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Abstract 

Under-coverage is one of the most common problems of sampling frames. To 

reduce the impact of coverage error on survey estimates several frames can be 

combined in order to achieve a complete coverage of the target population. 

Multiple frame estimators have been developed to be used in the context of 

multiple frame surveys. Sampling frames may overlap which is the case when a 

single unit of the sampling frame is related with more than one element of the 

target population. Indirect sampling (Lavallée, 1995) is an alternative approach to 

classical sampling theory in dealing with the overlapping problem of sampling 

frames on survey estimates. In this paper a new class of estimators is presented 

which is the result from merging dual frames estimators with indirect sampling 

estimators in order to bring together in a single estimator the effect of several 

frames on survey estimates. 
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1. Introduction 

In any survey the random selection of the sample requires that a sampling frame is 

available. The sampling frame is used to identify the elements of the target 

population. The frames may be maps of areas in which elements can be found, 

among others. At their simplest, sampling frames consist of a list of population 

elements (Groves et al, 2007). There are populations for which lists are readily 

available, such as members of a professional organization, hospitals or schools. 

There are many populations, though, for which lists of individuals elements are 

not readily available. For example the adults living in a country, or the students 

attending school on a specific district.  

 When available, one central statistical concern for the survey researcher is 

how well the sampling frame actually covers the target population. A sampling 

frame is perfect when there is a one-to-one mapping of frame elements to target 

population elements. In practice, perfect frames seldom exist; there are always 

problems that disrupt the desired one-to-one mapping, namely: (a) under 

coverage, (b) duplication and (c) over coverage. Under coverage happens when 
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some elements of the target population do not appear in the sampling frame; 

therefore such elements cannot appear in any sample drawn for the survey. 

Duplication happens when several frame units within a given frame are mapped 

onto the single elements in the target population, which makes the mapping not 

unique, not one-to-one. Over coverage occurs when multiple elements of different 

sampling frames are linked to the same single unit of the target population, i.e., a 

many-to-one mapping. There are also cases that combine the duplication and the 

over coverage problems in which multiple frame units map to one target 

population element.  

 

Selecting a sample from a sampling frame that suffers from under coverage can 

cause coverage error on survey statistics. One of the strategies to reduce coverage 

error is to use  

multiple frames. A principal frame that provide nearly complete coverage of the 

target population may be supplemented by a frame that provides better or unique 

coverage for the population elements absent or poorly covered in the principal 

frame. In most cases supplemental frames overlap with the principal frame 

requires estimation procedures to be adapted in order to correct probabilities of 

selection, which might to yield improved precision for survey estimates. 

 Selecting a sample from a sampling frame that suffers from either over 

coverage or duplication poses several difficulties to estimation, namely in what 

concerns sample weights computation.  

 

 

2. Multiple frame estimators 

 

The estimation under multiple frame designs was originally proposed by Hartley 

(1962) and others. They suggested that the union of the frames be used in 

estimation to obtain a more efficient estimator. They proposed that a dual frame 

design be examined as a set of no overlapping domains and results from each 

domain combined to obtain a target population estimate. By taking Q sampling 

frames - A1, A2, ..., Aq - (that may overlap) to cover the target population 2
Q
-1 

domains mutually exclusive can be defined. In the particular case of Q=2 three 

mutually exclusive domains can be defined: D1, contains elements exclusively 

from frame 1, that is 211 AAD ∩= , D2, contains the elements that belong 

simultaneously to both frames, that is, 212 AAD ∩= , and D3, contains elements 

exclusively from frame 2, that is 213 AAD ∩= . In this context, the dual frame 

estimator of the total population proposed by Hartley (1974) is based on the 

weighted average of the total estimates from the domains: 
2
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 Alternatively, the population total Y may be represented by the following 

expression (Hartley 1962, 1974): 
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 The sample selected from each frame is then used to produce an estimate 

for the total in each domain, which in turn, is combined to produce a single 

estimate for the population total. The estimator is given by 
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and it requires the weights )(q

iw  to be computed.  

 In the literature there are two approaches to estimate these weights: the 

Domain Membership approach and the Multiplicity Unit approach. According to 

Domain Membership approach a partition of domains is defined in the frames, in 

such a way that it is always possible to correctly identify to which domain belongs 

each element of the sample. There are three types of estimators, depending on the 

fixed weights they use, in this class of estimators: 

 (a) The Optimal Estimator )(

,

q

optiw - presents good theoretical properties - it 

has minimal variance (Hartley 1962, 1974; Lund 1968; Fuller and Burmeister 

1972) - but, in operational terms, is very complex.  

 (b) The Single Based Estimator )(

,

q

SFiw  - uses fixed weights guaranteeing 

unbiased estimates (Bankier 1986; Kalton and Anderson 1986; Skinner 1991; 

Skinner, Holmes and Holt 1994), however, are less efficient than the optimal 

estimator (Lohr and Rao 2000).  

 (c) The Pseudo Maximum Likelihood Estimator )(

,

q

PMLiw
 
- extends the 

applicability of the optimal estimator increasing its efficiency when compared 

with the single based estimator (Skinner and Rao 1996; Lohr and Rao 2000).  

