
Some Generalizations of the Horvitz-Thompson Estimator 
 

James R. Chromy 
 
RTI International, 3040 Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 

27709

 

Abstract 

 
Horvitz and Thompson (1952) develop a theory for PPS sampling and estimation when 

sampling is PPS without replacement. The estimation procedure weights each selected 

observation by the inverse of the unit’s overall selection probability and the unit’s weight 
does not depend on the particular sample in which it was selected. They also show that 

nonzero pairwise probabilities are required for unbiased variance estimation.  This paper 

shows how the Horvitz-Thompson PPS without replacement estimator and its variance 

are related to the PPS with replacement estimator and its variance as presented by 
Hansen, Hurwitz, and Madow. It also shows how this generalization can be related to 

minimum replacement designs which allow sampling units with large relative size 

measures (greater than 1/n) to be selected more than once. 
 

Key Words: PPS sampling, PPS sequential sampling, PPS systematic sampling, 

variance approximation 

 
I’m honored to have the opportunity to speak at this session organized in memory of Dr. 
Horvitz. Thanks to Ralph Folsom for organizing the session. I first met Dan while taking 

Dr. Charles Proctor’s sampling course at N. C. State. The class was invited to hear from a 

practicing statistician about how sampling is really done. Dan gave a wonderful 

description of the multi-stage sampling procedure then used at RTI to select area 
household samples. Later that spring when I needed a job, I came to see Dan again and I 

was very pleased to receive an offer of employment. I accepted and began working at 

RTI in June 1966 in Dan’s Survey Statistics Department of the Statistics Research 
Division.   

 

When you worked for Dan, you had to earn his trust. He was a great mentor from the start 

and has encouraged me throughout my career. My last collaboration with him was after 
he retired and was living in Florida. He, Al Finkner, and I co-authored a chapter for a 

special National Assessment of Educational Progress history edited by Lyle Jones and 

Ingram Olkin (Chromy, Finkner, and Horvitz 2004). 
 

Dan’s paper was entitled “A generalization of sampling without replacement from a finite 

universe”. In this presentation, I would like to review some of his results.  Then I would 
like to add some additional generalizations: (1) allowing units to be drawn more than 

once and (2) using expectations instead of probabilities. Next, I will discuss how the 

Horvitz-Thompson theory can be applied to the with replacement designs of Hansen and 

Hurwitz. Then I would like to characterize stratification, both explicit and implicit in 
terms of the variance of the generalized Horvitz-Thompson (HT) estimator. Finally, I 

would like to discuss useful simplifications to the variance estimation problem and how 

they can be justified under PPS systematic and PPS sequential sampling designs. 
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1. Horvitz and Thompson (1952) 
 
Dan developed the HT estimation methodology while completing his doctorate at Iowa 

State University and published it in JASA with D. J. Thompson (Horvitz and Thompson 
1952). The paper was entitled “A Generalization of Sampling without Replacement from 

a Finite Universe.” I’m trying to generalize it a little further: a generalization of a 

generalization. The 1952 paper had two goals: 
 

1. “it provides a general method for dealing with sampling without replacement 

from a finite universe when variable probabilities of selection are used…” 

2. “it examines and discusses some problems arising in the practical application …” 
 

Under the first goal, the paper addressed unbiased estimation of totals and unbiased 

estimation of the variance of these estimates. It discussed single-stage sampling, but 
extended the results to two-stage sampling. Under the second goal, the paper presented 

two sampling schemes for selecting PPS samples of size 2 without replacement and 

provided some examples of their application. 

 
Prior to this work, the main contenders for sampling PPS without replacement were the 

Hansen and Hurwitz (1943) PPS with replacement method restricted to selecting one unit 

per stratum and a systematic sampling scheme described by Madow (1946).  Neither of 
these methods provided for unbiased estimation of the variance of the estimate. 

