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Abstract
Single and joint inclusion probabilities are generally known for complex survey designs

up to the point where survey weights are modified due to nonresponse and population
controls. Best practice by sophisticated survey practitioners generally includes weight mod-
ifications, first by calibration, ratio adjustment or raking to correct for nonresponse, next
by further steps to impose population survey controls; and often, by final steps involving
weight truncation or cell-collapsing to constrain the modified weights, usually so that the
largest and smallest weights do not differ by more than a designated multiplicative factor.
These adjustments are sometimes made in successive stages, the order of which may differ
from one survey to another. In this article, generalized-raking calibration methodology is
adapted to allow all of these adjustments to be accomplished in a single stage, after which
linearization-based large-sample variance formulas are available.

Key Words: consistency, inclusion probabilities, Lagrange multipliers, linearized
variance, objective function, population controls, weight adjustment.

This report is released to inform interested parties of ongoing research and to encourage
discussion. Any views expressed on statistical methodological issues are those of the authors
and not necessarily those of the U.S. Census Bureau.

1. Introduction

Survey weights in large complex surveys are frequently modified from their designed
values, for at least three reasons: to correct for nonresponse, to compensate for frame
deficiencies by enforcing population controls (often by demographic categories), and
to prevent the adjusted unit weights from being too different from one another.
As a result of these modifications, there are usually no meaningful joint inclusion
probabilities when complex survey results are analyzed.

Modifications to survey weights are generally applied in multiple stages, and it
is fair to say that in practice, the effect of propagating early-stage modifications
through later adjustments is poorly understood. Moreover, the later adjustments
(particularly the final population controls) are often repeated after trimming or
compressing the most extreme weights until controls and moderate weights are
achieved simultaneously. Generally, only the final population controls and weight-
trimming criteria are imposed rigidly, with no assurance that the criteria used to
adjust at earlier stages still hold at the final stage.

This paper begins by summarizing the existing methods to correct survey data
both for nonresponse and population controls, while retaining overall bounds on
the weights. While some theoretically based methods do exist for enforcing two out
of the three of these types of weight constraints, there do not seem to be methods
which simultaneously incorporate all of them. A new framework is presented which
handles all of these weight adjustments simultaneously in a single stage, which
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justifies linearized variance formulas for survey total estimates based on the adjusted
weights, and which allows a tuning parameter to place more or less weight on initial
nonresponse adjustment while strictly enforcing population controls.

1.1 Background Literature

There is a large literature on construction and modification of survey weights, much
of which has been absorbed into standard survey methodology texts, like that of
Särndal et al. (1992). The most important theoretical contributions include:

• nonresponse adjustment by cell-based ratios or raking (Oh and Scheuren 1983),
or by models fitted by model-assisted ‘pseudo-likelihood’ (Kim and Kim 2007);
• weight modification via calibration leading up to generalized raking in Deville and
Särndal (1992) and Deville, Särndal & Sautory (1993), papers which established
linearized variance formulas for weighted survey totals;
• linear regression-based approaches to nonresponse weight adjustment surveyed
in Fuller (2002), treated more fully in the monograph of Särndal and Lundström
(2005) which discusses simultaneous calibration to benchmarks or controls along
with calibrated nonresponse adjustment;
• (single-stage) methods combining weight-truncation with weight-adjusted calibra-
tion as in Singh and Mohl (1996) and Théberge (2000);
• methods for handling informative nonresponse (Sverchkov and Pfeffermann 2004,
Chang and Kott 2008);
• nonresponse adjustment followed by a separate calibration stage, e.g., Yung and
Rao (2000) treat jackknife variance estimation in such a setting, and Särndal and
Lundström (2005) give design-plus-pseudo-randomization-based variance formulas.

1.2 Notation and Assumptions

Consider a sample survey with a frame U from which a probability sample S
is drawn according to a plan with known single and double inclusion probabilities
πk , πkj , for k, j ∈ U . Assume that the total Y = ty =

∑
k∈U yk of a scalar

attribute is of primary interest, and that (yk , xk , k ∈ S) is (potentially) observable,
i.e., the sample data include the auxiliary p-dimensional vector xk . This setting
corresponds to the InfoS sampling framework of Särndal and Lundström (2005),
with auxiliary data available at sample but not frame level.

