usefulness as markers of the
severity of the nonresponse problem (d) and our ability to make adjustments to combat the
problem (ρ(0)) remains. The information about nonresponse bias in Y is contained in X ,
with X now a proxy for the latent U instead of the partially observed outcome Y itself.

Another issue unique to the binary case (and subsequent extension to ordinal Y ) is that
the size of the nonresponse bias in Y , i.e. the difference in mean between respondent and
overall means, depends not only on the size of the deviation on the latent scale (d) but also
on the respondent mean itself. In the continuous case, the bias in ȳR is a linear function of
d (see (2)); a deviation d has the same (standardized) effect on the overall mean regardless
of the value of ȳR. However, in the binary case the deviation is on the latent scale, and only
the bias in U is location-invariant. When transformed to the binary outcome, different d
values will lead to different size biases, depending on the respondent mean of Y . The use
of the standard normal CDF to transform U to Y drives this; the difference Φ(a+d)−Φ(a)
is not merely a function of d but also depends on the value of a.

4. Estimation Methods

4.1 Maximum Likelihood

Maximum likelihood (ML) estimators for the distribution of U givenX for nonrespondents
follow directly from the continuous outcome PPM model,

µ̂(1)
u = µ̂(0)

u + g ×

√√√√ σ̂
(0)
uu

σ̂
(0)
xx

(x̄NR − x̄R)

σ̂(1)
uu = σ̂(0)

uu + g2 × σ̂
(0)
uu

σ̂
(0)
xx

(σ̂(1)
xx − σ̂(0)

xx ) (7)

g =
λ+ ρ̂(0)

λρ̂(0) + 1
.

Plugging these estimates into (6) yields the ML estimate of the mean of Y . The ML esti-
mates of the parameters of the distribution of X are the usual estimators, however, estima-
tors for µ(0)

u and ρ(0), and therefore σ(0)
uu , are not immediately obvious since the latent U

is unobserved even for respondents. To obtain these estimates, we note that the correlation
ρ(0) is the biserial correlation between the binary Y and continuous X for the respondents.
Maximum likelihood estimation of the biserial correlation coefficient was first studied by
Tate (1955a,b), who showed that a closed form solution does not exist. The parameters ρ(0)

and ω(0) = µ
(0)
u /

√
σ

(0)
uu (referred to as the cutpoint) must be jointly estimated through an

iterative procedure such as a Newton-Raphson type algorithm. It is important to note that
the ML estimate of ω(0) is not the inverse probit of the respondent mean of Y , i.e. the ML
estimate of the mean of Y for respondents is not ȳR.

An alternative method of estimating the biserial correlation coefficient is the two-step
method, proposed by Olsson et al. (1982) in the context of the polyserial correlation co-
efficient. In the first step, the cutpoint ω(0) is estimated by ω̂(0) = Φ−1(ȳR), so that the
ML estimate of the respondent mean of Y is ȳR. Then a conditional maximum likelihood
estimate of ρ(0) is then computed, given the other parameter estimates. This method is
computationally simpler than the full ML estimate, and also has the attractive property of
returning the logical estimate µ̂(0)

y = ȳR.
The large sample variance of the full ML estimate of µy is obtained through Taylor

series expansion and inversion of the information matrix. The properties of the two-step
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estimator are not well studied, so variance estimates are obtained with the bootstrap.

4.2 Bayesian Inference

The ML estimate ignores the uncertainty inherent in the creation of the proxy X . An
alternative approach is to use a Bayesian framework that allows incorporation of this un-
certainty. Since U is unobserved, we propose using a data augmentation approach. We
place noninformative priors on the regression parameters α and use a Gibbs’ sampler to
draw the latent U for respondents (Albert and Chib 1993). Conditional on α (and therefore
on the created proxy X), U follows a truncated normal distribution,

(U |Y, α,M = 0) = (U |Y,X,M = 0) ∼ N(X, 1) = N(αZ, 1)
truncated at the left by 0 if Y = 1 and at the right by 0 if Y = 0.

