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Abstract
Generalized variance functions (GVFs) can provide useful approximations of error vari-
ances, especially for complex-survey cases in which (1) standard variance estimators have
insufficient degrees of freedom for direct use, (2) confidentiality restrictions prevent the re-
lease of design information used in direct variance estimation, or (3) computational time
requirements may be incompatible with short timelines for publication of estimates. Much
of the GVF literature has considered variances of estimators for population proportions,
and used population totals and sample sizes as predictors in the resulting variance-function
models. Some surveys, however, have variance-estimation settings that meet criteria (1),
(2) or (3) above, but involve point estimators that are complex nonlinear functions of the
data. This paper derives the functional forms and predictors for a GVF in this setting;
applies the results to a class of price-index estimators; and evaluates the properties of the
resulting GVFs.

Key Words: Degrees of freedom, Design-based inference, International Price Program,
Superpopulation model, Variance function model

1. Introduction

In analysis of data collected through complex sample designs, one often would like
to use standard design-based or model-based variance estimators, V̂ , say. However,
use of V̂ may be problematic for one of several reasons, including the following.

1. Standard variance estimators have insufficient degrees of freedom for direct
use.

2. Confidentiality restrictions prevent the release of design information used in
direct variance estimation.

3. Computational time requirements may be incompatible with short timelines
for publication of estimates.

Consequently, the sample survey literature has developed an alternative set of meth-
ods for estimation of “generalized variance functions” in which the true design or
design-model variance is approximated as a function of known predictors Z. For
some background on generalized variance functions for survey data, see Johnson
and King (1987), Valliant (1987) and references cited therein.

Much of the GVF literature has focused on the variances of point estimators of
population proportions or population totals related to a binary outcome variable.
The current paper, however, considers the more complex setting in which the point
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estimator of interest is a complex nonlinear function used in the estimation of price
indices for the International Price Program (IPP) of the Bureau of Labor Statistics.
Section 2 summarizes the sample design for the IPP Import program, and Section
3 describes the hierarchical structures used to produce nonlinear point estimators
of the IPP price indices. Section 4 provides additional details on construction
of weights and computation of price-index estimators. Section 5 presents several
candidate variance function models for price index estimators. Section 6 discusses
the use of simulation methods to fit the models introduced in Section 5. Section 7
presents numerical results from the application of these ideas to short-term price
ratio estimators from the IPP. Section 8 reviews the main ideas from this paper and
considers possible areas of future work.

2. Description of the IPP Import Sample Design

For a detailed description of the IPP sample design, see Bobbitt et al. (2007) and
BLS Handbook of Methods (2007). For the current discussion, the following fea-
tures of the design are of special interest.

Stratification: The population of all imported goods is partitioned into a total of
approximately 120 strata, defined by the Harmonized Classification System. The
import sampling frame is from the U.S. Customs and Border Protection (USCBP).
This frame contains information about all import transactions that were filed with
the USCBP during the reference year. For each transaction, the frame information
includes a company identifier (usually the Employer Identification Number), the
detailed product category (Harmonized Tariff number) of the goods that are being
shipped and the corresponding dollar value of the shipped goods.

Primary Sample Units (PSUs): Within a given stratum h containing Nh com-
panies, IPP selects nh companies without replacement and with probabilities pro-
portional to size. A given company may import products in several different strata.
However, for purposes of the sample design, each company × stratum combination
is treated as a distinct PSU, and selection decisions are independent across strata.

Secondary Sample Units (SSUs): Each selected PSU contains one or more
classification groups (CGs) defined by a more detailed product classification. (The
sampling strata generally are defined by the Harmonized Classification System at
the two-digit level, while the CGs generally are defined at the six to ten digit level.)
Within a given selected PSU, the IPP selects one or more CGs through systematic
sampling with probability proportional to size. Here again, the size measure equals
the trading dollar volume assigned to a given CG. Each given selected SSU receives
a fixed number of price quotes. Note that within a selected company, a given CG
may be selected in the sample more than once.