 

The motivation for PPS sampling was the potential reduction of variance to zero or near 
zero if the size measures are exactly or approximately proportional to the characteristic 

being estimated. Intuitively, practicing statisticians would have liked to use known 

available auxiliary variables to take a simple average of observed ratios to adjust a known 

total. While this approach did work with the PPS with replacement scheme, it would 
produce biased estimates of the total when using equal probability sampling. 

 

It was also known that for equal probability sampling, without replacement sampling 
yielded lower variance than with replacement sampling. Intuitively, this should hold for 

PPS sampling also. 

 

Two relationships for taking expectations of finite sample statistics are key elements for 
the logic developed later in the paper. Both of them rely on theoretically knowing the 

probability of selection over samples admitted under the design. The first involves the 

expectation of a sample function of the observed values: 
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The important issue to notice is that the summation switches from being over all samples 
to being over the population. The final quantity in this equation is seen to be the 

probability of selecting unit i. 
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Using a similar logic, he obtained this result for pairs of observations. 
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A similar switch occurs in the order of summation and the final term in the equation is 

the probability of selecting unit i and unit j in the same sample. 
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With these tools in hand, the paper develops unbiased estimators for the total of some 
variable X: 

∑
=

=
N

i

iXT
1

 

Horvitz and Thompson considered three possible subclasses of linear estimators of a 
population total and settled on class 2 which applied the same coefficient to an element 

regardless of the order of the draw.  
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β is applied to unit i whenever unit i is selected. Then noting from equation (1), 

that  
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where )(
i

uP  is the sum of the sample probabilities over all samples of size n that contain 

unit i, he concluded that the expected value can equal the population total for any set of X 

only if  
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This conclusion yielded the classic Horvitz-Thompson estimator  
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In order to have the opportunity to reduce variance, the selection probabilities need to be 

at least approximately proportional to the characteristic of interest. When considering a 

sample of size 1 or with replacement sampling, the arbitrary probabilities at each sample 

draw are denoted by 
i

p  and they sum to 1. 
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When selecting samples of size n without replacement, the unit probabilities are scaled so 

that 
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As noted by Horvitz and Thompson, the unit probabilities must be positive and less than 

1. In order to obtain unbiased estimates of the variance, all pairwise probabilities must 
also be positive. 

 

Since the development of Horvitz-Thompson PPS without replacement sampling theory, 

a large number of sampling schemes have been developed which utilize this theory. 
Brewer and Hanif (1983) enumerate 50 PPS sampling schemes many of which utilize the 

Horvitz-Thompson theory. Ones I have found particularly useful have been Brewer’s 

(1963) method for samples of size 2; this method provides for straightforward calculation 
of the pairwise probability which can then be used to select the samples.  Sampford’s 

rejective method (Sampford 1969) extends the approach to larger samples. Both methods 

provide for unbiased variance estimation with non-negative coefficients in the variance 
estimator (a topic which is discussed later). 

 

2. Generalization: From Probabilities to Expected Sample Sizes 
 
The generalization proposed here involves substituting expected sample size for unit 
probabilities.  Horvitz and Thompson define  
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If instead, we define a variable for the number of times unit i is selected in a sample of 

size n and designate it by 
i

n , then we can compute its expectation as 
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Similarly, we can consider the expectation of the product of sample sizes for two units as 
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The generalization of the Horvitz and Thompson theory allows the same unit to be 

selected more than once. Different sampling schemes can be developed to control this 
process in various ways. In sampling without replacement when all units have relative 

size measures less than 1/n, the values of 
i

n  are limited to zero and one. In this situation, 

)()(
ii

uPnE =  and )()( jiji uuPnnE = . 

 

The Horvitz-Thompson paper provided formulas for the variance of the estimated total 

and for an estimator of that variance. Most practitioners today use an alternative 
expression due to Yates and Grundy (1953). Both forms of the variance formulae require 

knowledge of the pairwise probabilities of selection and for unbiased estimation the 

pairwise probabilities must be positive. In terms of the generalized form of the HT 
estimator, the variance can be written in a form analogous to Yates and Grundy’s 

expression as 
2
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The determination of the pairwise probabilities or pairwise expectatons can be 

problematical even for samples of size 2. One solution used in an example by Horvitz and 
Thompson noted that it failed when any unit probabilities exceeded one-half.   

