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Abstract 
The delete-a-group jackknife can be effectively used when estimating the variances of 
statistics based on a large sample.  The theory supporting its use is asymptotic, however.  
Consequently, analysts have questioned its effectiveness when estimating parameters for 
a small domain computed using only a fraction of the large sample at hand.  We 
investigate this issue empirically by focusing on heavily poststratified estimators for a 
population mean and a simple regression coefficient, where the poststratification takes 
place at the full-sample level.  Samples are chosen using differentially-weighted Poisson 
sampling.  The bias and stability of a delete-a-group jackknife employing either 15 or 30 
replicates are evaluated and compared with the behavior of linearization variance 
estimators.  
 
Key words:  Calibrated weight, domain, ignorable, linearization variance estimator, 
model parameter, relative empirical bias.   
 
 

1.  Introduction 
  
The National Agricultural Statistics Service (NASS) has increasingly been using 
calibration to produce parameter estimates and a delete-a-group (DAG) jackknife to 
measure the precision of these estimates.   In surveys where the DAG jackknife is used, 
each sample element k is given R+1 weights: the element’s sampling weight after 
incorporating all nonresponse and calibration adjustments, wk, and R jackknife replicate 
weights, wk(r), with r =  1, ..., R.   
 
NASS usually sets R at 15 or 30.  The former produces variance estimators for univariate 
statistics with 14 nominal degrees of freedom and thus only a modest fattening of 
coverage intervals (the t-value for a two-sided 95% coverage interval is 2.145, not much 
larger than 1.96 under infinite degrees of freedom).   Unfortunately, for constructing 
multivariate test statistics, more replicates may be needed, which is why the agency sets 
R = 30 for some surveys.   Most NASS surveys have thousands on primary sampling 
units (individual farms), rendering delete-one jackknives impractical. 
 
Be that as it may, we do not claim here that the DAG jackknife is theoretically superior to 
other variance-estimation methods.  Rather, our goal is to investigate an empirical 
limitation of the DAG jackknife because that is the method NASS uses.   
 
The theory underpinning the use of the DAG jackknife  and all jackknives for that 
matter  is asymptotic.  See Kott (1998; 2001).   We are interested here in evaluating the 
limitations of the asymptotics.  In particular, we will be concerned with how well the 
DAG jackknife methodology works for parameter estimators defined within a domain 
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when the (respondent) sample size in that domain is small.   This is an issue of particular 
concern to analysts working with data from the third phase of the Agricultural Resources 
and Management Survey (ARMS-III; see USDA 2007), NASS’s  principal survey of  the  

economic condition of US farms.   
 
Complicating matters is that the weights for the ARMS-III sample are heavily calibrated.  
This means initial element sample weights, inverses of the element selection probabilities 
(perhaps partially adjusted for nonresponse and/or coverage errors), are adjusted so that 
the sample-weighted sums of certain benchmark (calibration) variables equal totals 
derived from outside sources.   
 
In the analyses presented here, we will restrict our attention to a Poisson sample without 
nonresponse.  This is the simplest sample design with variable sample weights.  After 
reviewing the theory for a more general version of linear calibration, our empirical 
investigations will be confined to perhaps the simplest form of calibrated-weighting: 
poststratification.   By focusing on this relatively simple setup (Poisson sampling with 
poststratification), we hope to shed light on the particular issue of the usefulness of the 
DAG jackknife methodology – and the alternative linearization methodology – for a 
parameter estimate within a domain when the estimator’s weights are calibrated to 

benchmark totals at a higher level of aggregation than the domain.     
 
A well-known limitation of the DAG jackknife is that it ignores the impact of large 
sampling fractions on finite-population variances.  This is of little import to most analysts 
of ARMS-III data because these analysts are less interested in finite-population parameter 
estimates than in estimating the parameters of the models generating the finite population 
under investigation.    This subject, as well as other aspects of the theory, is explored in 
Section 2.  Section 3 lays out the framework for the empirical investigation, the results of 
which are reported in Section 4.  Section 5 offers some concluding remarks.  