Tertiary Sample Units: Within a given selected SSU, field economists and the
data provider (responding company) determine the listing of all applicable imported
items. The field economist then selects a systematic sample of price quotes from
this listing. Item-level selection probabilities are proportional to size and size is
again equal to trading dollar value for the item in question. Thus certain items that
have large trading dollar values may provide more than one price quote to a given
SSU.
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3. Description of the Hierarchical Estimation Structure

The IPP publishes three distinct sets of index estimates based on three different
hierarchical classification structures know as, respectively, the Harmonized Classifi-
cation System (HS), the North American Industrial Classification System (NAICS)
and the Bureau of Economic Analysis (BEA) Classification System. We begin with
a description of estimation under the Harmonized Classification System.

The IPP computes Classification Group level price indices through two steps.
In the first step, IPP computes short-term ratio (STR) and long-term ratio (LTR)
price indices at the establishment|CG (Weight Group) levels based on price quotes
collected at the item level, using sample-based item weights. Specific formulas for
STR and LTR indices are provided in Section 4 below.

Second, IPP computes STR and LTR values at the CG level, as well as the
establishment|CG level sample weights (known commonly as weight group weights.)

Under the HS, the level of aggregation immediately above the CG level is com-
monly called the stratum-lower. The IPP computes STR and LTR indices for a
given stratum-lower based on the CG level index estimators and fixed weights avail-
able at the CG level. The U.S. Census Bureau provides these CG level weights
which are updated annually. The CG level fixed weights are intended to reflect the
population values (trading dollar volumes) for each CG in the population.

Under the HS, at levels of aggregation above the stratum-lower, STR and LTR
values are computed based on index values from the next-lowest levels of aggrega-
tion, again using fixed population weights.

Under both the NAICS and BEA systems, estimation of the price indices at the
CG level and finer levels is identical to estimation at these levels under the HS. In
this sense, it can be useful to focus special attention on properties of CG level index
estimators. At coarser levels of aggregation, the HS, NAICS and BEA systems use
different hierarchical structures and thus will use the CG-level index estimators in
somewhat different ways.

4. Index and Weight Estimation

The IPP uses items that are initiated and re-priced every month to compute its
indices of price change. These indices are calculated using a modified Laspeyres
index formula. For each classification system, the IPP calculates the estimates
of price change using an aggregation tree structure beginning with items, weight
groups, classification groups, . . . , and finally overall. Weight groups are defined by
the intersection of establishment and product classification group. Note that there
could be many different levels, such as stratum-lower and stratum-upper which is
above the stratum-lower. The formula is basically the same for all levels: each
parent’s index is computed from its children’s indices. For example, a stratum
index is computed from the stratum’s children’s indices. These children could be
classification groups, stratum-lowers, stratum-uppers or any combination of them.
Define Child[h] to be the set of all stratum-lowers, stratum-uppers or classification
groups directly below stratum h in an aggregation tree. In practice, θt

h, a short-term
ratio for a stratum h at time t, is computed from the weighted long-term ratios, I t

c

and I t−1
c , from its children’s set.

θ̂t
h =

∑

c∈Child[h]

wcI
t
c


 ∑

c∈Child[h]

wcI
t−1
c




−1

(1)
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where wc is the weight of an element c of Child[h], and I t
c the long-term price ratio

of c at time t. θ̂t
h is then used in computing I t

h, a long-term ratio for a stratum h

at time t.

I t,0
h =

t∏

u=0

θ̂u
h (2)

This general formula (1) is used until the desired aggregation level index is obtained.
See Bobbitt et al. (2005, Section 4: Index Estimation) and Powers et al.(2006,
Section 3: Point Estimation for the International Price Program) for more detailed
explanation of the IPP index formula.

The weight group weight, wg, is a trade dollar value divided by a selection
probability of weight group g. Item weight is the weight group’s weight divided by
number of items in the weight group, and hence, the weight group weight, wg can be
expressed as the sum of item weights, wgi, in the weight group, g: wg =

∑
i wgi .