 

The unbiased variance estimator can be expressed as  
2
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Note that the term in curly brackets of the variance, )}()()({ jiji nnEnEnE − , is the 

negative covariance of two unit sample sizes. In without replacement sampling we expect 

the covariance to be negative (making this term positive), but this is not guaranteed by all 

selection schemes. Shortly after coming to RTI, I worked with Dan and with Dr. John 
Koop to select a sample of North Carolina counties and analyze the data. State personnel 

conducted an intensive investigation of the level of child abuse and neglect reported in 

those counties. The PPS sample design permitted us to draw inference about the problem 

for the whole state. The frame was stratified into 5 strata with 2 counties drawn from 
each one using a PPS without replacement scheme. The particular scheme and particular 

sample outcome produced a negative variance estimate for one of the strata. When 

combined with the estimates from the other strata, the overall variance for the state 
estimate was however positive. I decided to include the negative value in the calculation 

of the overall variance since I could do this and still get a positive estimate of variance. I 

recall discussing this problem with Dan and his concurring with the approach taken. 

 
3. Application to Hansen and Hurwitz’ With Replacement Design 

 
Consider now the Hansen-Hurwitz with replacement sampling scheme. The individual 

unit sample sizes follow the multinomial distribution in PPS sampling with replacement. 

From the multinomial distribution, we have that 

ii
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The Hansen-Hurwitz with replacement estimator is expressed as 
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The variance of the Hansen-Hurwitz with replacement sampling estimator can then be 

expressed by the generalized Yates-Grundy variance formula as 
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and the variance estimate simplifies even further to 
2

1 )1

1

2

1
)ˆ(ˆ












−









−
= ∑∑

= ≠ j

j

i

i
n

i

n

ij np

x

np

x

n
TV , 

Memorial – JSM 2009

221



or equivalently to  
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This demonstrates that the generalized theory for the Horvitz-Thompson estimator and its 

variance can be extended to with replacement sampling of Hansen and Hurwitz. 

 

4. Characterization of Stratification 
 

4.1 Explicit Stratification 

Explicit stratification partitions the sampling frame. Samples are drawn independently in 
each stratum. Independent selection implies a zero covariance among pairs of unit sample 

sizes when each member of the pair is in a different explicit stratum. In terms of the 

generalized variance expression shown in equation (3), this zero covariance across 
explicit strata means that a positive variance contribution can arise only from units 

selected from within the same stratum. Even without adding a subscript for stratum, the 

generalized variance formula recognizes this feature. This is also true when expressed in 

terms of the pairwise probabilities rather than in terms of sample size expectations. 
 

Table 1: Defining Explicit Strata (Solution 1) 

Unit Size Stratum Stratum Total 
1 5 1  

2 10 1  

3 20 1  
4 30 1 65 

5 20 2  

6 10 2  

7 5 2 35 
Total 100  100 

 

Table 2: Defining Explicit Strata (Solution 2) 
Unit Size Stratum Stratum Total 

1 5 1  

2 10 1  

3 20 1 35 
4 30 2  

5 20 2  

6 10 2  
7 5 2 65 

Total 100  100 

 
Deep stratification implies many strata with small sample sizes in each stratum, the 

extreme being one sampling unit selected per stratum. A frequent compromise which 

allows for unbiased estimation is to select 2 sampling units per stratum and permit 

unbiased variance estimation. Both one- and two-unit per stratum schemes suffer from a 
problem that might be called “hunking”.  As an example, consider the population shown 

in Tables 1 and 2 with 7 sampling units of unequal size which have been ordered on some 

meaningful variable such as average income. The population can be divided into two 
strata by setting the stratum boundary between units 4 and 5 (solution 1 in Table 1) or 
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between units 3 and 4 (solution 2 in Table 2). The best choices result is either a 65:35 

split or a 35:65 split. While PPS sampling can be defined within each stratum, the 
probabilities of selection can not be made close to PPS over all.  