Assume that each sampled individual in the survey decides independently whether
or not to respond. Without loss of generality, denote by rk for all k ∈ U the
indicator which is 1 if the k’th individual would have responded if sampled, and
assume that these random variables are independent of each other and of the sample
selection mechanism: this is the pseudo-randomization model of Oh and Scheuren
(1983). (However, there certainly are surveys where this assumption could be ap-
plied only with ‘individuals’ defined as households.) The observable data are now
taken to be (yk · rk, rk, xk, k ∈ S). No restriction is placed on the probabilities
P (rk = 1) = ρk with which individual units respond. These quantities must be
estimated in order to adjust weights for nonresponse, and this is typically done ei-
ther by ratio-adjustment and raking (Oh and Scheuren 1983) or by using a working
generalized-linear parametric model 1/ρk = κ(λ′xk), k ∈ U (Kim and Kim 2007),
where λ is a p-dimensional parameter vector which is estimated from sample data
through the solution λ̂ to an estimating equation. The most important example
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of such a working nonresponse model is the case treated in this paper,

1/ρk ≡ (Erk)−1 = κ(λ′xk) = 1 + λ′ xk (1)

This model motivates the estimation of ρk through λ̂ defined from a nonresponse-
adjustment constraint equation (Särndal and Lundström 2005) which requires that
modified weights wk ≡ rk wo

k/ρ̂k defined from initial weights wo
k = 1/πk satisfy

∑

k∈S
rk wk xk =

∑

k∈S
wk xk = t∗x (2)

The constrained totals t∗x, which may not always be close to the true frame totals,
might arise from a survey or census believed to be larger or more accurate than the
current survey; but much more often, these totals are themselves estimated either
from the same survey or another survey of comparable size with the same frame.

Nonresponse adjustment wk = rk wo
k/ρ̂k = rk wo

k (1+ λ̂′xk) is often treated as
a distinct weight-adjustment stage, providing input to further weight modification
stages. A special case of the linear-calibration weight adjustment is the standard
ratio adjustment derived from a set C1, . . . , CK of adjustment cells partitioning
the frame U , where the components of xk are defined by the indicator variables
xk,j = I[k∈Cj].

The results of surveys designed to estimate totals and ratios of totals are often
reported after controlling total numbers of units within designated population cells
to be equal to the totals found in a more comprehensive survey or (updated) census,
generally through constraints on final weights

∑

k∈S
rk ŵk zk = t∗z (3)

Here t∗z is a known vector approximating the frame total tz, for a vector zk =
(z1k, . . . , zqk) of survey variables defined for each unit k ∈ U . The constraint
(3) is imposed on any system of survey weights {ŵk}k∈S , however obtained —
by modifications for nonresponse, population controls, and weight compression or
truncation — starting from a designed system wo

k = 1/πk of inverse inclusion
probabilities. The final weights ŵk are ultimately used in estimating population
totals of survey variables yk , k ∈ U , by weighted totals

t̂y,adj =
∑

k∈S
rk ŵk yk (4)

2. A New Weight-Adjustment Framework

In the present research, nonresponse adjustment, population-control calibration,
and weight-truncation are done in a single step. This step general calculates itera-
tively the solution to an estimating equation, optimizing a single objective function.
The framework is similar to that of Deville and Särndal (1992) and Deville, Särndal
and Sautory (1993), in keeping a loss function quantifying weight changes as small
as possible. Initial weights wo

k = 1/πk arise from the design inclusion probabili-
ties, and the transition to final weights is viewed as {wo

k} 7→ {wk} 7→ {ŵk}, with
only the final weights appearing in the survey estimates (4), but with the two sets
{wk}, {ŵk} of survey weights defined simultaneously to obey respective constraints
(2) and (3), both contributing to an aggregated loss function. The auxiliary weight
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difference wk − wo
k can be interpreted as the nonresponse adjustment component

of the overall weight-modification ŵk − wo
k.