(8)

Then given the augmented continuous U we draw α from its posterior distribution, which
also follows a normal distribution,

(α|Y,U,M = 0) ∼ N((ZTZ)−1ZTU, (ZTZ)−1), (9)

and recreate the proxy X = αZ.
This data augmentation allows for straightforward application of the Bayesian estima-

tion methods for continuous PPMA. For a chosen value of λ, we apply the PPM algorithm
as described in Andridge and Little (2009) to the pair (X,U) to obtain draws of the param-
eters of the joint distribution of X and U . Since U is unobserved even for the respondents,
after each draw of the parameters from the PPM model,X is recreated for the entire sample
and U is redrawn for the respondents given the current set of parameter values as described
in the data augmentation approach above. Note that this does not require a draw of the
latent data for nonrespondents. Draws from the posterior distribution of µy are obtained by
substituting the draws from the Gibbs’ sampler into (6).

4.3 Multiple Imputation

An alternative method of inference is multiple imputation (Rubin 1978). For a selected λ
we createK complete data sets by filling in missing Y values with draws from the posterior
distribution, based on the pattern-mixture model. For a given draw of the parameters φ =
(µ(1)

u , µ
(1)
x , σ

(1)
uu , σ

(1)
xx , ρ(1)) from their posterior distribution as Section 4.2, we draw the

latent U for nonrespondents based on the conditional distribution,

[ui|xi,mi = 1, φ(k)] ∼ N

µ(1)
u(k) +

σ
(1)
ux(k)

σ
(1)
xx(k)

(
xi − µ(1)

x(k)

)
, σ

(1)
uu(k) −

σ
(1)
ux(k)

2

σ
(1)
xx(k)

 (10)

where the subscript (k) denotes the kth draws of the parameters. In order to reduce auto-
correlation between the imputations due to the Gibbs’ sampling algorithm for drawing the
parameters, we thin the chain for the purposes of creating the imputations. The missing
yi are then imputed as yi = I(ui > 0), where I() is an indicator function taking the
value 1 if the expression is true. For the kth completed data set, the estimate of µy is the
sample mean Ȳk with estimated variance Wk. A consistent estimate of µy is then given
by µ̂y = 1

K

∑K
k=1 Ȳk with Var(µ̂y) = W̄K + K+1

K BK , where W̄K = 1
K

∑K
k=1Wk is

the within-imputation variance and B = 1
K−1

∑K
k=1(Ȳk − µ̂y)2 is the between-imputation

variance.
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As with the continuous PPMA, an advantage of the multiple imputation approach is the
ease with which complex design features like clustering, stratification and unequal sam-
pling probabilities can be incorporated. Once the imputation process has created complete
data sets, design-based methods can be used to estimate µy and its variance; for example
the Horvitz-Thompson estimator can be used to calculate Ȳk.

4.4 Sensitivity to a Non-normally Distributed Proxy

A crucial assumption of the PPM model for both continuous and binary outcomes is that
of bivariate normality of X and Y or U . The continuous outcome PPM model is relatively
robust to departures from this assumption and only relies on linear combinations of first and
second moments in estimating the mean of Y . However, for binary outcomes the normality
assumption plays a more crucial role, made clear with a simple example. Suppose the proxy
X is normally distributed in the respondent population, with [X|M = 0] ∼ N(µ(0)

x , σ
(0)
xx ).

We assume that, for respondents, the latent variable U = X + e where e ∼ N(0, 1),
such that Pr(Y = 1|M = 0) = Pr(U > 0|M = 0). Then the conditional and marginal
respondent distributions of U along with the mean of Y are given by,

[U |X,M = 0] ∼ N(X, 1)

[U |M = 0] ∼ N(µ(0)
x , 1 + σ(0)

xx )

µ(0)
y = Pr(U > 0|M = 0) = Φ

(
µ(0)

u /

√
σ

(0)
uu

)
= Φ

(
µ(0)

x /

√
1 + σ

(0)
xx

)
However, if the distribution of X , fX(x), is not normal, then the conditional distribution
[U |X,M = 0] is the same but the marginal distribution is no longer normal. Now Pr(U >
0) =

∫∞
0 fU (u) du where fU (u) is the convolution of the error distribution N(0, 1) and

fX(x). Thus even the estimate of the respondent mean of Y will be biased, despite the fact
that Y is fully observed for the respondents.

Even though PPMA can provide unbiased estimates of the mean and variance of U in
the case whenZ is not normally distributed (like the continuous PPMA), the transformation
to the mean of Y is only accurate when Z is normally distributed. Both the full ML esti-
mation and Bayesian methods will produce biased estimates of µy ifX deviates away from
normality. The two-step ML method is less sensitive to non-normality, since it estimates
µ

(0)
y by ȳR. Multiple imputation also is less sensitive to departures from normality since

imputation is based on the conditional distribution [U |X,M ] which is normal by definition
of the latent variable and is not affected by non-normal X .

