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Abstract 
Beginning with the 2007 data release, the Survey of Business Owners (SBO) will employ 
random noise instead of cell suppression to perform disclosure avoidance processing. 
This paper reports the results of a simulation study conducted to assess the impact of 
noise infusion on the statistical properties of the SBO variance estimates. We present two 
alternative methods of estimating the additional variance component due to noise 
infusion, while using the SBO random group variance estimator to estimate the sampling 
variance component. We examine the coverage and bias properties of the alternative 
variance estimators for level estimates and percentage change estimates over repeated 
samples. As part of this analysis, we considered the impact of the prevalence of sensitive 
cells as well as the percentage of the total variance due to noise infusion. Our study 
showed that the effects on the variance estimates over repeated samples due to the 
addition of noise was negligible for the SBO estimates, due to the survey’s large 
sampling variances. 
 
Keywords: variance estimation, disclosure avoidance, noise-infusion, random group 
variance estimator 
 
 

1. Introduction 
 
The U.S. Census Bureau promises respondents confidentiality of data under Title 13 of 
the U.S. Code. For years, the Economic Directorate exclusively used cell suppression 
(with the p-percent rule) to achieve disclosure avoidance. The p-percent rule flags a cell 
as sensitive if p-percent of the top contributor’s value is greater than the cell total minus 
the top c contributor’s values. The primary disadvantage of cell suppressions is that a 
large percentage of data cells may be suppressed (unpublished). An alternative method, 
using noise to protect individual responses, outlined by Evans et al (1998) achieves the 
publication of more data cells without sacrificing the quality of the aggregate data while 
keeping respondents’ data confidential. Beginning with the 2007 data release, the Survey 
of Business Owners (SBO) will employ random noise instead of cell suppression to 
perform disclosure avoidance processing.  
 
The noise infusion methodology yields unbiased estimates, but increases the expected 
value of the variance estimates by adding an additional component to the total variance. 
This paper reports the results of research conducted to assess the impact of noise infusion 
on the statistical properties of the SBO variance estimates via a simulation study. We 
present two alternative methods of estimating this additional variance component caused 
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by noise infusion, while retaining the random group estimator employed by SBO to 
estimate the sampling variance component.  
 
Using simulated data modeled from the SBO frame data, we examine the coverage and 
bias properties of the alternative noise infused variance estimators for level estimates and 
percentage change estimates over repeated samples. Because the random group variance 
estimator often requires a large number of samples to achieve unbiasedness, we examine 
the performance of the random group estimates over repeated samples without added 
noise as a baseline before examining the statistical properties of the two alternative 
complete variance estimators. In our analysis, we take the prevalence of sensitive cells as 
well as the percentage of the total variance due to noise infusion into consideration. 
 

2. Background on SBO 
 
The Survey of Business Owners and Self-Employed Persons (SBO) is part of the 
Economic Census, which the U.S. Census Bureau conducts, in years ending in “2” and 
“7.” (www.census.gov/econ/sbo) The SBO supplies data users with estimates of total 
firm counts, receipts, payroll, and number of employees for businesses in the United 
States based on the race, gender, ethnicity, and veteran status of the majority business 
owners. The published data also include additional owner characteristics, such as age, 
education level, primary function of the business, type of business (inside or outside the 
home), type of customers and workers, and sources of financing for expansion, capital 
improvements and start-up costs. In addition to the totals listed above, for certain 
estimates, the SBO also provides estimates of percentage change from the prior period.  
 
A new independent SBO sample is selected each data collection period using stratified 
systematic sampling. The sample frames divide the data into the following nine disjoint 
groups: American Indian, Asian, Black, Female, Hawaiian, Hispanic, Other, Publicly 
owned, and White Non-Hispanic. The sampling strata are defined by frame (one of the 
nine groups), state code, industry code (NAICS), and employer status. Companies that 
operate in multiple states are selected with certainty, along with companies whose 
payroll, receipts, or number of employees exceed stratum-specific size cutoffs. 
Otherwise, the companies are selected in each stratum systematically with a given 
probability after being sorted by the following: legal form of organization; likelihood of 
being male, female, or equally owned for sole proprietorship; and probability of 
belonging to the selected frame. Totals are Horvitz-Thompson estimates, using the 
inverse probability of selection as the sampling weight. A hot-deck imputation procedure 
adjusts for unit and item nonresponse. Variances are estimated via the random group 
methodology, with ten random groups. Race, gender, ethnicity, and veteran status data 
are not equally represented at all levels of estimates, leading to high estimates of variance 
in certain cases. 
 