 The Unit Multiplicity estimators are based on the concept of unit 

multiplicity which reflects the number of frames to which a sample element 

belongs (Mecatti 2007). This concept was first used by Casady and Sirken (1980). 

Under this approach, the population total can be written as: 
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and involves solely the frames to which the sample element belongs. The 

expression of the population total estimator is given by: 
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where Q is the number of frames, ∑=
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number of frames in which each unit is include among the frames involved in the 

survey.  
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 Mecatti (2007) provides argument to apply Unit Multiplicity estimators in 

surveys with more than two sampling frames based on overlapping.  

 

 

3. Indirect Sampling and the Generalized Weight Share Method 

 

In Classical Sampling Theory the weight for each sampled element is related to 

the inverse of its selection probability. The Horvitz-Thompson estimator for the 

population total - HT
Ŷ  - resumes this principle: 

   
∑

∈

=
Sk k

kHT y
Ŷ

π
      (6) 

where ( )SkPk ∈=π  is the probability of the k element be selected in the samples. 

This theory assumes that the sampling frame is a perfect representation of the 

target population, i.e., a one-to-one mapping and is difficultly applied outside this 

condition. 

 Indirect Sampling was first proposed by Lavallée (1995) to deal with the 

problem of Cross-sectional weighting for longitudinal household surveys. 

Indirect sampling assumes that a sampling frame U
A
 with M

A
 units is available to 

represent the target population U
B
. U

B
 contains M

B
 elements, divided into N 

clusters, each one with B

iM  elements. A sample sA with mA units is then selected 

from the frame U
A
 in order to estimate some parameter of the target population 

U
B
. The Generalized Weight Share Method (GWSM), developed by Lavellée 

(1995) in the context of indirect sampling, uses the links between the units j ∈ U
A
 

and the elements k of the i
th

 cluster of U
B
 to compute the weight for each element 

in the sample. 

 
 
Figure 1: Example of links between sampling frame and the target population in Indirect 

Sampling 

 

 

Under the GWSM the estimator for the population total is given by:  
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where ikw  is the weight attached to the element k of cluster i, defined by 
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where 
'

ikw  corresponds to the inverse of the selection probability of units j of s
A
 

that have non-zero link with unit k of cluster i of 
BŶ .

 
The process to compute ikw  can be resumed in four steps: 
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B
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4) Compute the final weight wi to each sampled element k ∈ Ui
B
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The GWSM estimator can be re-written as (Lavallée 1995): 
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 The application of the GWSM requires the matching between sampling 

frame and target population and needs to satisfy the follow constraint: 
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There exists, at least, one link between the unit j ∈ U
A
 and the 

elements k of i
th

 cluster of U
B
 i.e. 1 l=L

N

i

M

k ikj
A
j

B
i ≥∑ ∑= =1 1 ,  for every

Uj A∈ ; 

 

This constraint is essential to ensure de unbiasedness of the GWSM. 

 

Lavallé (1995) proved that the GWSM estimator is unbiased and its variance is 

directly given by: 
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where π
A
jj ′  is the joint probability of selecting units j  and j′ . 

 

4. Combining Multiple Frame Estimators with Indirect Sampling 

 

Both multiple frame designs and indirect sampling seek to improve estimation in 

surveys where a “perfect” sampling frame does not exist.  Suppose for example a 

RDD survey is used to reach the general adult population of a country. RDD will, 

in principle, cover all adults living in households with fixed line telephone access 

but it fails to cover adults living in households without a fixed line telephone. A 

remedy to under coverage may be a supplementary frame of mobile phone 

numbers. Under such a dual frame design the two frames together will likely 

provide a complete (or nearly complete) coverage of the adult population, 

however an important statistical problem will raise researcher’ concern: some 

adults of the target population may be reachable both by mobile phone and fixed 

line phone, which means there is a many -to- one mapping. Under these 

circumstances the estimation approach should merge the solutions coming from 

dual frame estimation and indirect sampling. 

 Our proposal is to put dual frame estimators – both the Domain 

Membership estimators and Unit Multiplicity estimators – to the context of 

indirect sampling and thus provide an estimation approach adequate for surveys 

where the sampling frame suffers from under coverage (and several frames are 

combined to reduce the coverage error). 

 

4.1 The Domain Membership estimator 

In the context of Indirect Sampling the Domain Membership estimator for the 

population total can be expressed by: 
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variables, (0 ≤ θ ≤ 1) and qA

jπ  represents the selection probability of unit j from the 

q
th

 frame. 

 

 

4.2 The Unit Multiplicity Estimator 

 

 In the context of Indirect Sampling the Unit Multiplicity estimator for the 

population total can be expressed by: 

 

(11) 
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4.3 The Dual Frame estimator 

 The estimator proposed by Hartley (1974) (eq. 1) can, in the same way, be 

converted to Indirect Sampling context: 
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 is an indicator of frame variable and qA

jπ  represents the selection probability 

of unit j from U
Aq

 with q=1,2. 

 From equation (1) is possible to obtain the classes of estimators above 

described. Considering that )(xD   and   )(zC jjjj θθ == the class of Domain 

Membership estimators can be deduced. Replacing Cj and Dj by the proportion of 

the links from the frames A1 and A2, respectively, i.e., 
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