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Abstract 
In this research we develop and apply new methods for handling not missing at 
random (NMAR) nonresponse. We assume a model for the outcome variable under 
complete response and a model for the response probability, which is allowed to 
depend on the outcome and auxiliary variables. The two models define the model 
holding for the outcomes observed for the responding units, which can be tested. Our 
methods utilize information on the population means of some or all the auxiliary 
variables in the models. In a JSM paper last year we developed an algorithm for 
estimating the parameters governing the two models. We also showed how to 
estimate the distributions of the missing covariates and outcomes, and used them for 
imputing the missing values for the nonresponding units and for estimating 
population means. In this paper we outline conditions for the convergence of the 
proposed algorithm and study the properties of the estimators obtained from its 
application. We consider different approaches of estimating the variance of estimators 
of population means and propose a test statistic for selecting covariates to the model 
of the response probabilities. The new developments are illustrated using simulated 
data and a real data set collected as part of the Household Expenditure Survey carried 
out by the Israel Central Bureau of Statistics in 2005.  
 
Key Words: Bootstrap, Calibration, Horvitz-Thompson estimator, Multiple 
imputation, Nonrespondents distribution, Respondents distribution. 
 

 
1. Introduction 

 
Most of the methods dealing with nonresponse assume either explicitly or implicitly 
that the missing values are “missing at random” (MAR), and that the auxiliary 
(explanatory) variables are observed for both the respondents and the nonrespondents. 
These assumptions, however, are not always met in practice. In this paper we 
consider the often practical situation where the probability to respond depends on the 
outcome value, solely or in addition to depending on the model explanatory variables. 
For example, the probability to observe income may depend on the income level, as 
well as on socio-demographic variables. For this kind of response mechanism, the 
missing outcome values are not missing at random (NMAR), since for the non-
responding units the probability of not responding depends on the missing outcomes. 
We mostly consider the case of ‘unit nonresponse’, where the auxiliary (covariate) 
information for the nonrespondents is likewise unobserved, except for the population 
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totals of some or all of these variables. The totals of the covariates are often available 
from administrative or census records.  
 
In a JSM presentation last year (Hereafter P-S (2008)), we proposed a new approach 
for handling NMAR nonresponse, which does not require knowledge of the auxiliary 
variables (covariates) for the nonrespondents. We illustrated the effectiveness of the 
proposed method in estimating the unknown model parameters and the imputation of 
the missing covariates and outcomes, and consequently in estimating the population 
mean of the target outcome. This is achieved by deriving the model holding for the 
outcomes of the responding units as a combination of a model assumed for the 
outcome variable under complete response (the ‘sample model’), and a model 
assumed for the response probabilities. The resulting ‘respondents model’ defines the 
likelihood for the observed outcomes. In order to utilize the additional information 
provided by the population totals of the covariates, we add calibration constraints, 
which match pseudo probability weighted estimates of the totals of the covariates 
with their known population values. The weights used for these estimates are the 
inverse of the postulated response probabilities. The unknown model parameters are 
then estimated by an iterative algorithm which maximizes the likelihood with respect 
to the parameters governing the sample model, and solves the calibration constraints 
with respect to the parameters of the response probabilities.  We repeat the details of 
the algorithm in Section 3 and then outline the conditions for its convergence. We 
also discuss the properties of the resulting estimators.   
 
Having estimated the parameters of the model for the response probabilities, we 
predict the population mean of the outcome values by use of Horvitz-Thompson     
(H-T, 1952)) type estimators, utilizing the estimated response probabilities. 
Alternatively, when the covariates are observed for all the sampled units, we can 
estimate the conditional distribution of the outcome values for the non responding 
units given their respective covariates, and then use this distribution for imputing the 
missing outcomes. Combining the observed and imputed values provides another 
predictor of the outcome population mean. In the case of missing covariate 
information, this can be done by first imputing the missing covariate values. In the 
present paper we describe parametric and resampling methods for estimating the 
variances of the proposed estimators of the population mean.  
 
We develop a new test statistic for testing whether the covariates included in the 
model for the response probabilities together with the outcome variable are sufficient 
for the computation of these probabilities. The test uses the estimated probabilities for 
estimating the totals of other covariates not yet included in the model by the H-T 
estimator, and compares these estimates with their known totals (when available). 
When estimating the standard deviation of the estimators of the covariates’ totals we 
account for the calibration constraints used for estimating the parameters governing 
the model of the response probabilities.   
 