Prior to the 2007 data release, SBO used cell suppression for disclosure avoidance. Under 
the cell suppression method, the sensitivity of each cell depends on the distribution of the 
respondent values that are summed to form the cell value. Sensitive cells, defined by the 
p-percent rule, are suppressed, and additional cells (known as “complements”) are 
suppressed to protect the sensitive cells. Given the multidimensional nature of published 
SBO data, complex linear programming methods are necessary to determine the 
placement of complementary suppressions. This complimentary cell suppression process 
requires significant programming resources and analyst review time, and publishable 
crosstabulations are limited by the capabilities of the linear programming software. 
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Approximately 27% of all published 2002 SBO cells were complementary suppressions. 
For the 2007 SBO, noise infusion is a promising alternative since far fewer cells will be 
suppressed and the limitations of complementary suppression do not apply. 
 

3. Noise-infusion 
 
The Evans-Zayatz-Slanta (EZS) noise method involves adding a predetermined amount 
of random “noise” to the micro data before tabulation. To do this, the establishment’s 
data are multiplied by a factor that perturbs the data by a small percentage [Note: all 
establishments within the same company are perturbed in the same direction]. For 
example, if one were to perturb the reported data by about 10%, the noise adjustment 
factor would be close to 1.1 or .9. The “noise-infused” total for an establishment is 
obtained as  

Establishment value * [factor + (weight – 1)]. 
The noisy establishment data are then summed up to get the cell total. The probabilistic 
model used to generate the noise adjustment factors must be symmetric about one. This 
achieves two objectives: (1) the expected value of noise being added to any cell is zero; 
and (2) in a given cell, there are equal expected amounts of establishments having 
positive amounts of noise and negative amounts of noise. These objectives accomplish 
the goal of minimizing the noise added to cells that are not at risk for disclosure. (Evans 
et al 1998) 
 
The large sampling weights provide enough protection to avoid disclosure for the non-
certainty units, so for SBO, the noise-factors will be added to certainty units only. SBO 
then calculates the noise-infused total as: 





11

*)*(ˆ
weighti

ii
weighti

iiN yweightyfactorY  

All certainty companies (firm-level) in the SBO universe are randomly assigned a noise 
direction (either positive or negative). Each establishment is assigned a random noise 
factor (1 ± f), where f is in [a, b] and 1 ± f is from a “split triangular” distribution. The 
factor (f) is random for each establishment, but the direction ( ) is the same for all 
establishments in a company. Receipt, employment, and payroll values of each 
establishment are multiplied by the same noise factor. The SBO rounds estimates to the 
nearest 1,000 in each cell, which could potentially remove the effect of noise on small 
cases’ values. To overcome this, based on research with 2002 SBO data, SBO increases 
or decreases each establishment data value by at least one unit. (Massell 2007) 
 

The variance estimator for any noise-infused estimated total NŶ  could be expressed as  

)(ˆ)ˆ(ˆ)ˆ(ˆ NvYvYv MDNN   

where )ˆ(ˆ YvD is the sampling variance (obtained from non-certainty units only) of the 

original estimate Ŷ and )(ˆ NvM is the additional variance obtained by inducing noise. We 
estimate the first component using the method of random groups with ten assigned 
random groups to model SBO.  
 