We propose modifying the Bayesian method to attempt to reduce sensitivity to devi-
ations from normality in the proxy X . The modification is an extension of the multiple
imputation approach: at each iteration of the Gibbs’ sampler, the latent U for nonrespon-
dents is drawn conditional on the current parameter values, and the subsequent draw of µ(1)

y

is taken to be µ(1)
y = 1

n−r

∑n
i=r+1 I(Ui > 0). A similar method of obtaining an estimator

for the respondent mean does not work, as draws of U for the respondents in the Gibbs’
sampler are conditional on the observed Y and thus the resulting draw will always be ȳR.
To avoid this, we can take one of two approaches. An obvious extension is to redraw the
latent U conditional only on the current draws of the proxy and the parameters, with the
subsequent draw of µ(0)

y is taken to be µ(0)
y = 1

n−r

∑n
i=r+1 I(Ui > 0). The drawback of

this method (Modification 1) is that variances may actually be overestimated since we are
essentially imputing the observed binary outcome Y for the respondents. Alternatively, we
can use the average of the predicted probabilities for the respondents as a draw of µ(0)

y , i.e.
1
r

∑r
i=1 Φ−1(Xi). This is actually a draw of the conditional mean of Y (conditional on X)
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and so its posterior distribution will underestimate the variance of µ(0)
y . To combat this we

take a bootstrap sample of the Xi before calculating the mean of the predicted probabilities
(Modification 2).

5. Simulation Study

We now describe a simulation study designed to numerically illustrate the taxonomy of
evidence concerning bias based on the strength of the proxy (ρ) and the deviation of its
mean (d∗). We created a total of eighteen artificial data sets in a 3x3x2 factorial design with
a fixed nonresponse rate of 50%. A single data set was generated for each combination of
ρ = {0.8, 0.5, 0.2}, d∗ = {0.1, 0.3, 0.5} and n = {100, 400} as follows. A single covariate
Z was generated for both respondents and nonrespondents, with zi ∼ N(0, 1), i = 1, . . . , r
for respondents and zi ∼ N(d∗/(1 − r/n), 1), i = r + 1, . . . , n for nonrespondents. For
respondents only, a latent variable ui was generated as [ui|zi] ∼ N(a0 + a1zi, 1), with an
observed binary Y then created as yi = 1 if ui > 0. We set a1 = ρ/

√
1− ρ2 so that

Corr(Y,X|M = 0) = ρ and choose a0 = Φ−1(0.3)
√

1 + a2
1 so that the expected value

of Y for respondents was 0.3. In this and all subsequent simulations the latent variable U
was used for data generation and then discarded; only Y and Z were used for the proxy
pattern-mixture analysis.

For each of the eighteen data sets, estimates of the mean of Y and its variance were
obtained for λ = (0, 1,∞). For each value of λ, three 95% intervals were calculated:

(a) ML: the (full) maximum likelihood estimate ± 2 standard errors (large-sample ap-
proximation),

(b) PD: the posterior median and 2.5th to 97.5th posterior interval based on 2000 cycles
of the Gibbs’ sampler as outlined in Section 4.2, with a burn-in of 20 iterations,

(c) MI: mean ± 2 standard errors from 20 multiply imputed data sets, with a burn-in of
20 iterations and imputing on every hundredth iteration of the Gibbs’ sampler.

The two-step ML estimator and two modifications to the Bayes estimator to handle non-
normal proxies were also calculated. Since the simulated covariate data were normally
distributed, the modified estimators yield similar results and are not shown. The complete
case estimate (± 2 standard errors) was also computed for each data set. Simulations and
data analysis were performed using the software package R (R Development Core Team
2007).

5.1 Results

Figure 1 shows the resulting 95% intervals using each of the three estimation methods for
the nine data sets with n = 400, plotted alongside the complete case estimate. The relative
performances of each method for the data sets with n = 100 are similar to the results with
n = 400 (with larger interval lengths); results are not shown. We note that in this simulation
the true mean of Y is not known; we simply illustrate the effect of various values of ρ and
d∗ on the sensitivity analysis and compare the different estimation methods.