We illustrate our methods using data collected as part of the Household Expenditure 
Survey (HES) carried out by the Israel Central Bureau of Statistics in 2005.  
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2. Existing Approaches 

In this section we repeat the literature review of P-S (2008), so as to make the paper 
self contained. See the previous paper for the performance of some of the approaches 
described below (not repeated in this article). Let iY  denote the value of an outcome 
variable Y  associated with unit i  belonging to a sample {1,..., }S n= . We assume that 
the sample is drawn from a finite population {1,..., }U N=  by probability sampling 
with known first order inclusion probabilities Pr( )i i Sπ = ∈ . Let 1( ,..., )i i KiX X X=  
denote the corresponding values of K  auxiliary variables (covariates). In what 
follows we assume that the population outcomes are independent realizations from 
distributions with probability density functions (pdf), ;( | )U i if Y X θ , governed by the 
unknown vector parameter θ . Let {1,..., }rR n=  define the subsample of respondents 
(the subsample with observed covariates and outcome values), and { 1, ..., }c

rR n n= +  
define the subsample of nonrespondents, for which the outcomes and possibly the 
covariates are unobserved. The response process is assumed to be independent 
between units. The observed sample of respondents can be viewed therefore as the 
outcome of a two-phase sampling process, where in the first phase the sample S  is 
selected from U with known inclusion probabilities, and in the second phase the 
sample R  is ‘self selected’ with unknown response probabilities Pr( | )iq i R i S= ∈ ∈ ; 
Särndal and Swensson (1987).   
    
In what follows we assume that the sampling process is noninformative such that 
under complete response, ( | ) ( | , ) ( | )S i i i i U i if Y X f Y X i S f Y X= ∈ = , where ( | )S i if Y X  is the 
model holding for sampled unit i  under complete response. Most of the approaches 
proposed in the literature to deal with nonresponse assume (sometimes implicitly) 
that the missing data are 'missing at random' (MAR; Rubin, 1976, Little, 1982). This 
type of nonresponse requires that the probability to respond does not depend on the 
unobserved data, after conditioning on the observed data. Under this condition, and if 
the parameters governing the distribution under complete response are distinct from 
the parameters governing the response process, the nonresponse can be ignored for 
likelihood and Bayesian based inference. Notice that in this case,  
 

( | ) ( | , ) ( | )R i i i i S i if Y X f Y X i R f Y X= ∈ = ,                                           (1) 
 

where ( | )R i if Y X defines the marginal pdf  for responding unit i and ( | )S i if Y X is the 
corresponding sample pdf defined above. There are many approaches for handling 
MAR nonresponse, see the books by Schafer (1997) and Little and Rubin (2002), and 
the recent article by Qin et al. (2008) for comprehensive accounts. 
     
In this paper we focus on situations where the probability to respond may depend on 
the outcome value even after conditioning on the covariates. Suppose first that all the 
covariates are known for every unit in the sample. Define by iR  the response indicator 
such that 1(0)iR =  if sampled unit i responds on the outcome (does not respond). A 
possible way to deal with nonresponse in such situations is by postulating a 
parametric model for the joint distribution of iY  and iR , given iX . Little and Rubin 
(2002) consider two ways of formulating the joint distribution in this case, where we 
suppress for convenience the parameters from the notation.  
 

Selection Models specify,  
 

( , | ) Pr( | , ) ( | )i i i i i i S i if Y R X R Y X f Y X= ,                                         (2)  
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where Pr( | , )i i iR Y X  models the response probability. The missing sample values can 
be imputed in this case by the expectations, ( | ) ( | , 0)C i i i i iR

E Y X E Y X R= = , or by 
drawing at random from the pdf ( | )C i iR

f Y X  ( | , 0)i i if Y X R= = , accounting this way 
for the variability of the outcomes around their expectations. In practice, the 
probabilities and densities are replaced by their estimates, obtained by substituting the 
unknown parameters by their sample estimates. An example of the use of selection 
models is considered by Greenlees et al. (1982). The authors assume that the sample 
model is normal and the probability to respond is logistic. 
      
Selection models allow estimating all the unknown model parameters, but as noted by 
Little (1994), they are based inevitably on strong distributional assumptions. 
Beaumont (2000) proposes to robustify the model considered by Greenlees et al. 
(1982) by dropping the normality assumption for the regression residuals. A 
drawback of this method is that the probabilities ( 0 | )i iP R X= appearing in the full 
likelihood for the responding and nonresponding units cannot be calculated, since the 
sample pdf of |i iXY  is not specified. (For the nonresponding units the only known 
information is 0iR = ). The author deals with this problem by expanding 

( 1| , )i i iP R Y X=  around the mean ( | )S i iE Y X , where ( )SE ⋅  is the mean under the 
sample model, but this amounts to assuming a MAR response. Note also that without 
further assumptions, the missing outcomes have to be imputed under this approach by 
use of the pdf  |( )S i if Y X , instead of the pdf ( | )C i iR

f Y X . 
 
Pattern-mixture models specify,  
 

                                    ( , | ) ( | , ) Pr( | )i i i i i i i if Y R X f Y X R R X= ,                                      (3)  
              

where ( | , )i i if Y X R  defines the pdf for the respondents ( 1)iR = and the nonrespondents  
( 0)iR = , and Pr( | )i iR X  models the response probability given the covariates (the 
‘propensity scores’). A major drawback of pattern-mixture models is that the model 
holding for the nonrespondents, ( | , 0)i i if Y X R = , cannot be extracted from the models 

( | , 1)i i if Y X R =  and Pr( | )i iR X  fitted under this approach.  
 