We evaluated two different estimators of the noise-infused variance component, )(ˆ NvM . 
The first estimator is derived by treating the noise infusion process as another stage of 
sampling. The first stage is the sample selection process and the second stage is the noise 
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infusion process. The variance of the noisy estimate is obtained by conditioning on both 
stages. Using the conditional variance identity  

)ˆ()ˆ()ˆ( 2121 NNN YVEYEVYV  , 

the first component is approximated by the variance of the original (non-noisy) estimate 

( )ˆ(YV ). The estimate of the second component is  





n

i
iM yNv

1

22 *)(ˆ  , 

where 2 is the known variance of the probabilistic model used for noise assignment. 
For SBO, this is the variance of the split triangular distribution. Hereafter, we refer to this 
method as Variance Option 1.  
 
The second estimator provided in Evans et al (1998) and derived under different 
assumptions is 

2)ˆˆ()(ˆ YYNv NM  . 

Hereafter, we refer to this method as Variance Option 2. With Variance Option 2, the 
aggregate noise applied to each sample unit is viewed as a known bias added to the 

original estimate and the covariance between Ŷ  and )ˆˆ( YYN   is assumed to be zero. 

Also, the variance of an estimate with little noise should be close to the original variance 
and the variance of an estimate with a lot of noise would be much larger. 
 
There are several differences between Variance Option 1 and Variance Option 2. First, 

with the second variance estimator, there is a slight disclosure risk when 0)ˆ(ˆ YvD , 
because the original estimate could be derived. In contrast, there is no similar disclosure 
risk with Variance Option 1. To derive Variance Option 1, no assumptions are made 

about the relationship between the added noise )ˆˆ( YYN  and Ŷ . With Variance Option 

2, it is impossible to develop an upper bound on the added variance due to noise. But 
with Variance Option 1, the added variance due to noise has an upper bound of  

22 **)(ˆ iM ynNv  , 

where iy  is the largest value for an item among all the establishments. A more detailed 

proof of each variance option is found in the appendix.  
 

4. Simulation Study 
 
4.1 Design 
We modeled SBO populations from available 2002 and 2007 sampling frame data in 
selected states chosen by subject-matter experts. The five states modeled were New York 
(large number of firms with great diversity of race and gender and a small percentage of 
sensitive cells), Utah (small number of firms with little diversity and a large percentage 
of sensitive cells), Pennsylvania (large number of firms with moderate diversity and an 
average amount of sensitive cells), Georgia (mid-size number of firms with moderate 
diversity and an average amount of sensitive cells), and Missouri (mid-size number of 
firms with some diversity and an average amount of sensitive cells).  
 
To obtain simulated (2002 and 2007) population frames, we modeled percentages of race, 
gender, ethnicity and publicly held ownership from the 2002 weighted response data 
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proportions. Receipt values were not simulated: the totals are computed from 
administrative data found on the sampling frame. SBO performs a hot-deck imputation 
procedure to correct for unit and item non-response. For this study, we ignored this 
imputation component, recognizing that our simulated variances will consequently be 
underestimates.  
 
We selected 5,000 repeated stratified systematic samples from each population (2002 and 
2007) using the SBO stratification, allocation, and sampling design. Within each sample, 
we independently applied noise to establishments with sample weight equal to one using 
the SBO methodology stated in Section III. For this study, we restricted the analysis to 
variances of total estimates of firm counts and receipts and their respective percent 
change comparisons. We added noise to firm counts to obtain a second set of estimates, 
that the sample is designed to obtain, for our analysis. It should be noted that this would 
not be done for the actual SBO publication.  
 
We used the two variance estimation options presented in Section III to compute 
variances of the noise-infused estimates. To distinguish between variance effects due to 
noise infusion and variance effects due to sampling variance alone, we computed 
variances for the original estimates along with the noise-infused counterparts. Since the 
SBO is introducing noise in 2007, the first set of percent change comparisons compares 
current noise-infused estimates to prior original estimates. After 2007, SBO percent 
change estimates will include noise in both years. Thus, we consider three types of 
percent change estimates: original to original (baseline); original to noise-infused 
(mimicking the 2002/2007 production setting); and noise-infused to noise-infused (after 
2007).  
 
The following tables (Tables 1 and 2) give a description and subscript notation of 

estimates ( Cis


) and variance estimates ( )(ˆ CisFv 


) used in the simulation study. The C 

subscript indexes the type of estimate, the F subscript indexes the type of variance 
estimate, i is the tabulation level and s is the sample. 
 