Starting in January 2004, the IPP changed to the fixed classification group weight,
which is the total trade dollar value within each classification group. See Bobbitt et
al. (2005, Section 5.1: Item and Weight Group Weight Formulas) for more detailed
background on the IPP weight computation.

5. Methods for Estimation of the Coefficients of a Generalized Variance
Function

Now consider approximations for the variance of a short-term ratio price index
estimator θ̂tg for the time period t = 1, . . . , T and two-digit stratum g = 1, . . . , G .
In its most general form, we can write the GVF model

Y = Xγ (3)

where Y is a TG × 1 vector with [(t − 1)G + g] th element equal to either Vtg or
ln(Vtg); X is a TG×K - dimensional matrix of predictor variables with [(t − 1)G + g] th
row providing predictors for Vtg; and γ is a K × 1-dimensional vector of regression
coefficients. Eight cases are of special interest:

Case 1: Constant variances
Let K = 1; X = 1TG×1; and γ = γ0 a constant scalar. Then model (3) reduces to

Ytg = γ0 t = 1, . . . , T ; g = 1, . . . , G .

Case 2: Product effects with no time effects
Let K = G; X = (X1, . . . , XG) with X1 = 1TG×1; and Xg equal to a TG× 1 vector
with [(t − 1)G + (g − 1)] th elements equal to 1 and all other elements equal to 0 for
g = 2, . . . , G and t = 1, . . . , T ; and γ = (γ0, γ21, ...γ2G−1). Then model (3) reduces
to

Ytg = γ0 + γ2g t = 1, . . . , T ; g = 1, . . . , G . (4)

Case 3: Time effects with no product effects
Let K = T ; X = (X1, . . . , XT) with X0 = 1TG×1; and Xt equal to a TG × 1 vector
with [(t − 2)G + g] th elements equal to 1 and all other elements equal to 0 for
t = 2, . . . , T and g = 2, . . . , G; and γ = (γ0, γ11, ...γ1T−1). Then (3) reduces to

Ytg = γ0 + γ1t . (5)

Section on Survey Research Methods – JSM 2009

1396



Case 4: Time and product effects with no interaction terms
Let K = T + G − 1; X = (X1, . . . , XT+G−1) with X1 = 1TG×1; and Xt equal to a
TG×1 vector with [(t − 2)G + g] th elements equal to 1 and all other elements equal
to 0 for t = 2, . . . , T ; XT+g equal to a TG × 1 vector with [(t − 1)G + (g − 1)] th
elements equal to 1 and all other elements equal to 0 for g = 2, . . . , G;
and γ = (γ0, γ11, ...γ1T , γ21, . . . , γ2G). Then (3) reduces to

Ytg = γ0 + γ1t + γ2g t = 1, . . . , T ; g = 1, . . . , G (6)

Case 5: Continuous predictors
For some of the cases considered in Sections 1 through 6, the variance function
approximations led to the model

Ytg = γ1 +
K∑

k=2

γkXtgk (7)

for a specified set of K vectors of predictors, e.g., coefficients of variation for specified
weights, expression (7) is a special case of (3) with X1 = 1TG×1; and Xk equal to a
TG × 1 vector with [(t − 1)G + g] th elements equal to Xtgk and γ = (γ0, γ2, ...γk).
Using the notation from Case 5,

Xtg2 = n−1
tg

ntg∑

i=1

w2
tgi

= (w̄tg)2[C2
tg + 1] (8)

where w̄tg = n−1
tg

ntg∑
i=1

wtgi , C2
tg = (w̄tg)−2n−1

tg

ntg∑
i=1

(wtgi − w̄tg)2 , and wtgi is weight for

child index i used in computation of the parent index estimator θtg , STR for time
t and two-digit stratum g, and ntg is number of child indices that contribute to the
computation of the parent index θtg.
Case 6:
Fit (7) using an intercept and the predictor Xtg2 only,

Ytg = γ1 + γ2 + Xtg2 + error . (9)

Case 7:
Fit a more general form of (3) that includes an intercept, time and product effects
(with no interactions) and the Xtg2 effect,