 
2. Some Theory 

 

2.1. Preliminaries 
Let ak be the initial sample weight for element k.  Let zk = (zk1, ..., zkP) denote a row vector 
of calibration variables associated with k, for which the population total(s), Tz, is known.  
Most of the calibration weighting in practice involves a variant of least squares, where 
the calibrated weights have the linear form:  
 
                       wk = ak + (Tz j j

j S

a z )[ ' )]j j j j
j S

a c z z -1
akckzk' 

for some set of constants {ck}, where  S  denotes the (respondent) sample. By design,  
S wkzk = Tz.   The ck are often chosen to restrict the range of the wk.   A more general 

linear form is discussed in Estevao and Särndal (2000).    
 
To simplify matters, we assume here a Poisson sample without nonresponse.  The ak are 
inverses of the element selection probabilities, k.  We further assume the ck are all equal 
to 1, and there is a vector  such that zk  =1 for all k S (e.g., one of the components of zk 
is always 1).  As a result of these assumptions, the calibrated weights can be rendered:  
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                                            1( ' ) '.k j j j k k
j S

w a azT z z z                                         (1) 

(To see why replace S ajzj  in Tz   S ajzj  by S aj ' zj' zj = ' S ajzj' zj.)   This also allows 
the DAG jackknife to have certain desirable properties (see Kott 2006a). 
    
To compute DAG jackknife replicate weights, the sample is randomly ordered and then 
systematically divided into R mutually exclusive groups.  The complements of the groups 
are the replicate groups, denoted S(1), …,  S(R ).  Each S(r) contains roughly (R 1)/R of the 
sample.  One way to compute the replicate weights is with  
 
                    wk(r) = 

1
R

R
wk + (Tz 

( )

1
r

R
R

j S

wjzj)[
( )

' )]

r

j j j
j S

a z z -1
akzk'                     (2)  

 
when k  S(r) , and 0 otherwise.  (See Kott 2006b.)  By design, 

( )
( ) .

r
k r kS

w zz T   If we 

replaced the aj  and ak  in equation (2) by their near equalities wj and wk, we could write 

( )

1
( ) ( ' ) '.

r
k r j j j k kSw w wxT z z z    

 

2.2.  A Parameter Estimate 
We will be interested in a (vector) parameter estimate of the form:  

  
                              b = ( 'j j j

j S

w h x )-1 'j j j
j S

w yh ,                                                 (3) 

 
where hj and xj are row vectors of the same length (xj  may or may not have components 
in common with zj).  When hj = xj has more than one component, b is a sample-weighted 
regression coefficient.  When hj = 1 and xj = xj are scalars, b = b is a sample-weighted 
ratio.  When, in addition, xj  =1, b is a sample-weighted mean.  

The DAG jackknife (matrix) variance estimator for b is  
 

                             VJ = 1
( ) ( )

1

( )( ) ',
R

R
r rR

r

b b b b                                                      (4) 

where b(r) = ( S wj(r)hj'xj)-1
S wj(r)hj'yj.  Note that we have yet to specify exactly what b is 

estimating, making it difficult to judge how good a job VJ  does at measuring its accuracy.    
 
If the goal of b is to estimate the limit of B = ( U hj'xj)-1

Uhj'yj as the population U grows 
arbitrarily large, then the jackknife can be shown to be an asymptotically unbiased 
estimator for the variance matrix of b under mild conditions we assume to hold.  In 
particular, we assume conditions are such that both B and its limit, call it B*, exist.   
 
Sample selection is essentially two-phased in this framework.  The population can be 
viewed as a simple random sample drawn from an infinite conceptual population.  This is 
followed by the actual Poisson selection of the sample.  Effectively, we have a Poisson 
sample from the infinite population, where the orginal sampling weights, the ak, reflect 
the relative sizes of the inverses of the sample-selection probabilities.  
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We are interested in estimating the limit of B, as opposed to the finite population 
parameter itself, because we are looking for insights into the underlying model generating 
the population values.  This is what interests most analysts studying the ARMS-III.   
Ideally, the underlying model is linear and can be expressed in this following two-part 
form:  

  
                               yk = xk  + k,                                                                       (5.1) 

 
                    with E( k|{ xj, zj, hj, Ij;  j  U}) = 0,                                                           (5.2)   
 
where Ij =1 when j is in the sample, 0 otherwise.  The k are uncorrelated and have 
bounded variances, 2 .k

  Under this model, the probability limit of B is .  
 