Table 1: Values of “Type of Estimate” Indices Used in Simulation Study 
C  Description 
1 2002 Firm counts original  
2 2002 Firm counts noise infused 
3 2007 Firm counts original 
4 2007 Firm counts noise infused 
5 Firm counts change from original to original 
6 Firm counts change from original to noise infused  
7 Firm counts change from noise-infused to noise infused  
8 2002 Total Receipts original 
9 2002 Total Receipts noise infused 
10 2007 Total Receipts original 
11 2007 Total Receipts noise infused 
12 Total Receipts change from original to original 
13 Total Receipts change from original to noise infused  
14 Total Receipts change from noise infused to noise infused  
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Table 2: Values of “Variance Estimator” Indices Used in Simulation Study 
F 
subscript 

Description 

0 The sampling variance of the original estimate 
1 The variance of noised infused estimate; Option 1 
2 The variance of noised infused estimate; Option 2 

  
In all 5,000 samples, we computed all fourteen types of estimates. We obtained empirical 
mean square errors (MSE) for each type of estimate as 

2
5000

1

)ˆ(
5000

1
)( Ci

s
CisCiMSE  






 




, 

where Ci  is the corresponding population value for each estimate Ci̂ . In 1,000 of the 

5,000 samples, we calculated all three types of variances per estimate. This yielded 
twenty-two variances in all per tabulation level to review.  
 
4.2 Evaluation Criteria 
We computed the following statistics to evaluate the properties of the variance estimators 
over repeated samples: 
 
 Relative Bias - the ratio of a variance estimate over repeated samples to the empirical 

mean square error minus one, computed as 

1
)ˆ(

)ˆ(ˆ
1000

1

)ˆ(

1000

1 



Ci

s
CisF

CiF
MSE

v
RB




  

 Coverage – the percentage of 90% confidence intervals (constructed using a t-statistic 
with 9 d.f.) that contain the true population estimate, calculated as 

 
100% - (Lower error rate + Upper error rate) 

 
Lower error rate: The percentage of estimates where the population total is less 

than the lower bound of the 90% confidence interval. 
 
Upper error rate: The percentage of estimates where the population total is 

greater than the upper bound of the 90% confidence interval. 
 
The “ideal” variance estimator will have relative bias near zero and coverage rates near 
90-percent. 
 

5. Results 
 
5.1 State Characteristics 
The five states were chosen to study the impact of the prevalence of sensitive cells. Table 
3 presents summary statistics on the percentage of sensitive cells statewide by year for 
total receipts, determined independently within each sample. In this analysis, cell i is 
considered sensitive if it would be a primary suppression using the p-percent rule. In 
Table 3, we see Utah has the largest percentage of sensitive cells and New York has the 
smallest. (Tested at alpha=0.05) 
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Table 3: Percentages of Sensitive Cells In Simulated Populations 
State: 2002 Total Receipts 2007 Total Receipts 
New York 3.00% 4.80% 
Utah 6.04% 12.60% 
Pennsylvania 5.08% 8.18% 
Georgia 5.16% 7.90% 
Missouri 5.93% 11.53% 

 
If the sampling variance is quite high, then it is likely that the additional variance 
component resulting from noise infusion may not have much effect on the statistical 
properties of the variance estimates. To examine this, we calculated the overall 
percentage of variance due to noise infusion for 2002 and 2007 total receipts by state 
using the 1,000 samples and all tabulation levels. Table 4 presents these percentages.  
 