For populations with strong proxies (ρ = 0.8), ML, PD, and MI give nearly identical
results. For these populations there is not a noticable increase in the length of the intervals
as we move from λ = 0 to λ = ∞, suggesting that even in the case of a large deviation
(d∗ = 0.5) there is good information to correct the potential bias.
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For weaker proxies we begin to see differences among the three methods. When λ = 0
(MAR) the three methods yield similar inference, but for nonignorable mechanisms the in-
tervals for PD and MI tend to be wider than those for ML. For both Bayesian methods (PD,
MI) the interval width increases as we move from λ = 0 to λ =∞, with a marked increase
in length when ρ = 0.2. The ML estimate displays different behaviour; its intervals actu-
ally get very small for the weak proxies and large d. This is due to the unstable behaviour
of the MLE near the boundary of the parameter space. For weak proxies (small ρ), the
MLE of σ(1)

uu as given in (7) can be zero or negative if the nonrespondent proxy variance is
smaller than the respondent variance. If it is negative, we set σ̂(1)

uu = 0. Since the MLE of

the mean of Y is given by µ(1)
y = Φ

(
µ

(1)
u /

√
σ

(1)
uu

)
, a zero value for σ̂(1)

uu causes µ̂(1)
y to be

exactly 0 or 1 depending on the sign of µ̂(1)
u . The large sample variance will then be small

since the estimate of σ(1)
uu is zero, and interval widths will be small relative to the PD or MI

intervals.
Since the outcome is binary, we obtain a natural upper and lower bound for the mean

of Y by filling in all missing vales with zeros or all with ones. These bounds are shown in
dotted lines in Figure 1. For strong proxies, even with a large deviation this upper bound
is not reached, suggesting that even in the worst-case NMAR scenario where missingness
depends entirely on the outcome the overall mean would not be this extreme. However, for
the weakest proxy (ρ = 0.02) we see that even for the smallest deviation the intervals for
PD and MI cover these bounds. This is due to the weak information about Y contained
in the proxy. The PD intervals are highly skewed and the MI intervals are exaggerated in
length. The posterior distribution of µy is bimodal, with modes at each of the two bounds
obtained when all missings are zeros or all ones. Thus the posterior interval essentially
covers the entire range of possible values of µy. Similarly for MI the imputed data sets have
imputed values that are either all zeros or all ones. This causes very large variance and thus
large intervals, and since by construction the intervals are symmetric for MI, they are even
larger than the posterior intervals from PD. As previously discussed, the ML method gives
extremely small intervals for the weak proxies, with the point estimate at the upper bound.

5.2 Additional Simulations

We also performed simulation studies to assess the confidence coverage of ML, Bayes and
MI inferences and the modified ML and Bayesian methods when model assumptions (i.e.
normality) hold and when they do not hold. For the sake of space we omit the details but
summarize the findings briefly. When the normality assumption holds, the first modification
to the Bayesian method, unconditionally redrawing the respondent latent variable, achieves
nominal coverage but has slightly increased confidence interval width compared to the
unmodified Bayesian method. Conversely, the second modification to the Bayesian method,
bootstrapping the predicted probabilities, shows slight undercoverage with strong proxies
(ρ = 0.8) but nominal coverage with weaker proxies (ρ = 0.5, 0.2).

When the normality assumption does not hold, as expected the unmodified Bayesian
and ML methods are biased and have poor coverage, while the modified methods perform
well. Overall, the best performing method is MI, which achieves nominal or just under
nominal coverage for a varied set of skewed proxy distributions. This result is not surpris-
ing. Even though MI uses the fully parametric PPM model to generate posterior draws of
the parameters, these draws are subsequently used to impute the missing Y values via the
conditional distribution of [U |X,M = 1]. Even if the proxy is not normally distributed,
the conditional distribution of the latent variable given the proxy is normal by definition,
and so MI should be the least sensitive to departures away from normality in the proxy.
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The one other method that does reasonably well in most scenarios is the first modifica-
tion to the Bayesian draws. As with MI, this method conditions on the proxy and draws the
latent U and thus outperforms the unmodified Bayesian method that relies entirely on the
joint normality of U and the proxy X . It achieves at or near nominal coverage for strong
proxies across all levels of skewness, but exhibits overcoverage for weaker proxies. This is
to be expected, since in this modification the latent U for respondents are redrawn uncon-
ditional on the observed Y , which is effectively imputing the observed Y , and certainly has
the potential to add unnecessary variability, as was noted in Section 4.4.

