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Abstract
Pattern-mixture models (PMM) and selection models (SM) are two alternative approaches
for statistical analysis with incomplete data and a nonignorable missing-data mechanism.
Both models make empirically unverifiable assumptions and need additional constraints to
identify the parameters. We introduce Bayesian parameterizations to identify the PMM
for different types of outcome within the exponential distribution family and then translate
these to their equivalent SM approach. This provides for a unified and robust parame-
terization that can be used for sensitivity analysis under either approach. The new pa-
rameterizations are easy-to-use and have intuitive interpretation from both PMM and SM
perspectives. These models can be fitted using software implementing Gibbs sampling.

Key Words: Bayesian parameterization; Missing not at random; Mixture analysis; Ig-
norability index; Selection bias; Identifiability.

1. Introduction

Missing data is a common problem in statistical modeling both in cross-sectional
design and more so in longitudinal design where subjects are often lost to follow-
up. A wide range of statistical models for analyzing outcomes with missing data
is available, but their validity will often depend on the nature of the missing-data
mechanism as well as on the validity of any assumption used.

For analyzing data with missing values that are potentially missing not at ran-
dom (MNAR) two widely used approaches are pattern-mixture models (PMM) and
selection models (SM). Both PMM and SM derives their inferences based on the
joint distribution f(Y, R) of the outcome Y and the missing-data indicator R, but
use different decomposition for f(Y, R). Selection models partition f(Y, R) as the
product of f(Y ) and f(R|Y ) (Heckman (1974,1979)). They require explicit model-
ing of the missing-data mechanism where the probability that a subject is missing
may depend on the observed and unobserved values. PMM, on the other hand,
express the joint distribution as the product of f(Y |R) and f(R) where the data
are stratified by the missing-data patterns with distinct parameters for each pat-
tern (Rubin 1977, Little and Rubin 2002). The marginal estimates in PMM can
be derived as a weighted average across pattern specific estimates (Little 1995) or
by using imputation (Demirtas and Schafer (2003)). SM, on the another hand,
estimate the marginal parameters directly. The choice between PMM and SM is
based on different reasons, such as the analysis objective, how best to formulate
and incorporate the assumption regarding the missing-data mechanism as well as
on the flexibility of the sensitivity analysis that is followed. For example, Scharf-
stein et al. (1999, 2003) and Rotnitzky et al. (1998, 2001) used a selection model
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approach; Little (1993, 1994) and Little and Rubin (2002) used a pattern-mixture
design. Regardless of which model is used, assumptions that are not verifiable from
the observed data, or additional data, are needed to identify the parameters in the
joint distribution. These assumptions rely heavily on expert opinions about plausi-
ble ranges for non-identifiable parameters and are usually followed with sensitivity
analysis (Troxel et al. (2004), Molenberghs and Verbeke (2005), Daniels and Hogan
(2007)).

In this article we introduce Bayesian parameterizations to identify the PMM for
different types of outcome within the exponential distribution family and then trans-
late these to their equivalent SM approach. This provides for a unified and robust
parameterization that can be used for sensitivity analysis under either approach.
The new parameterizations are easy-to-use and have intuitive interpretation from
both PMM and SM perspectives.

2. THE PROPOSED METHOD

In this section we propose new parameterizations within the pattern-mixture model
framework for outcomes from the exponential distribution family. We focus on
studies from randomized control trials, where subjects are randomized into two or
more treatment groups (identified by Trt indicator) and have potentially MNAR
dropouts. Using the generalized liner models approach (McGullagh and Nelder
(1989)), the PMM for outcomes within the exponential family is:

g(E(Y |Trt, R = r)) = β
(r)
0 + β

(r)
1 Trt (1)

where g(.) function is the natural link function, and Trt is a covariate representing a
group indicator. We will identify model (1) by relating f(Y |R = 1) to f(Y |R = 0) or
by specifying g(E(Y |Trt, R = 1))− g(E(Y |Trt, R = 0)) = log(λ̃) (slightly modified
for normal outcomes) where λ̃ represents some intuitive Bayesian parameteriza-
tion, which we refer to as ignorability index. This parameterization accommodates
modeling of missing data generated from a potentially nonignorable missing-data
mechanism and include the MAR mechanism as a special case. The parameteriza-
tion is intuitive, easily used for sensitivity analysis and has an interpretation within
both pattern-mixture framework and selection model framework. We consider here
the most widely used distributions from the exponential family: binary, Poisson,
multinomial (nominal and ordinal) and normal distributions.