 

4.2 Implicit Stratification. 

Implicit stratification resolves this problem by splitting unit 4 across two strata as shown 
in Table 3.  Kish (1965, p. 113) refers to this type of solution as zone sampling.  

 

Table : Defining Implicit Strata  
Unit Size Stratum Stratum Total 

1 5 1  

2 10 1  
3 20 1  

4 (part A) 15 1 50 

4 (part B) 15 2  

5 20 2  
6 10 2  

7 5 2 50 

Total 100  100 
 

Many PPS designs can then be applied independently within each zone. However, unit 4 

can be selected in either one of two zones or under some designs in both zones. PPS 
systematic sample designs can be viewed as examples of zone sampling. A general 

strategy followed in many large surveys is to apply explicit strata to define a small 

number of major strata and then to use a combination of ordering and implicit 

stratification within the main explicit strata. 
 

5. Minimum Replacement Sampling 
 

The basic Horvitz-Thompson estimation theory is defined in terms of specified limits on 

unit and pairwise probabilities with unit samples sizes limited to 0 and 1. 

1)(0 <<
i

uP  and 1)(0 << jiuuP . 

 
In terms of the generalized notation, Horvtiz-Thompson theory requires not only that 

1)(0 <<
i

nE  and 1)(0 << jinnE , 

but also that each unit sample size 
i

n  and each product of samples sizes, jinn , are both 

limit to be either 0 or 1. 

}1,0{∈
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Minimum replacement sampling (Chromy 1981) allows for larger unit sample size 

expectations, but limits replacement to its minimum, the achieved sample sizes may be 
greater than 1 but are allowed to vary by no more than 1.  

    }1)(,)({ +∈
iii
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As a special case when 1)( <
i

nE , PPS without replacement designs result.  

 

Another result of the PMR limitation, is that  
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Both PPS systematic sampling (Madow 1949) and a sequential PPS sample selection 

scheme (Chromy 1979, 1981) have the PMR properties. SAS Procedure 
SURVEYSELECT implements both of these methods in a PMR mode, but does not 

compute pairwise probabilities or expectations (Sas Institute,Inc. 2004). PMR designs 

also negate the need to first define self representing sampling units and to treat them as 

separate strata (e.g., in multi-stage design applications). 
 

5.1 PPS Systematic Sampling 

Kish (1965, pp.234-7) gives a nice description of PPS systematic sampling as well as 
some other designs applied in terms of sampling from zones. In equal probability 

systematic sampling, the possible samples can be viewed as clearly defined clusters 

where only one cluster of size n is selected
1
. Under the equal probability scenario of 

systematic sampling, knE
i

/1)( = for all i and knnE ji /1)( = for ui  and uj in the same 

systematic cluster defined by the sampling interval k. 0)( =jinnE  otherwise. The 

pairwise product expectations follow a cyclic pattern.   
 

For PPS systematic sampling, the exact solutions depend on the size measures and their 

coverage of zones.  If the sampling rate is not very high, neighbouring and most nearby 

pairs will have zero product expectation. Variances are usually estimated under the 
assumption of effective implicit stratification.  Either a successive difference formula or 

neighbor pairs with implicit strata of size 2 sample units may be used.  Usually, the with 

replacement variance formula are used.  That is the formula based on the Hansen Hurwitz 
with replacement sampling.  An approximate finite population factor may be incorporated 

if the sampling rate is not quite small.   

