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Abstract:  In many surveys, field procedures address nonresponse with a combination of 
callback efforts and changes in the mode of data collection.  To analyze the resulting 
data, one generally needs to account for the relevant features of the underlying 
population, the sample design, and the nonresponse follow-up plan.  This paper suggests 
a relatively simple approach based on random assignment of sample units to distinct 
groups.  Each group receives different treatments defined by, e.g., varying numbers of 
callbacks, different contact and interview modes, different response incentives, and 
different levels of interviewer training.  Some properties of the proposed methods are 
evaluated through a simulation study.   
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1.  Introduction 
 
In many household and establishment surveys, initial attempts to collect data from a 
selected sample unit may be unsuccessful.  Survey organizations have developed a 
variety of strategies to address this issue.  These strategies generally involve a 
combination of callbacks; changes in the mode of attempted contact or collection; 
assignment of the sample case to an interviewer specially trained in working with 
reluctant respondents; or use of incentives, burden reduction or other special methods to 
persuade the unit to participate in the survey.    
 The reference list for this paper covers some of the previous literature related to 
callbacks and the conversion of reluctant respondents.  A detailed literature review is 
beyond the scope of the current work.  However, it is worth noting that the papers 
included in the reference list exhibit a range of approaches to (a) the specific strategies 
applied to obtain information from nonresponding sample units; (b) the information used 
to adjust for residual nonresponse (and related effects of collection mode or other factors) 
after best efforts to apply the strategy used in (a); and (c) the extent to which subsequent 
inferences are based on, respectively, models or explicit randomization mechanisms 
employed in the implementation of (a).       
 The current work will focus on a relatively simple approach in which sample 
units are assigned randomly to distinct treatment groups defined by alternative strategies 
identified in (a); the information in (b) is restricted to data from the original sample 
design and from the random assignment of treatments; and inferences for (c) are based 
primarily on the randomization mechanisms in the original sample design and the 
treatment assignment, as well as some important moment restrictions.  Section 2 outlines 
the primary steps in the proposed method.  Detailed development of the properties of the 
proposed method are beyond the scope of the current work, and will be considered in a 
separate paper.  Section 3 outlines a simulation study to evaluate the properties of a 
relatively simple form of the proposed method.  Section 4 presents numerical results of 
the simulation study.   
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2.    Notation, Callback Design and Estimators 
 
We consider a finite population U  of size , from which we select a sample  of size  N S
M .  To simplify notation, we will restrict attention here to selection of  through a 
equal-probability selection methods.  Our goal is to estimate the population mean 
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where  is a characteristic associated with population unit .   iZ i
 The current paper will restrict attention to two modes for contact and collection 
of data from our sample units.  The first mode, through personal visit, will be treated as a 
“gold standard” in which the probability of response equals one, and for which the 
interviewer records the true value  .   The second mode is through the telephone; we 
will treat telephone collection as being subject both to nonresponse and reporting errors.  
Specifically, we will use a fixed nonresponse model, in which each unit i  has an integer 
value  such that unit i  will respond to telephone contact attempt a , but not 
earlier.  In addition, when unit i   does respond to a telephone contact, it reports the error-
prone value , where 
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and the terms iiZ δ  represent multiplicative errors.   
 For a given positive integer  C ,  the fixed values lead to a partition of the 
full population  
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where for ,      is the subpopulation of units that will first respond to 
telephone call attempt  .  In addition,  is the subpopulation of units that will not 
respond to any of the first    telephone call attempts.  For each   
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 to be the size of the subpopulation ,  let cN cU NNcc /=π , 
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In addition, we assume that for each ,  c
 
    ccc Z δδ ≈*      (2.5) 
 
Condition (2.5) is a finite-population variant on the common model-based assumption 
that the multiplicative error factors are independent of the underlying true values.   
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 Conditional upon selection of the sample , we assign each sample unit to a 
group .  For each sample unit in group , we will make up to   attempts 
to collect data through the telephone.  If we do not receive a telephone response by the 
end of attempt , we will collect data through the “gold standard” personal-visit method 
on attempt .  For each 

S
CD K,1,0= D D

D
1+D CD K,1,0=  and Dc K,1= , we define  to be the set 

of sample units assigned to group ,  to be the group of units in  that respond on 

telephone attempt c ,   to be the group of units in  that do not respond to any of 

the first  call attempts.  In addition, define   to be the size of   ,    to be 
the size of , and  to be the size of     .   
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which is approximately unbiased for cπ ,  
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Taken together, expressions (2.6)-(2.8) define a set of nonlinear estimating equations for 
the unknown subpopulation quantities cπ , cZ   and *

cδ .  Under the additional condition 

that the multiplicative error terms *
cδ  are approximately constant across the first  

subpopulations, standard nonlinear least-squares procedures lead to point estimators that 

we will denote    

C

cπ̂ , cẐ   and *
1δ̂ .   