Tang et al. (2003) propose a ‘pseudo-likelihood’ approach that uses the conditional 
pdf, ( | )S i if X Y , for the respondents. Application of this approach requires 
specification of the sample pdf, ( | )S i if Y X , and the marginal pdf, ( )S ig X . The method 
does not require a parametric model for the response probability but it assumes that it 
depends only on the outcome. The use of this approach does not enable imputing the 
missing outcomes from the distribution ( | ) ( | , 0)C i i i i iR

f Y X f Y X R= = . 
 
So far, we considered methods applicable for the case where the covariates are 
observed for all the sampled units. Qin et al. (2002) propose a method that can be 
applied when the covariates are only known for the respondents. The method assumes 
a parametric model for Pr( 1 | , )i i iR Y X= and known population means of the 
covariates. The authors use an empirical likelihood, addressing the problem of 
missing covariate information by using the unconditional response 
probability Pr( 1)iRλ = =  in the likelihood, instead of the conditional probabilities 
Pr( 1| )i iR X= . The method accounts for the known population means of the covariates 
by adding constraints to the likelihood. However, our experience so far shows that 
good performance of this procedure depends on having sufficient accurate initial 
values for the response model parameters and the Lagrange multipliers used for the 
constrained maximization procedure.  
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Chang and Kott (2008) propose an approach for estimating the response probabilities 
based on the known totals of calibration variables. The authors assume a parametric 
model for the response probabilities that can depend on the outcome value and 
estimate the parameters governing this model by regressing the H-T estimators of the 
totals of the calibration variables against the corresponding known totals, with the 
response probabilities defined by their values under the model. Having estimated the 
response probabilities, the use of this approach allows estimating the population totals 
of target variables of interest, but it does not allow imputing the missing outcomes, 
since no model is assumed for the outcome values.  
 

3. The Respondents Distribution and Parameter Estimation 

3.1 The Respondents Distribution and its Relationship to the Sample  
      Distribution  
The marginal pdf of the outcome for a responding unit is obtained, similarly to 
Pfeffermann et al. (1998) as, 

( | )R i if Y X = ( | , , 1)i i if Y X i S R∈ =
Pr( 1| , , )

Pr( 1| , )
i i i

i i

R Y X i S
R X i S

=
= ∈
= ∈

( )S i if Y X ,               (4) 
 

where |Pr( 1| , ) Pr( 1 | , , ) ( )i i i i i S i i iR X i S R Y X i S f Y X dY= ∈ = = ∈∫  and ( | )S i if Y X  is the 
sample pdf under complete response. (As noted before, we assume that the sample pdf 
and the population pdf are the same.) Denote ( , ) Pr( 1 , , )i i i i iY X R Y X i Sπ = = ∈  and 

( )iXπ  Pr( 1 , )i iR X i S= = ∈ .  
Remark 1. As with selection models, the use of the respondents’ pdf requires 
modeling the sample pdf, ( | )S i if Y X  and the response probability, ( , )i iY Xπ . Notice, 
however, that the resulting respondents’ model can be tested, since it relates to the 
data observed for the responding units.  
     
By (4), if the sample outcomes and the response are independent between the units, 
and the covariates are only known for the respondents, one can estimate the 
parameters θ  indexing the distribution under complete response and the parameters 
γ  indexing the response probabilities by maximizing the respondents’ likelihood, 

 

Resp
1 1

Pr( 1 , , ; ) ( ; )
( | , 1, ; , )

Pr( 1 , ; , )
r r i i i S i i

i i i
i i i i

R Y X i S f Y X
L f Y X R i S

R X i S
γ θ

θ γ
θ γ= =

= ∈
= = ∈ =∏ ∏

= ∈
.      (5) 

The notable property of the likelihood (5) is that it does not require knowledge of the 
covariates for nonresponding units, or modeling the distribution of the sampled 
covariates.  
  
3.2 Calibration Constraints   
In what follows we assume knowledge of the population size, N , and the totals 

1( ,..., )pop pop pop
KX X X=  of the covariates contained in the model for the responding  

units. This additional information is not part of the likelihood in (5). Our experience 
so far shows that the response model does not contain all the covariates included in 
the sample model. Let (1) (2)

1( , ..., ) ( , )KX X X X X= = , where (1)
1( ,..., )mX X X=  and 

(2)
1( ,..., )m KX X X+= , and suppose that ( , ; )i iY Xπ γ Pr( 1 | , ; )i i iR Y X γ= = (1)( , ; )i iY Xπ γ= . 

We assume that the sample model belongs to the family of generalized linear model 
(GLM) with the linear predictor (1) (2)

1 2X X Xβ β β′ ′′ = + . (The vector 1 2' ( , )β β β′ ′= is 
part of the vector parameter θ .) 
 

Let 1/i iw π=  denote the sampling weights. We utilize the knowledge of the totals by 
imposing the following calibration constraints:  

Memorial – JSM 2009

344



       (1) (1)
1 1

1, 1,..., ;
( , ; ) ( , ; )

r rpopki
i k i

i ii i i i

Xw X k m w N
Y X Y Xπ γ π γ= =

= = =∑ ∑ .                         (6a) 
 

When the response model has an intercept, we use the additional constraint,  
(2)

(2),2
2(1)

1 ( , ; )
r popi

i
i i i

Xw X
Y X
β β

π γ=

′
′=∑ .                                             (6b) 

 

The left hand sides of (6a) and (6b) are H-T type estimators of the corresponding 
population totals, with the ‘selection probabilities’ defined by the products 

(1)Pr( | , ) ( , ; )i i i i ii R Y X Y Xπ π γ∈ = × .  
 