2.1 Binary Outcomes with Missing Data

Binary outcomes are commonly used to indicate the presence or absence of an
event or characteristic. For example, Y = 1 if an endpoint is observed (subject has
hypertension) or 0 otherwise. When there are missing data we consider pattern-
mixture models to model E(Y ) as a function of Trt stratified by the missing-data
indicator R. Such models are often used when the missing data are missing not at
random (MNAR). We assume Trt is a group indicator (0 for a placebo and 1 for
treatment). Thus, we consider the following logistic model using pattern-mixture
framework to model the effect of Trt on the odds of having an endpoint:

logit(p(r)|Trt) = β
(r)
0 + β

(r)
1 Trt.

where p(r) = Pr(Y = 1|R = r) = E(Y |R = r). Here R = 1 indicates that Y
is missing and R = 0 indicates Y is observed. The model is underidentified as
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there are no data to estimate the parameters for missing-data pattern R = 1. We
identify such model by using a Bayesian parameterization with informative prior
distributions in the identifying parameters λ̃k (Kaciroti et. al. (2009)) where:

logit(E(Y |Trt = k, R = 1))− logit(E(Y |Trt = k, R = 0)) = log(λ̃k)

or

λ̃k =
p
(1)
k /1 − p

(1)
k

p
(0)
k /1 − p

(0)
k

. (2)

Here λ̃k (k = 0, 1 for Trt = 0, 1) is a measure of the departure from the MAR and
represent the odds ratio of having an endpoint between the missing-data pattern
and the observed-data pattern for each group (k = 0, 1). The MAR is a special case
where λ̃k equals 1. The λ̃ parameter is not estimateable from the data. We assume
that λ̃k ∼ Log −Normal with some mean lk and variance c2l2k, c is the coefficient
of variation and represents the degree of uncertainty where c = 0 translates to a
deterministic constraint. The parameter lk and c are the sensitivity parameters
and are chosen to represent a range of the odds ratio (OR) of having an endpoint
between subjects who dropped out and subjects who completed the study. Such
parameterization is intuitive and easy to use for sensitivity analysis within a PMM
framework. In addition, λ̃k also has an intuitive interpretation within a SM ap-
proach and next we derive the equivalent SM corresponding to the PMM identified
by (2). Following Bayesian rule we obtain:

λ̃k =
Pr(Y = 1|R = 1, T rt = k)
Pr(Y = 0|R = 1, T rt = k)

/
Pr(Y = 1|R = 0, T rt = k)
Pr(Y = 0|R = 0, T rt = k)

︸ ︷︷ ︸

PMM

=
Pr(R = 1|Y = 1, T rt = k)
Pr(R = 0|Y = 1, T rt = k)

/
Pr(R = 1|Y = 0, T rt = k)
Pr(R = 0|Y = 0, T rt = k)

︸ ︷︷ ︸

SM

. (3)

Thus, from (3) the sensitivity parameter λ̃k has an alternative interpretation from
a SM perspective. It represents the odds ratio of dropping out between the subjects
with endpoint versus subjects without endpoint for group k. In general in a SM
approach there are several link functions used to model the missing-data mechanism,
e.g. logistic, probit or log-log. However, for parameterization (2) the corresponding
SM model is:

logit(Pr(R = 1|Y )) = γ0 + γ1Trt+ γ2Y + γ3Trt ∗ Y
where log(λ̃0) = γ2 and log(λ̃1/λ̃0) = γ3.