Ytg = γ0 + γ1t + γ2g + γ∗
2gXtg2 . (10)

This will use a total of T + G parameters.
Case 8:

Xtg3 = n̄tg (11)

6. Use of Simulation Results in Fitting GVF Models

In general, one may consider two closely related variance-function models. The
first model involves the true design variance of θ̂tg, Vdesign(θ̂tg). We approximate
Vdesign(θ̂tg) as a sum

Vdesign(θ̂tg) = Vtg

= f(Xtg, γ) + qtg (12)
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where f( · , · ) is a function of specified form, Xtg is a vector of characteristics that
may be associated with the design variance of θ̂tg, and γ is a vector of unknown
coefficients that we will need to estimate. In addition, qtg reflects the lack of fit
in approximating the true variances Vtg with functions f(Xtg, γ). In the numerical
work in subsequent sections, we will approximate Vtg with the simulation-based
quantity

V̂sim(θ̂tg) = (1000− 1)−1
1000∑

s=1

{
θ̂tgs − Êsim(θ̂tg)

}2
(13)

where

Êsim(θ̂tg) = 1000−1
1000∑

s=1

θ̂tgs (14)

In addition, preliminary numerical work indicated that relatively good model fits
were obtained after a logarithmic transformation, so we fit the models

ln {V̂sim(θ̂tg)} = Xtg γ + q∗tg (15)

with ordinary least squares regression. model(15) is equivalent to model(12) with
ln {f(X, γ)} = Xtg γ and

q∗tg = ln
[
1 + {f(Xtg, γ))}−1 qtg

]

= ln [ 1 + exp(−Xtgγ) qtg] (16)

The second model involves the variance estimators V̂tg. Consider the decompo-
sition

V̂tgs = Vtg × (1 + etgs)
= {f(Xtg, γ) + qtg}(1 + etgs) (17)

The term etgs represents the relative error in V̂tg as an estimator of Vtg , i.e., etgs =
(V̂tgs/Vtg)−1. Under standard approximations, we often treat d(1+etg) as following
approximately a chi-square distribution on d degrees of freedom, where d is some
fixed positive number. In that case, the errors etg will have a mean equal to zero
and a variance equal to 2/d. On the other hand, if V̂tg is biased as an estimator of
Vtg, then the error term etg will have a non-zero mean.

In subsequent numerical work, we will fit models for

Êsim(V̂tgs) = 1000−1
1000∑

s=1

V̂tgs . (18)

Under the specified simulation design, Êsim(V̂tgs) is an approximation to

Vtg(1 + ētg) = {f(Xtg, γ) + qtg}(1 + ētg) (19)

where ētg = 1000−1
1000∑
s=1

etgs . Note especially that in our simulation work, we con-

structed a single finite population, and thus have a single finite population term qtg

which reflects the variability in generating a given finite population from a hypo-
thetical superpopulation. On the other hand, we generated 1000 samples from this
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finite population, and ētg represents the resulting average of the 1000 relative errors
(V̂tg/Vtg) − 1.

Now apply the logarithmic transformation to model (19),

ln{Êsim(V̂tg)} = ln{f(Xtg, γ) + qtg} + ln(1 + ētg)
= Xtgγ + q∗tg + e∗tg (20)

where e∗tg = ln(1 + etg)
Under the logarithmic transformation, if the terms e∗tg have a mean of zero and

are independent of Xtg, then models (15) and (20) will lead to the same coefficient
vector γ, and will differ only in the magnitude of the variances of the error terms,
V (q∗tg) and V (q∗tg + e∗tg), respectively.

On the other hand, if the terms e∗tg have a non-zero mean or are associated with
the predictors Xtg, then the coefficients for models (15) and (20) generally will be
different. Thus, comparison of results from (15) and (20) may help in exploration
of cases in which the bootstrap variance estimator displays nontrivial bias.