Table 4: Percentage of Variance due to Noise Infusion 
 2002 Receipt Totals 2007 Receipt Totals 

State 
Variance 
Option 1 

Variance 
Option 2 

Variance 
Option 1 

Variance 
Option 2 

New York 11.7% 12.2% 22.9% 21.2% 
Utah 21.6% 21.2% 31.5% 29.9% 
Pennsylvania 15.2% 16.2% 28.3% 26.5% 
Georgia 15.4% 16.3% 27.2% 25.2% 
Missouri 19.9%* 20.0%* 30.5% 28.5% 
* Variance Option 1 is not significantly different from Variance Option 2 
 
Not surprisingly, the variance estimates in Utah have the highest proportion total variance 
due to noise infusion, and the variance estimates in New York have the least. (Tested at 
alpha=0.05) There was no significant difference between Pennsylvania and Georgia for 
2002 receipt totals. For Utah, Variance Option 1 (based on the known split triangular 
distribution combined with the squared total estimate) consistently yielded a larger 
percentage of variance due to noise than Variance Option 2 (the Evans et al estimator). 
The other states did not show this pattern. The percentage of variance due to noise 
infusion is on average small. Because of the inconsistency between the results for 2002 
and 2007, we cannot say if either variance estimator option is consistently smaller than 
the other. 
 
5.2 Relative Bias 
To assess the bias properties of Variance Options 1 and 2, we performed a separate 
analysis of each variance estimator by type of estimate. This was a two-step process. 
First, we computed relative bias of each variance estimator for a given tabulation. Then, 
we used two-sided sign tests to test for overall unbiasedness, under the null hypothesis 
that the median value of the relative bias of a variance estimator (over all tabulation 
levels) is zero. We performed a total of twenty-two sign tests per state.  
 
For each of the two variance estimator options, we performed eight tests: 

 Totals – four tests (firms and receipts, 2002 and 2007 data) 
 Percent change – four tests (firms and receipts, original/noise-infused and 

noise-infused/noise-infused) 
 
For the original variance estimator (sampling variance only), we performed six tests: 
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 Totals – four tests (firms and receipts, 2002 and 2007 data) 
 Percent change – two tests (firm and receipts, original/original). 
 

The null hypothesis was rejected for the majority of the sign tests providing evidence that 
the variance estimates were biased.  
 
Although the sign test provides evidence of the existence of bias, it does not examine the 
magnitude or direction of the bias and cannot be used to evaluate the impact of the bias 
on coverage rates. To examine the direction of the bias analytically, we examined 
histograms of relative bias for all variance estimators over all tabulation levels to obtain 
some anecdotal information on the direction of the bias. The graphical analysis provided 
indications of positively biased variance estimates for the majority of total estimates, and 
negatively biased variance estimates for change estimates. This pattern was the same 
across states and for all variance estimators.  
 
Since both Options 1 and 2 yielded biased variance estimates, we used Wilcoxon signed 
rank tests to determine whether one variance estimator was systematically less biased 
than the other. We tested a one-sided null hypothesis that the relative bias of Variance 
Option 1 is greater than or equal to the relative bias of Variance Option 2, i.e. 

)ˆ()ˆ(: 210 CiCi RBRBH    

)ˆ()ˆ(: 211 CiCi RBRBH   . 

 
Approximately 10% of all tests were significant, as expected at an alpha level of 10%. 
We concluded that neither variance estimator option induced higher relative bias. 
 
5.3 Coverage Rates 
To analyze the statistical properties of the variance estimators on confidence interval 
coverage, we restricted the analysis to cells with unbiased estimates over repeated 
samples. This eliminated the confounding effects on coverage caused by using both a 
biased estimator and a biased variance estimator. We used normal tests (z-tests) to test for 
estimate bias. For estimates of total, we tested:  

H0: CiCi  ˆ  

H1: CiCi  ˆ  

where Ci̂  is the average estimate of the characteristic C in cell i from the 5000 samples, 

and Ci  is the population value. The test statistic is  

5000/)ˆ(

)ˆ(

Ci

CiCi

MSE
z



 
 .  

Under H0, z ~ N(0,2). Reject 0H  if )95(.zz  . 

 
For change estimates, we tested  

H0: 
11ˆˆ   t

Ci
t
Ci

t
Ci

t
Ci   

H1: 
11ˆˆ   t
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t
Ci

t
Ci

t
Ci   

The test statistic is  
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We constructed three sets of 90% confidence intervals for all unbiased estimates (one per 
variance estimator option). Then, we tested each coverage rate to determine whether it 
was different from the expected 90%, using the normal approximation of a binomial 
distribution with n=1000 (n = number of independent samples/trials). This gave us an 
overall proportion of non-nominal (different from 90%) coverage rates by state, 
characteristic, and variance option for each state and tabulation level. A majority of the 
coverage rates were non-nominal in all states.  
 