Thus, from relationship (2, 3) the sensitivity parameter λ̃k has a dual interpre-
tation. In PMM, λ̃k represents the odds ratio of having an endpoint between the
missing subjects and the observed subjects for group k. In SM it represents the
odds ratio of dropping out between subjects with endpoint versus subjects with-
out endpoint for group k. Both PMM and SM can be identified by giving a prior
distribution to log(λ̃k). This parameterization and its dual interpretation unifies
the sensitivity analysis through PMM and SM, where both models can be fitted
interchangeably. This provides flexibility and assurance on the assumptions about
the missing data from either perspective. Next we will define similar parameteriza-
tion to relate PMM and SM that are relevant to other distributions of the outcome
variables within the exponential family.
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2.2 Poisson Outcomes with Missing Data

In this section we consider count outcome measures. For example, Y is the number
of times that a subject with a chronic condition (e.g. asthma) visits the emergency
care over a time period. Poisson regression is suitable for fitting such type of
outcomes. In the presence of missing data we consider the following pattern-mixture
model for Y :

log(μ(r)|Trt, R = r) = β
(r)
0 + β

(r)
1 ∗ Trt

where μ(r) = E(Y |R = r). To identify this model we used the following parameter-
ization (Kaciroti et al. (2008)):

log(E(Y )|Trt = k, R = 1) − log(E(Y )|Trt = k, R = 0) = log(λ̃k)

or

λ̃k =
μ

(1)
k

μ
(0)
k

(4)

where λ̃k is again a measure of the departure from the MAR and represents the risk
ratio of having an event between the missing-data pattern and the observed-data
pattern for group k. Following Bayesian rule we have:

Pr(R = 1|Y = y + 1, T rt)
Pr(R = 0|Y = y + 1, T rt = k)

/
Pr(R = 1|Y = y, T rt = k)
Pr(R = 0|Y = y, T rt = k)

=
f(Y = y + 1|R = 1, T rt = k)
f(Y = y|R = 1, T rt = k)

/
f(Y = y + 1|R = 0, T rt = k)
f(Y = y|R = 0, T rt = k)

where f(y|R = r, T rt= k) = e
−μ

(r)
k μ

(r)
k

y

y! is the Poisson probability density function,
from which we obtain

Pr(R = 1|Y = y + 1, T rt= k)
Pr(R = 0|Y = y, T rt = k)

/
Pr(R = 1|Y = y + 1, T rt = k)
Pr(R = 0|Y = y, T rt = k)

=
μ

(1)
k

y + 1
/
μ

(0)
k

y + 1
=
μ

(1)
k

μ
(0)
k

or

λ̃k =
Pr(R = 1|Y = y + 1, T rt = k)
Pr(R = 0|Y = y, T rt = k)

/
Pr(R = 1|Y = y + 1, T rt = k)
Pr(R = 0|Y = y, T rt = k)

︸ ︷︷ ︸

SM

=
μ

(1)
k

μ
(0)
k

︸︷︷︸

PMM

(5)

Then, from (5) the sensitivity parameter λ̃k has an alternative interpretation from
a SM perspective. It represents the odds ratio of dropping out for one unit increase
in y for group k. Similarly as in the Binomial case the corresponding SM model for
PMM with parameterization (4) is:

logit(Pr(R = 1)|Y ) = γ0 + γ1Trt+ γ2Y + γ3Trt ∗ Y
where log(λ̃0) = γ2 and log(λ̃1/λ̃0) = γ3.

Thus, from relationship (4, 5) the sensitivity parameter λ̃k has a dual interpre-
tation. In PMM, λ̃k represents the risk ratio of having an event between the missing
subjects and the observed subjects for group k. In SM it represents the odds ratio
of dropping for one unit increase in y for group k. Both PMM and SM can be
identified by giving a prior distribution to log(λ̃k). This parameterization and its
dual interpretation unifies the sensitivity analysis through PMM and SM.
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2.3 Multinomial Outcomes with Missing Data

Multinomial outcome variables are used to measure different categories. They can
be in an ordinal scale where categories are ordered or in a nominal scale where no
order among categories exists.

2.3.1 Nominal Outcomes

Nominal measures are often used to indicate group membership. For example Y in-
dicates political affiliation, ”1=Democrat”, ”2=Republican” or ”3=Independent” or
type of disease ”1=None”, ”2=Cancer”, ”3=Cardiovascular” or ”4=Other”. Multi-
nomial logistic regression modeling the odds of being in one category versus a ref-
erence category is commonly used for analyzing this type of measures (Agresti
(2002)). In the presence of dropouts we consider the following pattern-mixture
model for nominal outcome:

log(
p
(r)
j

p
(r)
1

|Trt) = α
(r)
j + β

(r)
j Trt

where p
(r)
j = Pr(Y = j|R = r) for j = 1, ..., J with j = 1 being the reference

group. Similarly, as in previous cases, we identify the model by relating the main
parameters of interest between the missing-data and the complete-data patterns:

log(p(1)
kj /p

(1)
k1 |Trt = k, R = 1) − log(p(0)

kj /p
(0)
k1 |Trt = k, R = 0) = log(λ̃kj)

or

λ̃kj =
p
(1)
kj /p

(1)
k1

p
(0)
kj /p

(0)
k1

. (6)