Although it is often instructive to evaluate variance estimators under the linear model in 
both parts of equation (5), the DAG jackknife has been designed to work (under mild 
conditions) whether or not the model, as specified, holds.   For example, equation (5.2) 
effectively specifies that the design is ignorable since the expectation of k  is zero 
regardless of which elements are selected for the sample.  In practice, the sample design 
may  not be  ignorable.  Still, the model in  equation (5.1)  may hold with E( k|{ xj, hj;  
 j  U}) = 0.  The probability limit of B remains  in this case.  
 
An  even  weaker  formulation is possible.   Observe  that B has been defined so that  

U (hk'[yk xkB]) = 0.  Although many would argue that the following is not really a linear 
model at all, the way B is defined suggests that if the equation (5.1) holds with only 
E(hk' k) = 0, then the probability limit of B remains .   This formulation is called the 
“extended linear model” in Kott (2007).    
 

2.3. Domain Estimates 
The asymptotics supporting the use of VJ  (with or without the model in equation (5)) 
require both the expected sample size (recall the sample is Poisson so its size is random) 
and R to be large.  We will be concerned in the next several sections with domain 
estimates of the form: bd = ( S djwjhj'xj)-1

S djwjhj'yj, where dj = 1 when element j is in the 
domain of interest, 0 otherwise.  Notice that if we redefine hj  as djhj , then bd has exactly 
the same form as b in equation (3).  Viewed this way, the realized sample sizes for bd and 
the original b are exactly the same!  Nevertheless, it seems intuitive that when the 
expected overall sample size is in the hundreds but the sample size within the domain is 
less than, say, 30, the asymptotics supporting b might not support bd.  (Although the 
sample within a domain is independently drawn with Poisson sampling, the domain 
estimator in our setup is computed using calibration weights that depend on the entire 
sample.)  
 
There is theory behind this intuition.  For the asymptotics to work, statistics like the 
components of S wjhj'xj within the nonlinear expression ( S wjhj'xj)-1 need to have small 
relative variances when the sample size is large.  If most of the sample values of a 
component are zero, then that may not be the case.  The “mild conditions” we cavalierly 

added to our requirements for VJ  to be asymptotically unbiased may be violated.  
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2.4. Why the DAG Jackknife Works (Asymptotically) 
We now take a temporary, but useful, digression. An alternative way to estimate the 
variance of b is through linearization (see, for example, Demnati and Rao, 2004).  Let  

 
                       

1

1

( ' ) '( *), and

( ' ) '( ). (6)

k j j j k k k
j S

k j j j k k k
j S

w y

w y

U h x h x B

u h x h x b

 
Then  b – B* can ideally be rendered as Δ = S wkUk .  Of course, Uk is unknown.  It will 
ultimately be replaced by uk.  For now, however, assume it is known.  An idealized 

linearization variance estimator for b is  
 
   2 1 1( ) [ ( ' ) ' ][ ( ' ) ' ]'.IL k k k j j j j k k j j j j

k S j U j U j U j U

wV b U z z z z U U z z z z U            (7) 

 
Often, b is treated as an estimator for B, and 2

kw  in the above equation is replaced by 
2

ka (1  k).  The 1  k disappears when b estimates B*.  Note that 
1( ' ) 'k k j j j jU U

U z z z z U serves as the population regression residual (of the 

component of Uk on zk) due to the calibration.  Why we put 2

kw  in the above equation 
rather than the asymptotically equivalent 2

ka  will be made clear presently.  
 
Observe that if the linear model in equation (5) holds,  and the population is large enough 
both for the distinction between B and  to be ignored and for ( U zj' zj)-1

U zj' Uj to  be 
effectively equal to a matrix of zeros,  then  
 
      VIL(b) = 2 ( ')k k kS

w E U U 1 2 1( ' ) ' ( ') ( ' )j j j k k k k k j j jS S S
w w E wh x h h x h ,  

 
which is an unbiased estimator for the variance of b under the linear model no matter 

what the sample size.  An actual linearization estimator for b, like 
       
           2 1 1( ) [ ( ' ) ' ][ ( ' ) ' ]',L k k k j j j j j j k k j j j j j j

k S j S j S j S j S

w a a a aV b u z z z z u u z z z z u    (8) 

 
must rely on information available in the sample and thus needs a large-enough sample 
size.  It should be realized, however, that the potential scarcity of nonzero xj when 
estimating a domain-specific parameter has no impact on the size of  S ajzj' zj .  The 
number of nonzero xj does have an effect on S wjhj' xj in uk.  Moreover, even under the 
model in equation (5), which treats S wjhj' xj as a constant, the number of nonzero xj 
affects b. 
 