 
 
3.  Design of the Simulation Study 

  
For this study, we defined the true subpopulation proportions to be  for 

each , and   .  We considered separate cases with   equal 

to 0.1, 0.2 and 0.5, respectively.  In addition, the true values Zi were distributed with a 
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mean of 0 and a variance of 10. Five different cases for our measurement errors iδ  with 
differing means and variances were considered. The first four cases involve nonzero 
means. This is important because some of the literature on mode effects indicates that for 
some survey items, measurement errors may have nonzero means for inexpensive 
collection modes like the telephone. Case A involves a fairly well behaved mean and 
variance. For Case B, the variance was increased, whereas for Case C, the mean was 
increased. For Case D, our mean varies across the number of callback attempts made. For 
Case E, a measurement error mean of 0 was considered. (See Table 0.) 
 
4.  Numerical Results 
 
When dealing with nonlinear estimators, we need to be careful to determine whether our 
optimization procedures are actually converging for as many cases as possible. In Table 
1, we display convergence rates (out of 1000 replications) for c=2 and c=5, separately 
for estimation using PROC NLP and PROC NLIN respectively. For PROC NLP, the 
LSQ statement was used, meaning the least squares were computed. The cov=2 option 
was used to compute the covariance matrices. The maximum number of iterations was 
specified as 100. For PROC NLIN, the Newton iterative method was specified, and the 
maximum number of iterations was also set at 100. The rows report the convergence rates 
for Cases A through E respectively. From this, we can see that PROC NLP performed 
much better, and PROC NLIN had a high number of nonconvergers. Table 2 indicates 
further convergence problems for PROC NLIN for c=2, both for p=0.2 and p=0.5. 

In Table 3, we report the mean and standard deviation of our estimators z1 
through z3 as well as delta for Case A with p=0.1. For Case A, we see that the z’s tend to 
be reasonably close to the true mean of 0, whereas the true mean of δ should be 1. Our 
resulting value for the mean of delta and the large standard deviation show that our 
method of moment estimator for δ  is relatively unstable. For Case B (see Table 4), we 
see a pattern similar to that for Case A: The z estimators are approximately unbiased, and 
the δ  estimator is still unstable. 

Cases C, D and E (Tables 5, 6, and 7, respectively) showed similar results. For 
each of these cases, the mean estimators for the z values are all approximately unbiased, 
despite the presence of a nonzero mean of the measurement errors δ . In other words, 
combination of data from the error-prone telephone interviews and the gold-standard 
interviews has led to approximately unbiased estimators for the subpopulation means. All 
of the cases still display substantial variability in the delta estimator. Changing the 
probability to 0.5 for Case E (Table 8) gave us a more modest but still problematic 
standard deviation for delta. When we look at a result for c=5 (Table 9) for p=0.1, we can 
see that the value 1δ improves considerably compared to c=2 in Table 7.  

We wished to examine the cause of these large standard deviations. Were there a 
large number of replicates that were poorly behaved and contributing to the large 
standard deviation, or was it a small number of poorly behaved replicates that were in a 
sense so bad that they alone were the cause of the high standard deviation? To do this, we 
looked at the quantiles for 1δ  for the converging runs in three different runs. We did this 
for Case E, where the true mean for delta=0. In Table 10, the second through the fourth 
columns cover three distinct forms of Case E, with different values of C and p. The rows 
in the table show the tail and central quantiles for the delta estimators. You’ll notice that 
for each of the three cases, the 10th through the 90th percentiles are reasonably well 
behaved, but the first and 99th percentiles are fairly extreme, Thus, the tails are what are 
responsible for the high standard deviation. 
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Table 0: Five Cases Considered 
 

Means and Variances of Measurement Errors

1cx5D

Case Mean Variance
A 1 1
B 1 10

C 10 1

E 0 1

 
 
 

Table 1: Convergence Rates for p=0.1: 
 