Here λ̃kj is the odds ratio of being in category j versus the reference category
1 between the subjects who dropped out and subjects who completed the study
for group k (k = 0, 1). Following Bayesian rule we relate the proposed PMM
parameterization to a SM.

λ̃kj =
Pr(Y = j|Trt = k, R = 1)
Pr(Y = 1|Trt = k, R = 1)

/
Pr(Y = j|Trt = k, R = 0)
Pr(Y = 1|trt = k, R = 0)

︸ ︷︷ ︸

PMM

=
Pr(R = 1|Trt = k, Y = j)
Pr(R = 0|Trt = k, Y = j)

/
Pr(R = 1|Trt = k, Y = 1)
Pr(R = 0|Trt = k, Y = 1)

︸ ︷︷ ︸

SM

(7)

The corresponding SM here, as an extension of the binary case is:

logit(Pr(R = 1|Trt = k, Y )) = γ1 + γ2I(Y=2) + ...+ γJI(Y=J)

+δ2Trt ∗ I(Y=2) + ...+ δJTrt ∗ I(Y=J)

using J−1 dummy variables for categories 2, ..., J as predictors with category Y = 1
being the reference group with γj = log(λ̃0j) and δj = log(λ̃1j/λ̃0j). Thus,

λ̃0j = eγj =
p
(1)
0j /p

(1)
01

p
(0)
0j /p

(0)
01
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and

λ̃1j = eγj+δj =
p
(1)
1j /p

(1)
11

p
(0)
1j /p

(0)
11

from where λ̃kj is the odds ratio of having a missing value between subjects in group
Y = j versus subjects in reference group Y = 1 for group k. Under PMM approach
it is the odds ratio of being in group j compared to being in group 1 between the
missing subjects and the observed subjects. Both PMM and SM are identified by
giving a prior distribution on λ̃kj and can be fitted interchangeably.

2.3.2 Ordinal Outcomes

Ordinal outcomes are a special case of the multinomial case, where the categories
are ordered. For example Y measures the quality of life ”1=Poor”, ”2=Average”
and ”3=Good” which are ordered with higher scores indicating a better quality of
life. For such outcomes the model used for the nominal case still applies. Thus, we
consider the same pattern-mixture model for ordinal outcomes with dropout:

log(
p
(r)
j

p
(r)
1

|Trt, R = r) = α
(r)
j + β

(r)
j Trt.

Taking advantage of the order structure, a simplified model is often fitted for SM.
A special case is the SM based on a logistic regression linear in Y :

logit(Pr(R = 1|Y, Trt)) = γ0 + γ1Trt+ γ2Y + γ3Trt ∗ Y (8)

with γ2 = log(λ̃0) and γ3 = log(λ̃1/λ̃0). Based on SM (8) λ̃0 = eγ2 and λ̃1 = eγ2+γ3

represent the OR of dropping out for one unit increase in Y , for group k=0,1. Then
from (7)

λ̃kj =
p
(1)
kj /p

(1)
k1

p
(0)
kj /p

(0)
k1

= eγ2+γ3∗k(j−1) = λ̃j−1
k .

Thus, following the SM (8), λ̃k for the corresponding PMM represents the odds ratio
of being in category 2 versus category 1 (or category j+1 versus category j) between
the subjects who dropped out and those who completed the study (k = 0, 1).