Let us now turn to the DAG jackknife  in equation (4).  Observe that under the model in 
equation (5),  
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( ) ( )

( ) ( )

1 1

( ) ( )

( ) ( )

( ' ) ' ( ' ) '
r r

r r

j j j j j j j r j j j r j j

j S j S j S j S

w w w w

b b b β b β

h x h h x h  

or 

             ( )

( ) ( ) ( )

1

( ) 1

1 1

( ) ( )1

( ' ) ' ' (9)

( ' ) ' ( ' ) ' .

r

r r r

R
r j j j j j j j j jR

j S j S j S

R
j j j j j j j r j j j r j jR

j S j S j S j S

w w w

w w w w

b b h x h h

h x h h x h

 

 
It takes some work, but the second line on the right-hand side of equation (9) can be 
shown to be asymptotically dominated by the first line under mild conditions (which can 
be dubious for domain estimates).  This is true even when the model fails and j is 
replaced by yk  xkB*.  Plugging only the first line into the right-hand side of equation 
(4), it is not hard to show that the result would be an unbiased estimator the variance of b 
under the model in equation (5).  This unbiasedness is only asymptotic when the model 
fails, and S wjhj'xj cannot be viewed as fixed. 
 

3.  Setting Up an Empirical Investigation  
 

The simulations discussed in the next section assume a simple form of 
calibration: poststratification.  The population is divided into P mutually exclusive 
classes, and  zk  in equation (1) is a row vector of class-indicators.  That is to say, zkp = 1 
when k is in class p, 0 otherwise.  Letting Np be the population size of class p, and Sp the 
part of the sample is class p (which we assume is not empty) the calibrated weight for a 
sampled element in class p is 

                                                  .

p

p
k k

j
j S

N
w a

a
                                                        (10) 

 
It is a simple matter to derive equation (10) from (1).  
 The r-th replicate weight for a sample element in class p can be derived from 
equation (2).  It is 0 for k not in S(r), and  
 

                                           

( )

( )

p r

p
k r k

j
j S S

N
w a

a
                                                    (11) 

otherwise.  
 One estimator we will investigate is the sample-weighted domain mean:   
 

                                              ,

k k k
k S

dS
k k

k S

w d y

y
w d

                                                        (12)                                            
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in which hk in equation (3) is equal to the scalar dk (an indicator of domain membership) 
and xk is the scalar 1.  The other is the simple domain-specific weighted simple regression 
coefficient: 
 

                                  
2

,

k k k dS k dS
k S

d

k k k dS
k S

w d x x y y

b
w d x x

                                     (13) 

 
which is the second component of b in equation (3) when xk = (1  xk), and  hk = dkxk.  
There are alternative ways to define the variables in equation (3) to produce dSy and bd. 
One such was discussed in the previous section.    We will also be interested in the 
“degenerate” case where all the dk = 1, and dSy and bd  are the whole-sample weighted 
means and weighted simple regression coefficient, respectively.  
 
The R replicate estimates for 

dSy  and bd  can be calculated by substituting wk(r) for wk  to 
compute each 

( )dS ry  and then substituting wk(r ) for wk , ( )dS ry  for 
dSy , and 

( )dS rx  for 
dSx  

to compute each bd(r).   The DAG jackknife in equation (4) has the simplified scalar form: 
 

                                              vJ = 21
( )

1

( ) .
R

R
rR

r

b b                                                     (14) 

 
 
The idealized linearization and linearization variance estimators in equations (7) and (8) 
are not so simply rendered.  For dSy ,  B  becomes the scalar B = dUy U dkyk / U dk, 
so that Uk = Uk = ( S wjdj)-1

dk(yk   dUy ) and uk = ( S wjdj)-1
dk(yk   dSy ).  Note that both 

are zero when k is not in the domain.  Plugging into equations (7) and (8), we get  
                             