3.3 Estimation Algorithm, Properties of Estimators 
In P-S (2008) we described an iterative estimation algorithm, which alternates 
between maximum likelihood estimation of the parameters underlying the sample 
model for given values of the parameters of the model for the response probabilities, 
and the solution of the calibration equations with respect to the parameters of the 
model for the response probabilities, for given values of the parameters of the sample 
model. The “given” parameters on each iteration are the corresponding estimates 
from the previous iteration.  
Let Resplog( )

( , ; , )i i
L

l Y X θ γ
θ

∂
=

∂
 with the likelihood RespL  defined by (5); denote by 

(1)( , ; , )i ih Y X θ γ  the system of equations (6a) and (6b) and let ˆ ˆ( , )θ γ′ ′  define the 
estimators obtained by application of the algorithm.  
 

Theorem: Suppose that: 
)i  The population model belongs to the family of generalized linear models, 
)ii (1)0 ( , ; ) 1i iY Xπ γ< < , 
)iii ( , ; , )i il Y X θ γ  and (1)( , ; , )i ih Y X θ γ  have continuous and bounded first and second 

order derivatives in a neighborhood of the true parameters 0 0( , )θ γ .  

Then, as ,N n→∞ →∞  such that N
n
< ∞ , the algorithm converges in probability to 

0 0( , )θ γ  in the neighborhood, implying consistency of ˆ ˆ( , )θ γ . Also, 

0 0
ˆ ˆ( , ) (( , ), )n Nθ γ θ γ→ Σ  for some matrix Σ . 

 

The proof of the theorem can be obtained from the authors.  
 

4. Imputation of Missing Values and Estimation of Population Means 
  

Denote by,    
       (1) (1)ˆ ˆ ˆˆˆ ˆ ˆˆ( | ) ( | ; , ), ( , ) ( , ; ), ( | ) ( | ; , )S i i S i i i i i i S i i S i if Y X f Y X Y X Y X E Y X E Y Xθ γ π π γ θ γ= = =  ,       (7)  

                            

the estimates of the sample pdf, the response probabilities and the sample 
expectations.  The estimates in (7) provide several possibilities for the imputation of 
the missing values and the estimation of the population mean of the outcome variable.  
     
When the covariates for the nonrespondents are unknown, the population mean of the 
outcome can be estimated using the (pseudo) H-T estimator,  

(1)
(1)

1

1ˆ ˆ/ ( , )
r

i i i i
i

Y wY Y X
N

π
=

= ∑ .                                           (8) 

If the covariates are known for all the sampled units, another set of estimates is 
obtained as,    

*
(2)

1

1ˆ n

i i
i

Y wY
N =

= ∑ ;  *
i iY Y=  if i R∈  , * imp

i iY Y=  if ci R∈ .                     (9) 
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The imputed values, imp
iY , can be computed either as, 

 

                                       ( | ) ( | , )C
imp c

i i i i iR
Y E Y X E Y X i R= = ∈ ,                                   (10) 

 

or by generating at random one or more observations from the pdf ( | )c i iRf Y X  and 
taking the average of these observations as the imputed value, using multiple 
imputation techniques. (Rubin, 1987, Schafer and Schenker, 2000). The pdf 

( | )c i iR
f Y X  is the pdf for a nonresponding unit with covariates iX . The pdf for a 

nonresponding unit is computed utilizing the relationship,  
 

    
(1) (1)Pr( 0 | , , ) ( | ) [1 ( , )] ( | )( | )

Pr( 0 | , ) [1 ( )]c
i i i S i i i i S i i

i iR
i i i

R Y X i S f Y X Y X f Y Xf Y X
R X i S X

π
π

= ∈ −
= =

= ∈ −
,            (11)                     

where (1)Pr( 1 | , , ) ( | )( )i i i i S i i iR Y X i S f Y XX dYπ = ∈= ∫ . In practice, one has to use the 

estimated pdf, obtained by replacing the unknown parameters by their estimates.  
 

Remark 2. It is important to emphasize that we don’t assume any model for the 
outcomes of the nonresponding units. This model is defined mathematically by the 
relationship (11). The sample model, ( | )S i if Y X , and the model for the response 
probabilities, (1)( , )i iY Xπ , define the model holding for the outcomes of the responding 
units and this model can be validated by application of classical goodness of fit test 
statistics since it refers to the observed data.  
  