Another commonly used model for ordinal outcomes is based on cumulative
logistic regression. The PMM for such model follows:

logit(q(r)l |Trt, R = r) = β
(r)
0l + β

(r)
1l Trt

where q(r)kl = Pr(Y ≤ l|Trt = k, R = r). We have identified such model (Kaciroti
et al. (2006)) following:

q
(1)
kl /(1− q

(1)
kl )

q
(0)
kl /(1− q

(0)
kl )

= λ̃kl
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from where

Pr(R = 1|Trt = k, Y ≤ l)/(1− Pr(R = 1|Trt = k, Y ≤ l))
Pr(R = 1|Trt = k, Y > l)/(1− Pr(R = 1|trt = k, Y > l))

= λ̃kl

Thus, under PMM, λ̃kl represents the ratio of cumulative odds of having a low
value on Y between the observed subjects and dropouts for k = 0, 1. Under the
SM approach it represents the OR of dropping out between subjects with scores
lower or equal than l versus the ones with scores higher than l. When the number
of categories is small (J = 3) the model can be simplified by assuming λ̃kj = λ̃k.

2.4 Normal Outcomes with Missing Data

Extensive work has been done on analyzing normal outcomes with missing data
using both PMM and SM. Little (1994) and Little and Wang (1996) uses PMM
to analyze normal outcomes with potentially nonignorable missing-data mechanism
and use restrictions to identify the model followed by sensitivity analysis. Daniels
and Hogan (2000) uses similar approach but they identify the PMM following Molen-
berghs et al. (1998) framework by relating the distribution of the missing data to
that of the complete data. Similarly, here we identify the PMM model by relating
the distribution of the missing data to that of the observed data using a Bayesian
parameterization, which is intuitive, easy-to-use and with dual interpretation from
PMM and SM perspective.

We consider the following pattern-mixture model for the normal outcome vari-
able Y with dropout:

E(Y |Trt, R = r) = β
(r)
0 + β

(r)
1 Trt

First we assume that distribution of Y , f(Y |Trt = k, R = r), is normal N (μ(r)
k , σ2)

where the variance of Y for each missing-data pattern and group k = 0, 1 is the
same, σ(1)

k = σ
(0)
k = σ. The natural link function for normal outcomes is identity,

thus to identify the model we relate the location parameters (means) between the
missing subjects and the observed subjects as follows:

μ
(1)
k − μ

(0)
k = log(λ̃k) (9)

where λ̃k is again a measure of the departure from the MAR and represents the mean
difference in exponential scale between the missing-data pattern and the observed-
data pattern for group k. Following Bayesian rule we have:

Pr(R = 1|Y = y + σ2, T rt = k)
Pr(R = 0|Y = y + σ2, T rt = k)

/
Pr(R = 1|Y = y, T rt = k)
Pr(R = 0|Y = y, T rt = k)

=
f(Y = y + σ2|R = 1, T rt = k)
f(Y = y|R = 1, T rt= k)

/
f(Y = y + σ2|R = 0, T rt = k)
f(Y = y|R = 0, T rt = k)

here f(y|R = r, T rt = k) = (2πσ2)−1/2e−
1

2σ2 (y−μ(r)
k )2 is the normal probability

density function, from which we obtain

f(Y = y + σ2|R = 1, T rt = k)
f(Y = y|R = 1, T rt= k)

/
f(Y = y + σ2|R = 0, T rt = k)
f(Y = y|R = 0, T rt = k)

= eμ
(1)
k

−μ(0)
k

or

λ̃k =
Pr(R = 1|Y = y + σ2, T rt = k)
1 − Pr(R = 1|Y = y, T rt = k)

/
Pr(R = 1|Y = y + σ2, T rt = k)
1 − Pr(R = 1|Y = y, T rt = k)

. (10)
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Then, from (10) the sensitivity parameter λ̃k has an alternative interpretation from
a SM perspective. It represents the odds ratio of dropping out for σ2 unit increase
in y for group k. The corresponding SM model for PMM with parameterization (9)
is:

logit(Pr(R = 1|Y, Trt)) = γ0 + γ1Trt+ γ2Y + γ3Trt ∗ Y

where γ2 = log(λ̃0)/σ2 = μ
(1)
0 −μ(0)

0
σ2 and γ3 = log(λ̃1/λ̃0)/σ2 = μ

(1)
1 −μ(0)

1
σ2 − μ

(1)
0 −μ(0)

0
σ2 .