The three systems of weights {wo
k}k, {wk}k, {ŵk}k are related through the

desire to minimize simultaneously the losses
∑

k∈S
rk wo

k G1(wk/ wo
k − 1) and

∑

k∈S
rk wo

k G2((ŵk − wk)/wo
k)

where each of G1(z), G2(z) is a convex loss-function which is locally of the form
z2/2 plus a term of smaller order (bounded by a constant times z3) near z = 0.
The intermediate and final modified weights w = {wk}k∈S and ŵ = {ŵk}k∈S
are defined as positive only for indices k ∈ S for which rk = 1. They are found
together, subject to the constraints (2) and (3), i.e. to the the combined constraint

∑

k∈S
rk

( wk xk

ŵk zk

)
=
( t∗x

t∗z

)
(5)

by the objective-function minimization

minw, ŵ

∑

k∈S
rk wo

k

{
G1(

wk

wo
k

− 1) + α G2(
ŵk − wk

wo
k

) + Q(
ŵk

wo
k

)
}

(6)

where α > 0 is a constant chosen by the statistician and Q is a convex and
piecewise smooth penalty term which is nonzero only for large or small weight ratios,
and enters this single optimization step to enforce weight-truncation or restricted
weights as in Singh and Mohl (1996) or Théberge (2000). The most important
instances of (6) will have G1(z) = G2(z) = z2/2 — which we assume from
now on — and Q a piecewise smooth function such that Q(z) ≡ 0 on an
interval [c1, c2], for fixed constants 0 < c1 < 1 < c2 < ∞, and Q(z) is large
when max(c1 − z, z − c2) is positive and not very small. We assume that when
Q 6≡ 0, Q satisfies Q′(−∞) = −∞ and Q′(∞) = ∞.

In (6), the strict convexity of the objective-function implies that the weights
w, ŵ have a unique optimal solution. In several special and limiting cases, the
solution relates simply to existing methods.

(Case 1. Full-response, rk ≡ 1, and t∗x = t̂x,π). Here the w weights
are unconstrained, and (6) becomes a ‘generalized raking’ problem with penalized
weights, as in Singh and Mohl (1996) and Théberge (2000). If also Q ≡ 0, then
the final weights ŵk coincide with the calibrated ‘g’ weights arising in generalized
regression (Särndal et al. 1992, Deville and Särndal 1992) subject to (3).

(Case 2. α → ∞) If α in (6) is taken very large, for fixed Q, then the limiting
systems w and ŵ of weights are identical, i.e., in the large-α limit, ŵk ≡ wk

for all k ∈ S such that rk = 1 (and ŵk = wk = 0 for all other indices k ∈ U).

When α is large, the weight optimization problem (6) approximates the problem
of finding {ŵk : k ∈ S, rk = 1}, to solve

min
ŵ

∑

k∈S
rk w0

k {α

2

(ŵk − wo
k

wo
k

)2
+ Q(

ŵk

wo
k

)} such that
∑

k∈S
rk ŵk

(
xk

zk

)
=

(
t∗x
t∗z

)

This is a pure linear calibration problem which, although not explicitly considered
by Särndal and Lundström (2005), falls directly into the framework of that book.
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(Case 3. Q ≡ 0.) When there is no penalty Q for extreme weight-ratios, the
optimal weights of formula (7) below resemble a ridge-regression form of linearly
calibrated weights, with the population control condition (3) holding precisely but
not (2). However, the particular form (7) has not arisen before.

2.1 Combined Nonresponse Adjustment and Calibration

Many large-scale complex surveys, such as the Census Bureau’s American Commu-
nity Survey (ACS) and Survey of Income and Program Participation (SIPP), are
analyzed by first adjusting for nonresponse by a cell-based ratio or raking method
and then later by imposing population controls. (In Census Bureau surveys, those
controls usually require that population totals in certain demographic and geo-
graphic categories match those of the demographically updated decennial census.)
This two-step approach is implicit in much of the survey sampling journal litera-
ture, and explicit in some sources, such as Yung and Rao (2000) and Särndal and
Lundström (2005, Ch. 8 & Sec. 11.4 on ‘Two-Step Methods’), which treat variance
estimation at a realistic level of complexity.

The method of weight adjustment proposed here, in (6), does not exactly re-
produce the known two-step method in any limiting case. Instead, the asymmetric
role of the nonresponse adjustment contraints (2) and population controls is made
explicit through choice of the parameter α. In accord with current practice, the
population controls are required to hold exactly for the final weights actually used in
survey estimation. If (2) is to hold at least approximately for wk replaced by ŵk,
then α should be chosen large. When that is done, and there is no penalty term
Q in (6), then the proposed method (Case 2 above) is a simultaneous calibration
in the spirit of Särndal and Lundström (2005) or Deville and Särndal (1992) which
relaxes the x constraints in (5).