The predictor (2)Ŷ  in (9) assumes that the covariates are known for every unit in the 
sample. When the covariates are only known for the respondents, we may first predict 
the missing covariates for the nonrespondents from the probability function 

|0 |( ) Pr( 0, )X i i i iP x X x R i S= = = ∈ , and then predict the outcome value as described 
above. By Sverchkov and Pfeffermann (2004), the latter probability function can be 
expressed as, 

            
|0

( 0 | , )( ) Pr( | )
( 0 | )

( 0 | , ) Pr( | 1, ) Pr( 1 | ) .
( 0 | ) Pr( 1 | , )

i i i
X i i i

i

i i i i i i i

i i i i

P R X x i SP x X x i S
P R i S

P R X x i S X x R i S R i S
P R i S R X x i S

= = ∈
= = ∈

= ∈

= = ∈ = = ∈ = ∈
=

= ∈ = = ∈

      (12) 

Estimating 1Pr( | 1, )i i iX x R i S
r

= = ∈ =  ix R∀ ∈  and Pr( 1 | )iR i S= ∈
1

ˆ(1/ ( ))r
ij

r
xπ

=

=
∑

, 

the probability |0 ( )X iP x  can be estimated as,  
 

                                    |0

1

ˆ[1 ( )]ˆ ( )
ˆ ˆ( )[ (1/ ( )) ]

i
X i r

i jj

xP x
x x r

π
π π

=

−
=

−∑
, ix R∈ .                         (13)      

Remark 3. The estimator (13) assumes that the covariates in the subsample of the 
nonrespondents take the same values as in the subsample of the respondents (but with 

different probabilities). In practice, the estimate 1Pr( | 1, )i i iX x R i S
r

= = ∈ =  can be 

replaced by a ‘smoothed’ estimator, using more advanced density estimation 
methods.  
 

5. Estimation of Variances of Estimators of Population Mean  
 
In Section 4 we considered several estimators of the population mean of the outcome 
variable. In order to estimate the variance of these estimators, we can apply a 
parametric bootstrap procedure, distinguishing between estimation of the conditional 
variance given the observed covariates (and thus conditioning also on the number of 
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respondents), and the unconditional variance over all possible samples of respondents 
(and thus also over all possible numbers of respondents). The bootstrap procedure for 
estimating the conditional variances consists of the following steps: 
1.  Generate a large number of samples of outcomes from the estimated respondents' 
distribution ˆ ˆ( | ; , )R i if Y X θ γ  with fixed (original) covariates iX .  

2. For each new sample, re-estimate ( , )θ γ  and then compute the estimators (1)Ŷ  and 

(2)Ŷ  (two versions), using the new parameter estimators. 

3. Denote by ( )
( )
ˆ , 1, 2b

kY k =  the estimators obtained for bootstrap sample , 1,...,b b B= . 
Estimate,  

                                 ( ) 2 ( )
( ) ( ) ( ) ( ) ( )1 1

1 1ˆ ˆ ˆˆ ( ) ( ) ; , 1,2B Bb b
k k k k kb b

Var Y Y Y Y Y k
B B= =

= − = =∑ ∑ .           (14) 
 

For estimating the unconditional variances we first generate the outcomes for the 
whole population using the estimated distribution ˆ ˆ( | ; , )S i if Y X θ γ , and then select 
respondents with probabilities (1) ˆ( , ; )i iY Xπ γ . In this case the covariates and the sample 
sizes are not fixed. The rest of the computations are as before.  
 

Another way of estimating the variance of the H-T type estimator (1)Ŷ  is by 
computing the conditional variance, 
 

                           (1) )
ˆ(Var Y = (2) ,(2)

(1) 1
ˆ| , ..., , )[ ( , ]t pop pop pop

x m
tVar Y T N X X Xθ ′=% % ,                   (15) 

where (1)
(1)

1

1 / ( , ; )
r

i i i i
i

Y wY Y X
N

π γ
=

= ∑% , and  

1
(1) (1) (1) (1)

1 1 1 1

(2) (2)ˆ
,

1[ ,..., , ]
( , ; ) ( , ; ) ( , ; ) ( , ; )

r r r r ti mi
x i i i i

i i i ii i i i i i i i

XiX XT w w w w
Y X Y X Y X Y X

θ

π γ π γ π γ π γ= = = =

′
= ∑ ∑ ∑ ∑% .   This  

 

variance accounts for the calibration equations used for estimating the model 
parameters and hence the response probabilities. Denote 11 (1)( )Var Yσ = % , 22 ( )xVar TΣ = %  
and 12 (1)( , )xCov Y Tσ ′ = % % . Assuming (1) , ( | ) 0t

x xY T E Tδ ε ε≅ + =% % %  for some vector δ , (e.g., 
by assuming asymptotic normality of (1)( , )xY T% % ), 
  

                                             1
(1) 11 12 22 12)
ˆ(Var Y σ σ σ−′= − Σ .                                               (16)  

The variance components in (16) and hence the variance of the estimator (1)Ŷ  can be 
estimated by ‘design-based’ methods, or by the joint model-design distribution with 
the unknown model parameters replaced by their original sample estimators.  
 