Thus, from (9) and (10) the sensitivity parameter λ̃k has a dual interpretation.
In PMM, λ̃k represents the mean difference in exponential scale between the missing
subjects and the observed subjects for group k. In SM it represents the odds ratio
of dropping out for one σ2 increase in y for group k. Both PMM and SM can be
identified by giving a prior distribution to log(λ̃k). This parameterization and its
dual interpretation unifies the sensitivity analysis through PMM and SM.

Next, let us consider the case where σ(1)
k �= σ

(0)
k . Thus, to identify the model

we relate the location parameters (means) and the scale parameters between the
missing subjects and the observed subjects as follows:

μ
(1)
k − μ

(0)
k = log(λ̃k) (11)

and

σ
(1)
k = ψ̃kσ

(0)
k . (12)

The ψ̃k is the ratio of σk parameters between the missing-data pattern and the
observed-data pattern for group k. We assume that it follows a log-normal dis-
tribution with mean ψ and variance c2ψ2. Following Bayesian rule as above we
get:

Pr(R = 1|Y = y + 1, T rt = k)
Pr(R = 0|Y = y + 1, T rt = k)

/
Pr(R = 1|Y = y, T rt = k)
Pr(R = 0|Y = y, T rt = k)

=
f(Y = y + 1|R = 1, T rt = k)
f(Y = y|R = 1, T rt = k)

/
f(Y = y + 1|R = 0, T rt = k)
f(Y = y|R = 0, T rt = k)

here f(y|R = r, T rt) = (2πσ(r)
k

2
)−1/2e

− 1

2σ
(r)
k

2 (y−μ(r)
k )2

is the normal probability den-
sity function for pattern r. The corresponding SM model for PMM with parame-
terization (11, 12) is:

logit(Pr(R = 1|Y, Trt)) = γ0 + γ1Trt+ γ2(1− Trt) ∗ Y + γ3Trt ∗ Y

+γ4(1− Trt) ∗ Y 2 + γ5Trt ∗ Y 2 (13)

where γ2+k = μ
(1)
k

σ
(1)
k

2 − μ
(0)
k

σ
(0)
k

2 = log(λ̃k)+μ
(0)
k (1−ψ̃k

2
)

σ
(0)
k

2
ψ̃k

2
and γ4+k = 1

2σ
(0)
k

2 − 1

2σ
(1)
k

2 =

1

2σ
(0)
k

2

ψ̃2
k−1

ψ̃2
k

. Thus, when the distribution of the missing data has different loca-

tion and scale parameters compared to that of the observed data the corresponding
SM is no longer linear. A quadratic term (with the coefficient expressing the dif-
ference of the inverse scale parameters between missing-data patterns) is part of
the SM. In this situation, the identifiability of the model using a PMM approach is
more meaningful and intuitive than the SM approach.
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3. Conclusions

We propose here a Bayesian parameterization using a pattern-mixture model ap-
proach to analyze outcomes within the exponential distribution family with missing
values that are potentially MNAR. Such parameterization is intuitive and easy-to-
use. It measures the difference between the distributions of the missing data from
the observed data and is then used for sensitivity analysis. We relate the identifying
parameterization proposed within PMM framework to its corresponding parameter-
ization using SM approach. Such equivalence results in a dual interpretation of the
identifying parameter that is used for sensitivity analysis. Both PMM and SM
represent the joint likelihood of the outcome and the missing-data indicator, but
use alternative decomposition of such likelihood. When the parameter spaces of
the models for the outcome and the missing-data indicator are independent, both
PMM and SM will result in the same statistical inferences and therefore can be fit-
ted interchangeably. The choice of the model is often decided based on the analysis
objective, on how best to formulate and incorporate the identifying assumptions
regarding the missing-data mechanism, as well as on the flexibility of the analy-
sis that is followed. Here we provide a Bayesian parameterization to identify the
model that has a dual interpretation and can be formulated in an intuitive way
from an expect in the filed by either a PMM or a SM perspective. This provides
flexibility and assurance to a subject expert for eliciting information that is used to
construct prior distributions to identify the model. We use an informative prior to
capture a range of different scenarios and apply sensitivity analysis to evaluate the
robustness of the results towards different sensitivity assumptions. Finally, from
a computational point, the proposed parameterization allow PMM and SM to be
fitted interchangeably, for example when formulation is easier under one approach
but implementation is easier under the other approach.
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