2

12

1

2
( ) ,  and

p

p

N

j j dUP
j

k k k dU
p k S p

IL dS

k k
k S

d y y

w d y y
N

v y

w d
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2

2

1

2
( ) .

p

p

j j j dS
P j S

k k k dS
p k S p

L dS

k k
k S

w d y y

w d y y
N

v y

w d

       (15) 

 
For bd as an estimator for the limit of  

 

                             
2

,

k k dU k dU
k U

d

k k dU
k U

d x x y y

B
d x x

   

 
it helps to first redefine xk  as (1  xk  dSx ), with hk = dkxk  redefined accordingly, so that   

S wjhj' xj  is diagonal.  The scalars Uk and uk become  
 

                                                    

2

2

, and

,

k k dS k
k

j j j dS
j S

k k dS k
k

j j j dS
j S

d x x e
U

w d x x

d x x r
u

w d x x

     

where 
 

is the population residual (for the regression coefficient), and

is the sample residual.

k k dU k dU d

k k dS k dS d

e y y x x B

r y y x x b

    
Note that Uk and uk are again zero when k is not in the domain.  
 
We can now conclude 
 

        

2

12

1

2
2

( ) , and

p

p

N

j j dS jP
j

k k k dS k
p k S p

IL d

j j j dS
j S

d x x e

w d x x e
N

v b

w d x x
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2

2

1

2
2

( ) . (16)

p

p

j j j dS j
P j S

k k k dS k
p k S p

L d

j j j dS
j S

w d x x r

w d x x r
N

v b

w d x x

    
 

It was partly in response to the complicated nature of the equations (15) and (16) that 
NASS decided to use the DAG jackknife rather than linearization for the ARMS-III.  In 
the next section, we also evaluate simplified versions of each: 

 

                 

2
2

1

2
( ) ,

p

P

k k k dS
p k S

SL dS

k k
k S

w d y y

v y

w d

                               (17) 

and 

                               

22

1

2
2

( ) .
p

P

k k k dS k
p k S

SL d

j j j dS
j S

w d x x r

v b

w d x x

                             (18) 

 
These simplified versions effectively assume there is no gain (reduction in variance) from 
poststratification.  
 

4.  A Simulation Study 
 

We began our simulation study with an ARMS-III respondent sample of 986 farms in 
California.  Our original plan was to use this sample and its final weights to generate a 
population.   
 
Each farm in the sample had associated with it a frame value based on previous sales 
data.  We called this value xk.  Classes were created by partitioning the x-values in 22 
intervals, where the smallest interval was [0, 10 000), the largest interval was [750 000, 

), and 20 intervals of equal width were spaced between 10,000 and 750,000.   
 
We assigned a fraction of the 986 farms to domains of interest systematically.  One such 
domain contained 5% of the population.  A second 10%.  A third 20%.    
 
Each farm in the sample also had a final weight associated with it, which we integerized 
and labeled ak .  At this point, each sampled farm had attached to it an x-value, an a-
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value, a class identifier, and three yes/no domain identifiers.  We reproduced each 
sampled farm and its attachments 10,000 times.   
 
Our original idea was also to include survey-reported sales as the y-value for each of the 
986 sampled farms and to create a fixed population of size N = 9,860,000

ak .  That is to say, 
the y, x, class identifier, and domain identifiers for each sampled farm k would be 
replicated 10,000ak  times in the population.  This would create a very large population 
with the same moments of y and x as the a-weighted sample.  Independent samples could 
then be drawn from the putative population by giving each element replicated from k a 
Poisson selection probability of 1/(10,000ak).   The expected size for each sample would 
be 986.  
Alas, no matter how large we made the simulated population, we found the results 
unsettling.  This was because there could only be 986 possible realizations of the y-
variable.  Even if these y-values were originally generated from a normal distribution, the 
roughly 49 that would fall into the smallest domain of interest could (and sometimes did) 
behave very idiosyncratically.   Consequently, we decided that we needed to generate the 
y-values for each putative population unit directly from a model.  
 