7. Numerical results

The IPP created a large finite population U from the frame information (Chen et
al., 2007; Cho and Eltinge, 2007, Appendix: Universe Creation Procedure). To
simulate price ratios for the universe, the IPP used an historical database with 13
years (from September 1993 to June 2005) worth of price ratios which were stored
in cells defined by classification group and month. There were about 4 million non-
imputed item STRs in the historical data. The IPP then drew 1,000 samples based
on an approximation to the complex IPP design.

Seven chapters (two-digit strata) were used in our simulation study based on
the number of quotes in the historical database and preliminary results on their
distributions (Cho and Eltinge, 2007, Section 3.5: Selecting strata). From each
sample s, we computed short-term ratio point estimate θ̂tgs and bootstrap variance
estimate V̂tgs for θ̂tgs for t = 1, . . . , 36 months, g = 1, . . . , 7 chapters.

Consequently, the sample variance of the point estimates, computed from the
1000 samples, gives us an approximate value of the design variance of our STR
estimator, θ̂tg. Similarly, the sample mean of our bootstrap variance estimates,
taken over the 1000 samples, gives us an approximate value of the design expectation
of bootstrap variance estimator. For month t and chapter g, the following are the
estimators of primary interest:

Vsim = V̂sim(θ̂tg)

in (13), and

Êsim(V̂Boot) = 1000−1
1000∑

s=1

V̂Boot,s

in (18).
Candidate predictors are:

ntgs: the number of classification groups used in computation of chapter index es-
timator;

n̄tg = 1000−1
1000∑
s=1

ntgs: the average of ntgs across the samples;

wtgis: the weight of classification group i used in computation of chapter index es-
timator;
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w̄tgs = n−1
tgs

ntgs∑
i=1

wtgis: the average of wtgis in a given sample;

C2
tgs = w̄−2

tgs n−1
tgs

ntgs∑
i=1

(wtgis − w̄tgs)2: squared coefficient of variation of weights;

Xtgs = w̄2
tgs

[
C2

tgs + 1
]

and X̄tg = 1000−1
1000∑
s=1

Xtgs;

Indicator{g}: indicator for chapter membership.

The following are simple models that we considered:

ln{Êsim(V̂tg)} = γ0 + γ1 n̄tg (21)

ln{Êsim(V̂tg)} = γ0 + γ2 X̄tg10−15 (22)

ln{Êsim(V̂tg)} = γ0 + γ1 n̄tg + γ2 X̄tg10−15 (23)

ln{Êsim(V̂tg)} = γ0 + γ1 n̄tg + γ2 X̄tg10−15

+γ3 n̄tg X̄tg10−15 (24)

ln{Êsim(V̂tg)} = γ0 + γ4 × Indicator{g} (25)

Note that Êsim(V̂tg) was log-transformed and X̄tg has been re-scaled for better
fitting.

Table 1 displays model fitting results for Model (25) which was the best fit
among models we considered; its R2 was 0.95. Table 2 displays model fitting results
for Model (23) which was the best model without using chapter membership; its R2

was 0.80. Addition of interaction of X̄tg and n̄tg to Model(23) as in (24) gives only
slight improvement to R2 = 0.82.

Table 3 compares mean confidence interval widths of θtg based on the bootstrap
variance estimator V̂Boot and the GVF estimator V ∗

GV F . Confidence interval widths
from the bootstrap variance estimator were narrower than the ones from the GVF
estimator except for P09 and P90 where the differences were rather marginal.

We also fit ln{Vsim} for all models from (21) to (25). The resulting coefficient
estimates and R2 for ln{Vsim} were similar with the ones from ln{Êsim(V̂tg)}.

Figures 1 and 2 display scatter plots of ln {Êsim(V̂tg)} against n̄tg and X̄tg10−15

respectively. For both cases, the vertical axis corresponds to values of ln {Êsim(V̂tg)}.
In Figure 1, note that each chapter has 252 values of ln {Êsim(V̂tg)} which are
grouped together at each chapter’s n̄tg value. In a similar way, ln {Êsim(V̂tg)} are
grouped at each chapter’s X̄tg10−15 value in Figure 2.