6. Application

The third National Health and Nutrition Examination Survey (NHANES III) was a large-
scale stratified multistage probability sample of the noninstitutionalized U.S. population
conducted during the period from 1988 to 1994 (U.S. Department of Health and Human
Services 1994). NHANES III collected data in three phases: (a) a household screening
interview, (b) a personal home interview, and (c) a physical examination at a mobile exami-
nation center (MEC). The total number of persons screened was 39,695, with 86% (33,994)
completing the second phase interview. Of these, only 78% were examined in the MEC.
Since the questions asked at both the second and third stage varied considerably by age we
chose to select only adults age 17 and older who had completed the second phase interview
for the purposes of our example, leaving a sample size of 20,050.

We selected two binary variables for the purposes of our example: an indicator for low
income, defined as being below the poverty threshold, and an indicator for hypertension,
defined as having a systolic blood pressure above 140 mmHg. The nonresponse rates for
these items were 15% and 11% respectively. In order to reflect nonresponse due to unit
nonresponse at the level of the MEC exam we chose to only include fully observed covari-
ates to create the proxies; variables that were fully observed for the sample included age,
gender, race, and household size. The (log-transformed) design weight was also used as a
covariate in creating the proxies. The final models were chosen with backwards selection
starting from a model that contained all second-order interactions.

Hypertension had a strong proxy and a relatively large deviation, with ρ̂ = 0.67 and
d∗ = 0.072. Income had a slightly weaker proxy, with ρ̂ = 0.47, but also a smaller
deviation with d∗ = 0.035.

For each outcome, estimates of the probilities and confidence intervals for λ = (0, 1,∞)
were obtained using both the original and modified maximum likelihood methods (ML Full,
ML 2step), both the original (PD A) and two modified versions (Modification 1 = PD B,
Modification 2 = PD C) of 1000 draws from the posterior distribution with a burn-in of 20
draws, and multiple imputation with K = 20 data sets (MI), again with a burn-in of 20
draws and imputing on every hundredth iteration. Additionally, since NHANES III has a
complex survey design we obtained estimates using multiple imputation with design-based
estimators of the mean using the survey weights (MI wt). These were compared to the
complete case estimates, both unweighted (CC) and weighted (CC wt). We note that the
unweighted estimators are clearly biased for the population total since they ignore the sam-
ple weights but are just used for illustration and comparison of the different estimation
methods. Design-based estimators were computed using the “survey” routines in R, which
estimate variances using Taylor series linearizations (Lumley 2004).

Estimated proportions and confidence intervals are displayed in Figures 2 and 3. The
intervals for weighted MI are larger than those for any of the non-design-adjusted methods,
and for both outcomes there is also a shift in the mean estimates for the weighted estimators,
consistent for all values of λ, reflecting the impact on these outcomes of the oversampling
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Figure 2: Estimates of the proportion hypertensive for λ = (0, 1,∞) based on NHANES
III adult data. Numbers below intervals are the interval length. Dotted lines are the point
estimates obtained by filling in all ones or all zeros for missing values.
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in NHANES of certain age and ethnic groups. The deviations are not negligble for any
of the three outcomes, as evidenced by the shift in the estimates as we move from λ = 0
to λ = ∞. However, both outcomes have moderately strong proxies, so the width of
confidence intervals even in the extreme case of λ = ∞ are not inflated too much above
the length of the intervals under MAR (λ = 0).

Looking at the center of the intervals, for hypertension we see a difference in the es-
timates for full maximum likelihood (ML Full) and the unmodified Bayesian method (PD
A) compared to all the other estimators. The distribution of the proxies for each outcome
is shown in Figure 4, separately for respondents and nonrespondents. We can see that the
proxy for hypertension is skewed while the proxy for income does not appear to be ex-
actly normally distributed but is basically symmetric. The sensitivity of the full ML and
Bayesian method to non-normality is an issue of skewness. These deviations from symme-
try have the effect of shifting mean estimates considerably, as seen in Figure 2. Though we
do not know the true proportions, since the modified methods condition on the proxy when
estimating the proportions and yield the respondent proportion as the respondent means, for
skewed proxies using the modified Bayesian methods, multiple imputation, or the two-step
ML estimator seems to be the wisest choice.

The two modifications to the Bayesian method, labeled PD B and PD C in the figures,
do not yield identical inference. In particular the first modification (PD B), redrawing the
latent U for respondents, seems to be overestimating variance relative to the two-step ML
estimator (ML 2step) and multiple imputation estimator (MI). Conversely, the modification
that bootstraps the predicted probabilities (PD C) seems to be slightly underestimating
variability.