We used two models to generate the y-values.  Both had the form: 

 
                          yk = 0 + 1 xk

 + 2 log(ak) + k,                                              (19) 
 
 where the k were independent draws from a N(0, 1002) distribution, 0 = 50,  and 1 = 2.  
For one of the models, labeled Model 1, we set  = 1, and 2 = 0.  It  is a simple linear 
model under an ignorable sampling mechanism.   For the other,  labeled  Model 2,  we set  

 = 1.1, and 2 = 100.    
 
Ten thousand simulated samples were effectively drawn from the putative population 
with y-values generated by one of the two versions of equation (19) in the following 
maner.  A farm in the original sample was associated with a particular x-value, class and 
domain identifiers, and with ak  y-values generated from equation (19) with certain 
settings.  Each y-value, together with its associated x-value, class identifier, and domain 
identifiers, was given an independent 1/ak probability of being selected into a simulated 
sample. As a result, the estimated size for each simulated sample was 986.  We expected 
49.3 farms to be in each 5%-domain sample, 98.6 in each 10%-domain sample, and 197.2  
in each 20%-domain sample.   
 
Estimated means and simple regression coefficients were calculated from the simulated 
samples using equations (12) and (13) respectively.    
 
The targets of the estimated means and simple regression coefficients were parameters of 
a conceptual infinite population.  In the text, such parameters were labeled (when scalars) 
B*.  We computed analogous and near-identical large-population B-values thusly.  We 
generated 9,860,000 y-values under the respective versions of equation (19); 10,000 for 
each original farm k.   Such a y-value, together with an associated x-value, class 
identifier, and domain identifiers, was repeated ak  times.  The mean  y-value and the 
slope the linear regression of the yk on the xk were then computed for this simulated 
population and for the three designated domains of the population.      
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Table 1 displays the relative empirical  biases from using alternative methods for 
estimating the mean squared error of b (which could be either 

dSy  and bd ) as an estimator 
for B.  These relative empirical biases are computed using  
 

                        

10,000 10,000
2

1 1
10,000

2

1

( )

,

( )

t t
t t

t
t

v b B

R

b B

  

 
where bt and vt are computations of the parameter estimate and its estimated variance 
based on the t

th simulated sample.  The estimated standard errors on these statistics 
tended to be between 0.015 and 0.02.    
 
The empirical variance as a fraction of empirical mean squared error was always over 
96% for every b with an estimated mean squared error on the table.  Consequently, 
whether we treat the DAG jackknife and its linearization counterparts as estimators of  
variance or mean-squared-error makes little practical difference.   
 
As the table shows, the empirical biases from using the DAG jackknife in equation (14) 
are all positive, while the biases from using the full linearization estimator in equations 
(15) (for the mean) and (16) (for the simple regression coefficient) are almost all 
negative.  Both tend to get worse, in absolute terms, as the domain sample size decreases.  
This happens whether estimating the mean squared error of  a domain mean or a simple 
regression coefficient or whether  generating the y-values with Model 1 or Model 2.    
 
When estimating means, the relative empirical biases are always under 10% in absolute 
terms using either the full linearization variance estimator or the DAG jackknife with 15 
or 30 replicates.  Using the simplified linearization estimator in equation (17), however, 
appears badly biased for the full-population mean under either model.  This variance 
estimator gets better as the domain sample size gets smaller.  It is reasonable to conclude 
that the effect on mean estimation of poststratification (which was done at the full-sample 
level) becomes less powerful the smaller the domain of interest.  
 
Estimating the mean squared error of the full-sample simple regression coefficient using 
the simplified linearization in equation (18) works well under Model 1 because the  
poststratification is irrelevant in the context where the y-values are generated by a linear 
form of equation (19), and the 

k k dUe y y k dU dx x B  are uncorrelated with the 
ak.   
 
We do not observe much difference between the full and simplified linearization variance 
estimators for the full-sample simple regression coefficient under Model 2.  The impact 
of poststratification appears to be overwhelmed by the correlation between the ek and the 
ak in this context.    
 