Finally, the variance of (2)Ŷ  that uses observed and imputed values can be estimated 
also using the multiple imputations method. Suppose that M  outcomes are imputed 
for each nonresponding unit j . Let (2),

ˆ
mY  denote the estimator (2)Ŷ , computed from the 

observed outcomes and the m-th set of imputed values, 1,...,m M= . Following the 

theory of multiple imputations, the variance of  (2) (2),1

ˆ ˆM
mm

Y Y
=

=∑  is estimated as,     

        1
(2) )
ˆ ˆ ˆˆ ( (1 )Var Y M B V−= + + ; 2

(2), (2)1

1 ˆ ˆˆ ( )
1

M
mm

B Y Y
M =

= −
− ∑ , 

1

1ˆ ˆM
mm

V V
M =

= ∑ ,      (17) 

where (2), )
ˆˆ ˆ (m mV Var Y= .  
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6. Testing Which Covariates to Include in Response probabilities Model 
Let Z  be a variable not included in response model (1)( , ; )i iY Xπ γ . Suppose that 

1

N
tot

i
i

Z Z
=

=∑ is known. The ‘standard’ way of testing whether Z should be included in 

the response model is to add it to the other covariates, refit the model holding for the 
respondents and then test the significance of the coefficient of Z . This procedure  can 
be time consuming. Below we consider an alternative test, which does not require 
refitting the model. If the probabilities (1)( , ; )i iY Xπ γ do not depend on Z , then we 
expect that the H-T type estimator of totZ  will be unbiased. Thus, we may test the 

hypothesis 0 (1)
1

:
( , ; )

r
toti i

i ii

ZH E Z
Y X
ω

π γ=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . A plausible test statistic is, 

                    (1) (1)
1 1

ˆ{[ ] / ( )} ~ (0,1)
ˆ ˆ( , ; ) ( , ; )

r r Asymp
toti i i i

i i i ii i

Z Z
U Z Std N

Y X Y X
ω ω

π γ π γ= =

= −∑ ∑ .            (18) 

 

The variance of (1)

1

ˆ/ ( , ; )
r

i i i i
i

Z Y Xω π γ
=
∑  is the conditional variance, given the calibration 

constraints and it can be estimated similarly to the estimation of the variance of the 
estimator (1)Ŷ  described in Section 5, (Eqs. 15 and 16).  
 
The procedure can be extended for testing simultaneously whether several additional 
covariates need to be added to the model and/or for designing an appropriate stepwise 
algorithm.  
  

7. Empirical Results 
 
7.1 Study Population and Outcome Variable 
The data used for this study was collected as part of the Household Expenditure 
Survey carried out by the Israel Central Bureau of Statistics in 2005. The survey 
collects information on socio-demographic characteristics of each member of the 
selected Households (HHs), as well as information on the HH income and 
expenditure. The initial response rate in this survey was 43%, but after many recalls 
the response rate increased to 90% of the sampled HHs. The HHs were sampled with 
equal probabilities. In what follows we restrict to HHs where the head of the HH is an 
employee, aged 25-64 and born in Israel. We only consider HHs where at least one of 
its members worked during the three months preceding the interview. The head of the 
HH is the member with the highest income among these members. The target 
outcome variable is the household income per standard person.  
 
For the present study we define the responding HHs to be the HHs that responded on 
the first interview.  The nonresponding HHs are the HHs which did not respond on 
the first interview but responded on one of the later interviews, such that the data for 
both the responding and the nonresponding HHs are actually known. The total 
number of HHs in our sample is n=1721, with 631r =  responding HHs and 

1090n r− =  nonresponding HHs (but responding on one of the later recalls).  
 
7.2  Sample Model and Response Probabilities 
We assume that the sample distribution of the outcome (under full response) given 
the covariates is normal; 

2)log( , ~ (0, )i i i iY X N εβ ε ε σ′= + ,                                     (19) 
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where iY  is the income per standard person in household i  and [ ]11, ,...,i i iKX X X ′=  is 
the corresponding vector of covariates. The covariates include characteristics of the 
head of the HH: gender, age, occupation and number of years at school; and HH 
characteristics: number of earners, HH size and district.  
 
The response probabilities given the outcome and the covariates are modeled by the 
logistic function, that is, 

(1)
(1) 0 1 1]

( )( 1 | , ) [1 i i
i i i

Y XP R Y X e γ γ −′− += = + .                                     (20) 
 

As established by Landsman (2008), the model holding for the responding units (Eq. 
4) resulting from a normal sample distribution and a logistic model for the response 
probabilities, with at least one different covariate, is identifiable. Most of the 
covariates included in the sample model, as well as the outcome variable log(income) 
are nonsignificant when included in the model (20). However, removing the 
nonsignificant covariates from the model makes the log(income) variable significant. 
As shown below, the resulting model contains much less covariates.  
 
Tables 1 and 2 show the estimated coefficients for the two models as obtained when 
fitting the models separately for all the sample data, and when fitting the 
respondents’ model (4) to only the responding units, using the estimation algorithm 
described in Section 3.  
 
Table 1: Sample model fitted to all the sampled HH (Respondents and 
Nonrespondents”), and based only on responding HH. 
 