7. Discussion

In this paper we have extended the previously developed proxy pattern-mixture analysis to
handle binary data, which are ubiquitous in sample survey data. As with a continuous out-

Section on Survey Research Methods – JSM 2009

2479



Figure 3: Estimates of proportion low income for λ = (0, 1,∞) based on NHANES III
adult data. Numbers below intervals are the interval length. Dotted lines are the point
estimates obtained by filling in all ones or all zeros for missing values.

λλ

95
%

 In
te

rv
al

0 0 0 0 0 0 0 1 1 1 1 1 1 1 ∞∞ ∞∞ ∞∞ ∞∞ ∞∞ ∞∞ ∞∞

11

13

15

17

19

21

23

25

27

29

31

CC

CC wt

ML
Full

ML
2step

PD
A

PD
B

PD
C MI

MI wt

ML
Full

ML
2step

PD
A

PD
B

PD
C MI

MI wt

ML
Full

ML
2step

PD
A

PD
B

PD
C MI

MI wt

1.3

3.2

1.3 1.3 1.2 1.6 1.2 1.2

2.9

1.3 1.3 1.3 1.7 1.2 1.3

3

1.4 1.4 1.4 1.8 1.4 1.4

3

ρρ̂ == 0.47,,  d == 0.019,,  d* == 0.035,,  11% Missing

[All missing Ys = 0]

[All missing Ys = 1]

[All missing Ys = 0 (weighted)]

[All missing Ys = 1 (weighted)]

Figure 4: Distribution of the respondent and nonrespondent proxies for each outcome,
based on NHANES III adult data. Superimposed line is the normal distribution with mean
and variance equal to the sample values.
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come, this novel method integrates the three key components that contribute to nonresponse
bias: the amount of missingness, differences between respondents and nonrespondents on
characteristics that are observed for the entire sample, and the relationship between these
fully observed covariates and the survey outcome of interest. The analysis includes but
does not assume that missingness is at random, allowing the user to investigate a range
of non-MAR mechanisms and the resulting potential for nonresponse bias. For the binary
case, it is common to investigate what the estimates would be if all nonresponding units
were zeros (or ones), and in fact the binary PPMA produces these two extremes when the
proxy is weak.

An attractive feature of the continuous outcome PPMA is its ease of implementation;
a drawback of the extension to binary outcomes is a loss of some of this simplicity. By
introducing a latent variable framework we reduce the problem to one of applying the con-
tinuous PPMA to a latent variable, but since this underlying continuous latent variable is
unobserved even for nonrespondents, application is more complex. Closed-form solutions
are no longer available for the maximum likelihood approach, and Bayesian methods re-
quire iteration using Gibbs’ sampling. However, the ML solutions are good starting points
for the Gibbs’ sampler and only very short burn-in periods are required.

An additional level of complexity in the binary and ordinal case is the effect of skewed
proxies. Where the continuous PPMA is relatively robust to departures from bivariate nor-
mality in the proxy and outcome, the binary and ordinal cases rely heavily on the normality
assumption. The assumption of normality of the proxy is crucial and even slight deviations
away from normality will cause biased results. To relax the dependence on the normality
assumption we introduced modified estimators that appear to not only perform better when
the normality assumption is violated but also maintain good performance if the normality
assumption holds.

We have described three different estimation methods for the categorical PPMA, maxi-
mum likelihood, fully Bayesian, and multiple imputation. In our investigations the consis-
tently best performer is multiple imputation, MI does not require a modification to handle
skewed proxies, while both the maximum likelihood and Bayesian methods require mod-
ified estimators. In addition, incorporation of design weights in estimating the mean is
straightforward with MI, as once the model-based imputation is completed a design-based
estimator of the mean can be applied in a straightforward manner.

Future work will work to extend PPMA to domain estimation, an important issue in
practice. In particular, we are interested in the case where there is a continuous outcome
and a binary domain indicator. When the domain indicator is fully observed (for example,
gender in the NHANES data), application of the continuous PPM model is straightforward;
the domain indicator can be included in the model that creates the proxy, or the entire
continuous PPM method can be applied separately for the two domains. The more complex
case is when the domain indicator and outcome are jointly missing. We have begun work on
this aim, using methods similar to that of Little and Wang (1996), who extend the bivariate
pattern-mixture model to the multivariate case when there are two patterns of missingness.
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