We also examined whether the non-nominal confidence intervals were systematically too 
narrow (undercoverage) or too wide (overcoverage). All states showed the same pattern: 
systematic overcoverage for firm counts estimates of change and undercoverage for 
receipt totals. The pattern holds regardless of variance estimator. 
 
To examine the “practical impact” of imperfect coverage (i.e., how far are the non-
nominal confidence intervals from the optimal 90%), we created histograms of the 
coverage rates by state, estimate characteristic C, and variance option showing the 
median and the interquartile range (IQR). This histogram and univariate analysis is 
summarized in Table 5. Coverage is essentially the same for noise-infused and original 
estimates, except adding noise improves the coverage for receipt totals. Coverage rates 
are “close” to 90% for firm counts, which is expected given the sample is designed for 
firm counts.  
 

Table 5: Summary of Histogram and Univariate Analysis of Coverage Rates by State 
Total Change 

State 
Variance 
Options Firms Receipts Firms Receipts 
Sampling 
Variance 

Median  91 
Narrow IQR 

Median  85 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Variance 
Option 1 

Median  91 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

New York 

Variance 
Option 2 

Median  91 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Sampling 
Variance 

Median  90 
Narrow IQR 

Median  84 
Wide IQR 

Median  92 
Narrow IQR 

Median  87 
Wide IQR 

Variance 
Option 1 

Median  90 
Narrow IQR 

Median  87 
Wide IQR 

Median  92 
Narrow IQR 

Median  89 
Wide IQR 

Utah 

Variance 
Option 2 

Median  90 
Narrow IQR 

Median  87 
Wide IQR 

Median  92 
Narrow IQR 

Median  89 
Wide IQR 

Sampling 
Variance 

Median  91 
Narrow IQR 

Median  84 
Wide IQR 

Median  92 
Narrow IQR 

Median  88 
Wide IQR 

Variance 
Option 1 

Median  91 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Pennsylvania 

Variance 
Option 2 

Median  91 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 
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Total Change 
State 

Variance 
Options Firms Receipts Firms Receipts 
Sampling 
Variance 

Median  90 
Narrow IQR 

Median  87 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Variance 
Option 1 

Median  90 
Narrow IQR 

Median  90 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Georgia 

Variance 
Option 2 

Median  90 
Narrow IQR 

Median  90 
Wide IQR 

Median  92 
Narrow IQR 

Median  90 
Wide IQR 

Sampling 
Variance 

Median  90 
Narrow IQR 

Median  84 
Wide IQR 

Median  92 
Narrow IQR 

Median  87 
Wide IQR 

Variance 
Option 1 

Median  90 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  89 
Wide IQR 

Missouri 

Variance 
Option 2 

Median  90 
Narrow IQR 

Median  88 
Wide IQR 

Median  92 
Narrow IQR 

Median  89 
Wide IQR 

 
6. Conclusion 

 
For SBO, sampling variance accounted for the majority of the variance for a noise-
infused estimate. The relative bias and coverage rates of unadjusted (original) estimates 
exhibit the same patterns and are essentially the same as the corresponding adjusted 
(noise-infused) estimates, except for the slight improvement in coverage rates for 
estimates of Receipt Totals. In the majority of the cases, although the coverage is non-
nominal, the coverage rates are quite close to 90%. Based on these results, we concluded 
that the addition of noise did not impact the statistical properties of the SBO variance 
estimators. Due to our findings of biased variance estimates and non-nominal coverage 
rates, which arose from using the random group (sampling) variance estimator, SBO may 
wish to investigate alternate methods of calculating the sampling variance.  
 