Coeff. Cons. Gender Age Dist. 21 Dist.41 Dist.42 Dist. 43 
All HH 7.32 -0.13 0.02 -0.18 0.17 0.13 0.17 

Respond. 7.22 -0.14 0.02 -0.10 0.15 0.10 0.16 
 

Coeff. Dist. 44 Dist.51 Dist. 52 Earners HHsize Occ.0 Occ.1 
All HH 0.18 0.23 0.09 0.24 -0.14 0.44 0.22 

Respond. 0.17 0.28 0.15 0.26 -0.13 0.45 0.24 
 

Coeff. Occ.2 Occ.3 Occ.4 School10 School12 School16 2
εσ  

All HH 0.44 0.21 0.15 -0.36 -0.15 0.17 0.401 
 Respond. 0.38 0.26 0.15 -0.36 -0.15 0.20 0.404 

 
 

Table 2: Model for response probabilities fitted to all the sampled HH (Respondents 
and “Nonrespondents”), and based only on responding HH. 
 

Coeff. Cons. Log(Y) Gender Dist.43 Dist.44 Dist.53 HHsize 
All HH 0.91 -.21 -0.20 0.88 -0.58 -0.77 0.10 

Respond. 1.38 -.21 -0.26 0.91 -0.59 -0.79 0.12 
 
The values of the coefficients in the two tables show that the coefficients can be 
estimated sufficiently accurately based only on the model holding for the responding 
units with 631 respondents. When fitting the sample model (Eq. 19) to all the sample 
data, we obtained 2 0.60R =  with residual variance 2ˆ 0.401εσ = . The values of the 
regression coefficients are sensible. For example, the coefficients of the education 
variables increase as the level of education increases. The number of earners in the 
household has a strong positive effect on the income, while the size of the household 
has a strong negative effect. The coefficient of Gender (being a female) is negative.  
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Figure 1 compares the distribution of the estimated regression residuals with the 
normal distribution with mean zero and the same standard deviation 2 0.401.εσ = The 
distribution of the residuals is seen to be close to the normal distribution, although 
with somewhat shorter tails.  

 
Figure 1:  Distribution of estimated regression residuals and normal distribution with 
mean zero and the same variance ( 2 0.401εσ = ). 
 
7.3 Imputation of Missing Outcomes 
Next we show the performance of the proposed approach in imputing the missing 
outcomes. The imputations were carried out under two different scenarios: In 
scenario 1 we use the known covariates for the nonrespondents and impute the 
incomes by drawing at random from the estimated distribution 

2ˆ ˆ ˆˆ( | ) ( | , 0; , , )c i i i i iR
f Y X f Y X R εβ σ γ= = . We imputed 5 values for each unit and then 

averaged the 5 imputations. In Scenario 2 the covariates for the nonresponding units 
are taken as unknown and the imputation of the missing incomes is carried out by 
first imputing the missing covariates using Eq. 13, and then imputing the incomes 
similarly to Scenario 1. Figures 2 and 3 compare the true empirical cumulative 
distribution of the incomes of the nonresponding units with the means of the 
estimated empirical distributions over the 5 imputation sets. Also shown in the two 
figures is the cumulative distribution of the imputed values when ignoring the 
nonresponse process, imputing the missing covariates by drawing at random from 
their empirical distribution for the responding HH and imputing the missing incomes 
given the covariates by drawing at random from the estimated sample distribution. 

 
Figure 2:  True empirical cumulative distribution and means of estimated empirical 
cumulative distributions of the incomes over 5 imputation sets. Known covariates. 

 
Figure 3:  True empirical cumulative distribution and means of estimated empirical 
cumulative distributions of the incomes over 5 imputation sets. Missing covariates. 
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Figures 2 and 3 show that the proposed approach yields imputations with distribution 
that is close to the true distribution. On the other hand, ignoring the nonresponse 
yields biased imputations, particularly when the covariates for the nonresponding 
units are likewise unknown. Notice that even if the distribution of the income given 
the covariates was the same for the responding and nonresponding units, ignoring the 
nonresponse in the case of unknown covariates for the nonresponding units would 
still produce biased estimates for the income distribution, since the nonresponse for 
some of the covariates cannot be ignored. For example, Table 3 shows the percentage 
of HH by size for the responding and nonresponding units. The HH size is one of the 
important covariates in both the models (19) and (20) (Tables 1 and 2). 
 
Table 3: Percent of households by size in household expenditure survey. 
 

HH size 1 2 3 4 5 6+ 
Resp. 6.18 13.63 19.33 26.94 20.60 13.31 

NonResp. 12.39 19.00 17.34 24.40 17.34 9.54 
 
7.4 Estimation of Mean Sample Income and Variance of Estimators 
In Section 4 we proposed two different estimators of the population mean of the 
outcome variable and in Section 5 we considered alternative ways of estimating their 
variance. Tables 4 and 5 summarize the results obtained when estimating the true 
sample mean of the incomes. Table 4 presents the estimated standard errors (SE) 
when conditioning on the observed covariates (and hence also on the number of 
respondents). Table 5 presents the unconditional SE estimators. For both cases we 
used bootstrap samples as described in Section 5. Also shown in the two tables is the 
mean and variance over all bootstrap samples of the H-T estimator, which uses the 
‘true’ probabilities to respond, ˆ( , ; )i iY Xπ γ , that is, when the probabilities to respond 
are not reestimated for each of the bootstrap samples. This estimator, denoted by 

(1, )
ˆ

P KY − , does not take into account the known totals of the covariates via the 

calibration constraints. The estimator (2)Ŷ that uses the imputed values is calculated 
under Scenario 1, where we assume that the covariates are known for the 
nonresponding units, (denoted by (2, )

ˆ
C KY − ), and under Scenario 2, where the covariates 

for the nonresponding units are also imputed (denoted by (2, )
ˆ

C UKY − ). In both tables we 
also show the results obtained when estimating the variance by the multiple 
imputations method (Eq. 17). 
 