3. Numerical Algorithms for the Weights

The simultaneous adjustment and calibration step described above is the minimiza-
tion subject to (5) over (λ, µ, w, ŵ) of

∑

k∈S
rk

[(wk − wo
k)

2

2 wo
k

+ α
(ŵk − wk)2

2 wo
k

+ wo
k Q(

ŵk

wo
k

) − ŵk µ′zk − wk λ′xk

]
+ µ′t∗z + λ′t∗x

where λ ∈ Rp and µ ∈ Rq are Lagrange multiplier vectors. After differentiation
and some algebra, the solution equations take the form, for k ∈ S with rk = 1,

ŵk = wo
k · h(1 + (1 + α−1) µ′zk + λ′xk) (7)

where h is defined as the inverse function on the whole real line of the function
x + (α−1 + 1) Q′(x), so that h(1) = 1 and h(u) + (1 + α−1) Q′(h(u)) ≡ u, and
the Lagrange multipliers are determined in terms of the matrix

Mα =
∑

k∈S
wo

k

( xkx′
k xk z′k

zkx′
k (1 + α−1) zkz′k

)

by the expression (the left-hand side of which is a nonsingular function of (λ, µ),
with Jacobian bounded above and below by positive-definite matrices)

N−1 Mα

( λ
µ

)
− N−1

∑

k∈S
rk wo

k Q′ ◦ h(1 +
1 + α

α
µ′zk + λ′xk)

( xk

(1 + α−1)zk

)
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= N−1
{( t∗x

t∗z

)
−
∑

k∈S
rk wo

k

( xk

zk

)}
(8)

When Q ≡ 0, these equations immediately give the Lagrange multipliers λ̂, µ̂
and final weights ŵk in closed form. Otherwise, for Q 6≡ 0, we use these multipliers
and weights as initial values and alternate between solving (7) for new weights and
solving (8) — with the new weights substituted — for updated Lagrange multipliers,
until convergence. This algorithm can be shown to converge to the unique solutions,
and the method works well in the numerical examples we have tried.

4. Asymptotic Theory for Solutions

Following the approach of and regularity conditions similar to Deville and Särndal
(1992), we sketch the theory of large-sample behavior of the solutions of the weight-
equations just developed. Additional superpopulation regularity conditions needed
here are that the response indicators ri are independent of each other and the
sample S, and that the population-total constraints t∗z, t∗x satisfy as N → ∞ :

lim
N

n1/2

N

(
t∗x − tx
t∗z − tz

)
=

(
kx

kz

)
exists , kz ∈ Rq , kx ∈ Rp (9)

Since the functions G1, G2, and Q are all assumed convex, so is the objective
function in (6), and there will be a unique set of minimizing weights w, ŵ equating
the gradient of the objective function to 0. For this reason, the limit along any
convergent subsequence for the iterative scheme solving (7) and (8) yields the unique
solution to these equations.

A proof given in Slud and Thibaudeau (2009), along the same lines as in Deville
and Särndal (1992), establishes the large-sample design consistency of the calibrated
weights. The solutions (λ̂, µ̂) have finite in-probability limits, as do the calibrated
weights ŵk, the latter being given by (7) with (λ̂, µ̂) substituted for (λ, µ).

The parameters (λ∗, µ∗) consistently estimated by (λ̂, µ̂) in large samples are
(

λ∗
µ∗

)
= φ−1

(
lim
N

N−1
∑

k∈U
(1 − ρk)

(
xk

zk

))
(10)

where the invertible mapping φ on Rp+q is the limit of the mappings defined by
the left-hand side of (8). Next define (for all k ∈ U),

D∗ ≡ ∇φ(λ∗, µ∗) , u∗
k ≡ 1 +

1 + α

α
µ′
∗ zk + λ′

∗ xk , f∗
k ≡ h(u∗

k) (11)

These derivations lead to estimators for the variances of survey-weighted totals
(4). By linearization of (7) as a function of (λ, µ) around (λ∗, µ∗), there follows:

Proposition 1 Under regularity conditions like those of Deville and Särndal (1992)
along with (9),
√

n

N

[∑

k∈S
ŵk yk −

∑

k∈U
ρk f∗

k yk

]
=

(
kx

kz

)′

D−1
∗ b∗ +

√
n

N

∑

k∈U
(rk w0

k I[k∈S] − ρk) ·

·
[
f∗
k yk − b′∗D

−1
∗

(1 + λ′
∗xk

1 + α

(
xk

0

)
+

α f∗
k

1 + α

(
xk

(1 + α−1)zk

))]
+ oP (1)
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where b∗ is defined by

b∗ = lim
N

N−1
∑

k∈U
ρk yk

(
xk

(1 + α−1) zk

)