Convergence Rates 
(out of 1000 replications) for p=0.1; 
Default stopping rule: 100 iterations

 

Case C=2 C=3 C=5
NLP NLIN NLP NLIN NLP NLIN

A 0.993 0.936 0.993 0.924 1.000 0.898

B 0.992 0.889 0.991 0.847 1.000 0.787

C 0.992 0.901 0.982 0.838 1.000 0.714

D 0.991 0.895 0.981 0.845 1.000 0.743

E 0.997 0.953 0.993 0.946 1.000 0.953
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Table 2: Convergence Rates for C=2, p=0.2 and 0.5 
 

Convergence Rates 
(out of 1000 replications) for c=2, p=0.2 and 0.5; Default 

stopping rule: 100 iterations

NLINNLPNLINNLPCase

C=2,p=0.2 C=2, p=0.5

A 0.996 0.956 0.995 0.962

B 0.996 0.885 0.995 0.895

C 0.986 0.921 0.996 0.958

D 0.990 0.887 0.989 0.888

E 0.999 0.964 1.000 0.964

 
 
 
 

 
Table 3: Mean and Standard Deviation for C=2, Case A, p=0.1 

C=2 Case A: error mean=1, p=0.1, PROC NLP
999 out of 1000 runs converged

Variable Mean Standard
Deviation

Z1 -0.1278 3.1867
Z2 0.0055 3.1395

Z3 0.0146 3.8087

δ1 -0.8231 141.1515
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Table 4: Mean and Standard Deviation for C=2, Case B, p=0.1 

C=2 Case B: error mean=1, p=0.1, PROC NLP
992 out of 1000 runs converged

Variable Mean Standard 
Deviation

Z1 0.0597 3.1074
Z2 0.0665 2.7874

Z3 0.0947 3.5900

δ1 0.5989 263.8131

 
Table 5: Mean and Standard Deviation for C=2, Case C, p=0.1 

C=2 Case C: error mean=10, p=0.1, PROC NLP
992 out of 1000 runs converged

Variable Mean Standard 
Deviation

Z1 -0.0299 2.4316
Z2 -0.0148 2.2753

Z3 0.2174 3.7847

δ1 -2.8880 162.9991
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Table 6: Mean and Standard Deviation for C=2, Case D, p=0.1 

C=2 Case D: error mean=cx5, p=0.1, PROC NLP
991 out of 1000 runs converged

Variable Mean Standard 
Deviation

Z1 -0.0570 1.8077
Z2 0.0136 2.9300

Z3 0.1283 3.5553

δ1 -0.7474 128.3369

 
Table 7: Mean and Standard Deviation for C=2, Case E, p=0.1 

C=2 Case E: error mean=0, p=0.1, PROC NLP
997 out of 1000 runs converged

Variable Mean Standard 
Deviation

Z1 -0.0187 3.2039
Z2 0.1399 3.1008

Z3 0.0989 3.9023

δ1 -0.7867 117.6986
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Table 8: Mean and Standard Deviation for C=2, Case E, p=0.5 

C=2 Case E: error mean=0, p=0.5, PROC NLP
993 out of 1000 runs converged

Variable Mean Standard 
Deviation

Z1 -0.0041 3.0863
Z2 0.0985 3.1742

Z3 -0.0509 3.2976

δ1 -0.6335 55.5745

 
Table 9: Mean and Standard Deviation for C=5, Case E, p=0.1 

C=5 Case E: error mean=0, p=0.1, PROC NLP
993 out of 1000 case converged

Variable Mean Standard Deviation
Z1 -0.0757 2.7368
Z2 -0.0306 2.9492

Z3 -0.1229 2.8704

Z4 -0.0807 2.7129

Z5 -0.1145 2.7608

Z6 0.1095 3.5572

δ1 -0.0346 6.4159
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Table 10: Quantiles for 1δ  for three cases 

-7.0577
-1.1111
-0.3375
0.0002
0.3152
1.0707
9.8879

C=5, Case E, 
p=0.1

-12.6719
-0.5420
-0.2339
-0.0152
0.2170
0.5079
2.5691

C=2, Case E, 
p=0.5

-21.1403
-1.0724
.0.2978
0.0111
0.3271
1.1449

13.0870

c=2, Case E, 
p=0.1

0.99
0.90
0.75
0.50
0.25
0.10
0.01

Quantile
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