For the 5% domain (domain sample sizes of around 50), none of the variance estimators 
for the estimated simple regression coefficient have relative empirical biases of less 
than10% in absolute terms under either Model 1 or Model 2.  The two jackknives work 
much better for the 10% domain (domain sample sizes of around 100), however, as do 
the two linearization estimators under Model 1.   
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Table 2 displays the coefficients of variation for the various variance estimators.  A 30-
replicate DAG jackknife has more stability (a small coefficient of variation) than a 15-
replicate version.   Linearization is more stable than either jackknife.  Stability decreases 
with the size of the domain sample.  It is less for the variance estimator of the simple 
regression coefficient than the mean.   
 

 

Table 1: Relative Biases of Alternative Estimators for Mean Squared Error 
_________________________________________________________________ 

                                             Estimated Mean                    Estimated Regression Coefficient                               
_________________________________________________________________________________ 

 

  Domain      

Proportion     DAG Jackknife     Linearization    DAG Jackknife    Linearization 

 of Sample     R =15  R = 30    Full  Simplified  R =15  R = 30   Full Simplified   

      

__________________________________________________________________________________ 

 

 Model 1  

    5%         0.076  0.078    -0.069    0.041    0.126   0.116   -0.241   -0.232  

   10%         0.026  0.010    -0.041    0.078    0.086   0.093   -0.036   -0.024 

   20%         0.018  0.002    -0.029    0.151    0.040   0.016   -0.040   -0.012  

  100%         0.016  0.032     0.000    3.717    0.061   0.035   -0.010   -0.007 

__________________________________________________________________________________ 

 

 Model 2 

   5%          0.059  0.066    -0.075    0.019    0.248   0.249   -0.195   -0.182 

  10%          0.038  0.049    -0.015    0.088    0.048   0.047   -0.176   -0.180 

  20%          0.024  0.022    -0.013    0.137    0.048   0.005   -0.133   -0.112  

 100%          0.018  0.019     0.004    2.347    0.069   0.099   -0.123   -0.165 

 

 
Table 2: Coefficients of Variation of Alternative Estimators for Mean Squared Error 
_________________________________________________________________   

                             Estimated Mean                            Estimated Regression Coefficient                               
_________________________________________________________________________________ 

 

  Domain        

Proportion     DAG Jackknife     Linearization    DAG Jackknife    Linearization 

 of Sample     R =15  R = 30    Full  Simplified  R =15  R = 30   Full Simplified   

      

_________________________________________________________________________________ 

 

 Model 1 

    5%          0.76   0.68     0.59     0.60      0.90    0.83   0.56   0.56 

   10%          0.55   0.46     0.36     0.36      0.55    0.48   0.36   0.36 

   20%          0.47   0.37     0.25     0.24      0.47    0.39   0.27   0.27 

  100%          0.50   0.42     0.32     0.16      0.62    0.56   0.46   0.47 

________________________________________________________________________________ 

 

 Model 2 

    5%          0.76   0.70     0.60     0.63      1.13    1.09   0.70   0.69 

   10%          0.56   0.47     0.38     0.36      0.76    0.69   0.51   0.49 

   20%          0.47   0.37     0.26     0.25      0.62    0.55   0.43   0.42 

  100%          0.52   0.43     0.34     0.18      0.66    0.54   0.36   0.36  
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5. Concluding Remarks 
 

We are hesitant to make overly bold claims from the results of our limited empirical 
study.   Nevertheless, we were pleased to see that using a delete-a-group jackknife with 
as few as 15 replicates on a heavily calibrated sample, one containing 22 poststrata, 
produced reasonable and conservative variance measures for an estimated mean based on 
samples containing as few as 50 domain members.  Variance measures for an estimated 
simple regression coefficient did not behave as well until domain samples were roughly 
twice as large.  They did, however, remain competitive with more complicated 
linearization-based alternatives.  These alternatives were more stable but also consistently 
underestimated true mean squared errors. 
 
It seems to us that the DAG jackknife is a reliable variance-estimation tool for simple 
ratios like the population mean with domain sample sizes in the 50 and above range.  On 
the other hand, we would not be comfortable using the DAG jackknife for estimating the 
variance of regression coefficients with less than 100 in-scope sample units.   This 
discomfort extends to all “model-free” variance-estimation methods.  When sample sizes 
get too small, we strongly suspect one needs to assume a model and estimate variances 
using a technique appropriate for that model.       
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