Table 4: Estimation of sample mean of income ( 7244.46Y = ). Conditional SE.  

100 bootstrap samples. 
 

Estimate Standard Error  
Estimator Original sample  

of respondents 
 

Mean over  
bootstrap samples 

Parametric 
bootstrap  

Mean of Multiple 
Imputation 

(1, )
ˆ

P KY −
 ---- 7347.00 213.20 ---- 

(1)Ŷ  7381.75 7345.00 182.37 ---- 

(2, )
ˆ

C UKY −
 7392.73 7356.20 127.40 132.69 

(2, )
ˆ

C KY −
 7318.05 7316.38 122.09 123.87 
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Table 5: Estimation of sample mean of income ( 7244.46Y = ). Unconditional SE. 
500 bootstrap samples. 

 
Estimate Standard Error  

Estimator Original sample  
of respondents 

Mean over  
bootstrap samples 

Parametric 
bootstrap  

Mean of Multiple 
Imputation 

(1, )
ˆ

P KY −
 ---- 7335.90 346.25 ---- 

(1)Ŷ  7381.75 7317.91 187.51 ---- 

(2, )
ˆ

C UKY −
 7392.73 7344.37 175.32 158.80 

(2, )
ˆ

C KY −
 7318.05 7344.45 173.00 158.98 

 
Tables 4 and 5 illustrate that all the estimators of the mean population income 
overestimate the true mean, but with the largest bias being less than 1.5%. Notice that 
the mean of the incomes computed from only the responding units is 6842.22, an 
underestimation of 5.5%. As anticipated, the standard errors of the estimators are 
smaller when conditioning on the observed covariates (Table 4), than in the case 
where the standard errors are taken over all possible samples of respondents (Table 
5). Also, the standard errors are somewhat smaller when the covariates for the 
nonresponding units are known than in the case that they have to be imputed. The 
estimator (1, )

ˆ
P KY − , which does not use the calibration constraints has a much larger 

variance than the other estimators, illustrating the advantage of modifying the 
sampling weights by use of calibration constraints. The multiple imputations method 
estimates fairly well the conditional variance in table 4, but underestimates the 
unconditional variance.  
 
Finally, for estimating the unconditional standard error of the H-T type estimator (1)Ŷ  
we also computed for each of the 500 bootstrap samples the estimator (16), using the 
joint response-model distribution with estimated parameters (the distribution over all 
possible samples of respondents and the sample distribution). The mean of the SE 
estimators turned out to be 188.46, which is very close to the empirical standard error 
of 187.51 over all the bootstrap samples. The standard error estimator based on the 
original sample is 187.27. 
 
7.5 Testing Which Covariates to Include in Response Probability Model 
 
In section 6 we proposed a new test statistic, defined by (18), for testing which 
covariates to include in the response probability model. The performance of the test 
statistic should be assessed by its distribution under the null hypothesis that it should 
not be included in the model, and by its power in rejecting the null hypothesis. To this 
end, we computed the empirical distribution of the test statistic for different 
covariates, using the parametric bootstrap samples generated for estimating the 
unconditional variances described in Section 7.4.  
 
Figure 4 compares the empirical histograms of the test statistic for all the covariates 
that are not included in model with the standard normal distribution (the asymptotic 
distribution under H0).  
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Figure 4: Histograms of test statistic for covariates not included in response 
probability model. 500 bootstrap samples. The red curve is the standard normal pdf.   
 
Figure 5 compares the empirical histograms of the test statistic for the five covariates 
included in the model (Table 2) with the standard normal distribution. For this 
experiment we dropped each covariate in turn and recomputed the response 
probabilities based on the remaining covariates in the model. 

 
Figure 5: Histograms of test statistic for covariates included in response probability 
model. 150 bootstrap samples. The red curve is the standard normal pdf.   
 
Figures 4 and 5 illustrate good performance of the test statistic in the present 
application. For covariates that were not included in the model the empirical 
distribution of the test statistic is sufficiently close to the standard normal pdf, while 
the empirical distributions for covariates that are included in the model have means 
far from zero.  
 

8. Final Remark 
 
We developed a general approach for imputation and estimation when the 
nonresponse is not NMAR. The proposed approach is model-based and its good 
performance is likely to depend in general on correct specification of the population 
model and the model for the response probabilities. NMAR nonresponse is a difficult 
problem and making strong assumptions is inevitable. The advantage of our 
approach, however, is that for given specifications of the two models, the goodness of 
fit of the resulting model holding for the responding units can be tested by use of 
classical goodness of fit testing procedures, since the latter model refers to the 
observed data. Several tests of this kind have been established and illustrated in 
Landsman (2008). We developed additional tests and we are presently investigating 
their performance. 
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