4.1 Consistency of Weighted Survey Totals

The consistency of survey-weighted totals in the nonresponse and calibration frame-
work must be justified by one or both of two essentially model-based assumptions,
saying either that the weight terms ρk f∗

k in the centering constant of Proposition
1 are almost uniformly close to 1 or that their differences from 1 are asymptotically
orthogonal to the vector {yk}k∈U of survey attributes in the frame population.
This twofold path to consistency is a known instance of the concept of double
robustness (Kang and Schafer 2007). The underlying assumptions do require that
response be noninformative for yk , as specified in the following Proposition. The
proof is given in Slud and Thibaudeau (2009).

Proposition 2 Assume the regularity conditions of Prop. 1 plus (9), and in addi-
tion one of the following:

(i). There is a subset U1 ⊂ U and λ ∈ Rp such that for all k ∈ U1,
ρk ≡ (1 + λ′xk)−1, and the open interval (c1, c2) on which Q ≡ 0 contains the
closed interval [mink∈U1 (1 + λ′xk), maxk∈U1 (1 + λ′xk)], and also

∑

k∈U\U1

(|yk| + ‖zk‖2 + ‖xk‖2) = o(N/
√

n)

(ii). The function Q is identically 0, and for some β ∈ Rq,

lim
N→∞

(
√

n/N)
∑

k∈U
ρk zk (yk − β′zk) = 0

Then the left-hand side of the equality in Prop. 1 is equal to

(
√

n/N) (
∑

k∈S
ŵk yk − ty) + oP (1)

Assumption (i) says that the ‘working’ quasi-randomization model is correct,
while (ii) is a slight generalization (as long as n is much smaller than N) of
the requirement that for some β ∈ Rp+q, the vector of residuals yk − β′x∗

k is
asymptotically orthogonal to the columns of the predictor matrix X∗ = (xk,j , zk,j)
with row-index k. The second of these assumptions is the technical sense in which
response should be noninformative for yk . Other authors, such as Fuller (2002),
prove consistency in superpopulation models by assuming that the residuals are
independent mean-0 errors uncorrelated with the calibration variables x∗

k.

4.2 Consequences of Propositions 1 and 2

It seems unavoidable that the consistency of the survey-weighted total estimators
depends strongly on unverifiable model assumptions about the ‘stochastic’ mech-
anisms of unit nonresponse and omission from survey frames. Even the relatively
slight (order of 1/

√
n) discrepancies assumed between the calibration totals t∗x, t∗z

and the respective totals tx, tz they approximate, imply through the first term
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on the right-hand side of the equality in Proposition 1 that the confidence intervals
based on survey estimates (4) can be wrongly centered.

However, the clear positive consequence of the new single-stage approach to
weight adjustment is a readily computable estimator for the linearized variance
formula for t̂y,adj . In terms of the natural design-consistent estimators f̂k, b̂,
and D̂ for the respective quantities f∗

k , b∗, D∗, and of the (ratio-adjustment or
calibration based) estimator ρ̂k for ρk, when the totals t∗x and t∗z are treated
as fixed, this variance estimator V̂ (

√
n t̂y,adj/N) is

n

N2

[ ∑

k,l∈S
(wo

k wo
l − 1

πkl
) R̂k R̂l rk rl +

∑

k∈S
rk wo

k R̂2
k (1− ρ̂k)

]
(12)

where

R̂k ≡ f̂k yk − b̂′ D̂−1
(1 + λ̂′xk

1 + α

(
xk

0

)
+

f̂k α

1 + α

(
xk

(1 + α−1)zk

))

5. Implementation on SIPP 1996 Data

As an example, single-stage calibrated weights were fitted to the 1996 Wave 1 data
from the SIPP survey, a large stratified complex longitudinal survey conducted by
the U.S. Census Bureau. As described in Slud and Bailey (2009), SIPP nonresponse
adjustment was based on poststratified ratio-adjustment using a system of p = 149
cells (involving demographics and some indicators of assets and of income compared
with the poverty level), and SIPP population controls involved raking to CPS-based
totals of race by family structure, race by age interval, and of Hispanic-origin persons
by (coarser) age groups. The SIPP population-control constraints can be expressed
in q = 126 linearly independent equations of the type (3). The weights wo

k used in
the SIPP file of 94444 individuals sampled and responding in 1996 Wave 1 are the
base weights GBASEWT before nonresponse adjustment. The t∗x constrained totals
in (2) are the values N

∑
S xk wo

k/
∑

S wo
k estimated with the base weights, and

the population N and control totals t∗z were, as in SIPP production estimates,
derived from the 1990 census demographically updated to 1996.