Our empirical research showed no advantage of one method of estimating variance for 
noise-infused estimates over the other. The results showed no statistical difference 
between the options and computing time was similar. Therefore, we present that there are 
two alternative variance estimators for noise-infused estimates: (1) Variance Option 1, 
which was derived by us; and (2) Variance Option 2 that is found in the noise infusion 
literature. Although, we do recommend using Variance Option 1 because it poses no 
disclosure risk. Moreover, an upper bound on the added variance due to noise can be 
calculated, and this information can be built into the sample design stage to obtain 
optimal allocations.  
 
This study was carefully modeled to simulate the SBO. The data may or may not be 
representative of other programs. Moreover, we consider only one type of survey design 
(stratified systematic sampling), one type of sampling variance estimator (random 
groups), and one variation of the split-triangular probability distribution when assigning 
noise. Consequently, we do not recommend making inferences for other surveys based on 
these analyses. In particular, we caution against drawing conclusions about the impact of 
noise-infusion on variance estimates for other programs whose sampling variance 
component is not very large, as it is with SBO. We recommend a similar empirical 
analysis for other programs considering using these same methods of noise-infusion.  
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Appendix 
 
The Noise-Infused Estimate is  

  iiiN ywgtfactorY *)]1([ˆ , 

where iy is the variable of interest in the survey,  

iwgt  is the sampling weight,  

ifactor  is a random variable from a split triangular distribution (see Figure 1) 

with 1)( factorE  and 2)( factorV . 
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Figure 1: Split triangular distribution 
 
 
Variance Option 1 (Derived by Brown et al): 
 
This option treats the noise infusion process as another stage of sampling. The first stage 
is the sample selection process and the second stage is the noise infusion process. 
 
The expected value of the noise-infused estimate is found using the conditional 
expectation identity:  

  YFACTOREEYEEYE NN  )ˆ()ˆ( 21  

   iii ywgtfactorEE *)]1([21

   )*()*)(( 21 iiiii ywgtyyfactorEE  

   )*()(1 iiii ywgtyyE  

YYE  )ˆ(1  
 
The variance of the noise-infused estimate is found using the conditional variance 
identity:  

))(())(()ˆ()ˆ()ˆ( 2121 YFACTORVEYFACTOREVYVEYEVYV NNN   

 )ˆ(1 YV    iii ywgtfactorVE *)]1([21  

  )*()ˆ( 211 ii yfactorVEYV  

  ))(*()ˆ( 2
2

11 ii factorVyEYV  

  22
11 *)ˆ( iyEYV   

))(**()ˆ( 22 YEnYV   

ny
n

i
i /)(

1
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

 is an unbiased estimate of )( 2YE , so 


n

i
iy

1

2 is an unbiased estimate of 

)(* 2YEn .  
 
Therefore, 
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



n

i
iSN yYvYv

1

22
1 *)ˆ(ˆ)ˆ(ˆ  , 

where )ˆ(ˆ YvS is the estimated variance of the original estimate and 2  is the variance 

from the split triangular distribution. 
 
Variance Option 2 (derived by Evans et al):  
 
The noise-infused estimate is seen as: 

 YYN
ˆˆ , 

where  ii ywgtY *ˆ  (Original estimate), 

ii yfactor *)1(    (The aggregated noise that is applied to sample units).  

 
Based on the probability distribution chosen to get ifactor ,   has the following 

properties:  
  0E   

)())(()()( 222  EEEV    

and we assume 0),ˆ( YCOV . 
 
The expected value of the noise-infused estimate is then: 

YYEEYEYEYE N  )ˆ()()ˆ()ˆ()ˆ(   

 
The Variance of the noise-infused estimate is then: 

),ˆ(*2)()ˆ()ˆ()ˆ(  YCOVVYVYVYV N    

)()ˆ( 2EYV   

An expected value of a function of estimates ( YYN
ˆˆ  ) is approximately equal to the 

function of the estimates. (i.e. 22 )ˆˆ()( YYE N  ). 

 
Therefore, 

2
2 )ˆˆ()ˆ(ˆ)ˆ(ˆ YYYvYv NSN   , 

where )ˆ(ˆ YvS is the estimated variance of the original estimate, NŶ  is the noise-infused 

estimate, and Ŷ is the original estimate. 
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