Quantile-Quantile (QQ) plots were plotted to assess standard χ2 approximation
for V ratio = V̂Boot,tg/Vsim(θ̂tg). Figures 3 and 4 display quantile-quantile plots of
V ratio = V̂Boot,tg/{Vsim(θ̂tg)} against χ2

d/d for P90 and P07 respectively. The red
diamonds represent percentiles from V ratio and the pth percentile is the value where
p percent of the data lay below or equal to the value. Under regularity conditions, if
V ratio had a χ2 distribution, then the percentiles from V ratio would approximately
follow the percentiles from χ2. Then the QQ plot in Figures 3 and 4 should have
its points arranged along a black line with a slope of 1 and an intercept of 0. We
observed slight underestimation of V̂Boot,tg in both P07 and P90.
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Table 1: Model Fitting Results for Model (25): Best fit: R2 = 0.95

Z Coefficient se t-value p-value
Intercept -13.581 0.124 -109.16 < 0.0001

P07 7.961 0.176 45.25 < 0.0001
P08 7.081 0.176 40.25 < 0.0001
P09 5.215 0.176 29.64 < 0.0001
P22 1.214 0.176 6.90 < 0.0001
P61 -0.082 0.176 -0.46 0.6424
P74 4.575 0.176 26.00 < 0.0001

Table 2: Model Fitting Results for Model (23): Best fit without using chapter
membership: R2 = 0.80

Z Coefficient se t-value p-value
Intercept -6.120 0.15084 -40.57 < 0.0001

X̄tg -0.014 0.00068 -21.04 < 0.0001
n̄tg -0.028 0.00116 -24.18 < 0.0001

Table 3: Comparison of Mean Confidence Interval Widths

Chapter V̂Boot V ∗
GV F

P07 0.5281 0.5569
P08 9.7333 9.8833
P09 0.0973 0.0958
P22 0.0255 0.0280
P61 0.0371 0.0512
P74 0.0889 0.0934
P90 0.0072 0.0070
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8. Discussion

This paper has considered generalized variance functions for point estimators of
short-term ratio price indices from the Import component of the International Price
Program of the U.S. Bureau of Labor Statistics. One could consider several exten-
sions of this work. First, the numerical results presented here were based on seven
chapters (two-digit product categories) that were selected to display a wide range
of volatility across months, different patterns of seasonality, different numbers of
observations in the historical database, and different distributions of price-change
values within a given month. Other IPP chapters may have different characteris-
tics, and thus may lead to different model-fitting results. In keeping with the GVF
literature on fitting different GVF models for different groups of estimands (e.g.,
Wolter, 1985, Section 5.3), one could explore the extent to which different groups of
IPP chapters may warrant different choices among the potential GVF models (21)
- (25).

Second the numerical results in Section 7 suggest that confidence intervals for
short-term ratio price indices have roughly comparable coverage rates and mean
widths when these intervals are based on direct bootstrap variance estimators or the
GVF model (25), respectively. In general, however, confidence interval performance
will depend on a balance of several factors, including the stability of the direct
bootstrap variance estimator; the magnitudes of the equation-error terms qtg in
equation (12); and the number of observations (t, g) that contribute to a given
GVF model fit. Thus, it would be useful to develop tools to identify cases in which
GVF-based confidence intervals may have better properties than bootstrap-based
confidence intervals.

Third, P. Bobbitt, J. Himelein, and L. Lang have suggested the possible use of
GVF models in the allocation of sample sizes at one or more levels in the sample-
design hierarchy described in Section 2. It would be of interest to explore this in
greater depth; to study efficiency gains that may follow from this method; and to
evaluate the extent to which prospective efficiency gains depend on the goodness-
of-fit for specific forms of model (3).
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Figure 1: ln {Êsim(V̂tg)} vs n̄tg
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Figure 2: ln {Êsim(V̂tg)} vs X̄tg10−15
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Figure 3: QQ plot of V ratio vs χ2
d/d (Chapter 90; Month=10; 1000 samples)
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Figure 4: QQ plot of V ratio vs χ2
d/d (Chapter 07; Month=03; 1000 samples)
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