In this example, the single-stage calibrated weights were fitted with α = 1 and
100, using penalty functions Q defined on the interval (0, 10) by

Q(u) = a {(c1 − u)3+/u4 + (u − c2)3+/(10− u)2}

where (x)+ ≡ max(x, 0), and c1 = .6, c2 = 3, a = .2 when α = 1, while
c1 = .8, c2 = 2.5, a = .5 when α = 100. The fitted weight ratios ŵk/wo

k fell
in the range (.55, 3.86) for α = 1, and in (.62, 4.08) for α = 100. The 126
fitted Lagrange multiplier components of µ̂ had range (−1.13, 0.72) for α = 1,
and (−0.86, 1.77) for α = 100. Both sets of single-stage modified weights satisfied
(3) accurately. The modified weights with α = 1 already satisfied (2) to within
several percent, while those with α = 100 satisfied (2) to within a few tenths of a
percent. As an indication of the similarity of estimated results t̂y,adj using the
estimated weights from (7), with α = 1 or 100, to those obtained in SIPP 1996
by what amounted to two-stage weight adjustment (with raking rather than linear
calibration in the second population-control stage), Table 1 gives the estimated
totals (in thousands) for 11 of the important SIPP surveyed attributes. The labelling
for the survey attributes is as in Slud and Bailey (2009), where further details can
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be found. Differences among the estimators based on the three sets of weights are
quite small compared with the standard deviations of the two-stage estimated totals,
given in the Table as the EHG (Ernst, Huggins and Grill 1986) estimated standard
deviation, a slightly upwardly biased estimator of standard deviation which the
VPLX Fay-method standard deviation estimator approximates.

Table 1: Estimated Totals and Std. Dev.’s in 1000’s. ‘2-Stage’ method and EHG
standard deviation described in text; totals and standard deviations for t̂y,adj based
on (7) with α = 1, 100, with variables xk, zk and function Q given in text.

Item 2stage t̂α=1 t̂α=100 EHG.sd SDα=1 SDα=100

FOODST 27541 27454 26930 687.0 317.7 300.8
AFDC 14123 14089 13800 450.5 298.3 287.6
MDCD 28468 28399 27895 573.8 403.7 351.1
SOCSEC 36994 37071 37240 469.6 156.9 156.8
HEINS 194216 194475 195030 1625.1 438.8 422.6
POV 41951 41978 41475 747.3 360.1 357.1
EMP 190871 190733 190097 1477.3 254.8 239.8
UNEMP 6403 6379 6295 163.1 144.5 143.2
NILF 66979 67354 67864 626.7 231.4 216.7
MAR 111440 114457 114347 1088.1 159.1 157.7
DIV 18534 18542 18591 253.4 194.9 194.9

The VPLX or EHG variances calculated for Table 1 account for nonresponse
adjustment only by scaling up the GBASEWT base weights so that their total is the
known population size N . The Table also displays variances as calculated from
formula (12), using α = 1 or 100 and Q as specified above. These estimated
variances are much smaller than the VPLX variances, but only because the variance
formula (12) calculated here treats all calibration totals t∗x, t∗z as though they were
known from the outset and nonrandom. In fact, the values t∗x were derived from
sample estimates from the same SIPP 1996 survey.

6. Discussion and Future Research

This paper has developed asymptotic theory and computational tools for a new,
single-stage approach to the adjustment of weights in large complex surveys for
nonresponse, population-controls, and weight-trimming. Numerical experiments
using functions created in the R statistical programming language show that the
single-stage modified weights are readily computable iteratively, and are generally
similar to the two-stage weights obtained first by nonresponse-adjustment and then
by population controls and trimming. The single-stage calibrated weights with
large α (of order 100) penalized via function Q to lie in intervals such as (.4, 3),
seem particularly satisfactory.

Future research will compare variance properties of estimators based on the
new weights under various sources for the calibration totals t∗x, t∗z. In addition,
the theory and algorithms will be extended to the case of nonlinear G′

j(z) =
z log z − z + 1, the so-called ‘multiplicative’ form of the adjustment-discrepancy
loss-function which leads in the absence of weight-penalization to classical raking.
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