 

5.2 PPS Sequential Sampling 
PPS sequential sampling utilizes a serpentine scheme for implicit stratification based on 

one or more categorical variables and one continuous variable (Williams and Chromy 

1980). Viewing the frame as being circular and picking a random starting point is a key 
to obtaining positive pairwise probabilities.  The sequential sampling algorithm achieves 

a type of zone sampling with PMR. The method is based on conditional probabilities 

which are functions of the cumulative size measure and the achieved sample size as the 
ordered frame elements are processed sequentially. 

 

6. An Example 

 
This example explores values of the negative covariance term which acts as a coefficient 

or weight for the squared deviations in the variance expression (equation 3).  

)}()()({ jijiij nnEnEnEW −=  . 

An artificial population with 50 units and variable size measures was generated by draws 

the log normal distribution with normal distribution parameters 5 and 1.  All expected 

unit sample sizes were less than 1 when specifying a sample of size 10.   

 

                                                
1 The simplest case is used for discussion purposes where the number of elements in the sampling 

frame is an exact multiple, k, of the sample size, n. When this condition does not hold, use of a 

noninteger interval (same as the general approach for PPS systematic sampling) can be utilized or 

an integer solution may be used with allowance for the selected sample size to vary by at most 1 

element.    

Memorial – JSM 2009

224



Pairwise expectations and covariances were derived over all possible starts and averaged 

assuming all start points were equally probable.  Note that if any of the size measures had 
been greater than 1, reducing them to their fractional portions would result in the same 

covariances since variances and covariances are location invariant.  

 

  
 

 

 
 

 

 
 

 

 

Figure 1. Negative Covariances with                Figure 2. Negative Covariances with 
Unit 1: PPS Sequential Sampling                      Unit 11: PPS Sequential Sampling 

 

 
 

 

 
 

 

 

 
 

 

Figure 3. Negative Covariances with         Figure 4. Negative Covariances with 

Unit 28: PPS Sequential Sampling               Unit 50: PPS Sequential Sampling 

 

Figures 1 through 4 show the computed values of variance weights (negative 

covariances between units) for pairs matched with units 1, 11, 28, and 50 

respectively.  These figures illustrate that when the units of a pair are close 

together on the ordered list, their variance weight will be nonzero and, sometimes, 

quite variable. When the units of a pair are farther apart, their variance weights 

approach zero. This phenomenon supports the use of a successive difference 

variance estimator (or the use of pseudo strata of two or three sampling units) as a 

reasonable approximation to the unbiased variance estimator.  If the approximate 

estimator can be based on more stable weights, it can potentially provide better 

estimates of the variance with reasonable bias. Typically used approximate 

estimators utilize the with replacement formula with an additional term for finite 

population correction. The bias and variance issues associated with approximate 

variance estimators remain to be explored possibly with additional simulation.   

 

The appropriate variance weights for a PPS systematic sample can also be 

developed for this example and are shown in Figure 5. The covariances cycle 

between positive and negative values.  Most positive values are associated with 

units where the pairwise probabilities are zero. For this particular example, 22 of 
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the pairwise probabilities with unit 1 were zero; the Horvtiz-Thompson variance 

still applies, but no unbiased estimator is available based on sample data from 

PPS systematic samples.  
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Figure 5.  Negative Covariances with Unit 1: PPS Systematic Sampling 

 

In summary this example shows that the generalized Horvitz-Thompson theory 

can provide variance formulations for both PPS systematic and PPS sequential 

designs.  Unbiased variance estimation is possible with the PPS sequential design, 

but not with the PPS systematic design.  Even with the PPS sequential design, the 

variance estimate can be expected to be quite unstable because of the variation in 

the variance weights.  Plots of the variance weights support a near neighbour 

variance approximation for PPS sequential based on the actual weights damping 

off as units get farther apart on the ordered frame.  The same phenomenon does 

not apply to PPS systematic samples. 

 

7. Conclusions 

 

The Horvitz-Thompson theory of estimation for PPS sampling can generalized to 

PPS with replacement and PPS minimum replacement designs.  Probability 

minimum replacement designs allow use of large explicit strata with implicit 

stratification within these large strata based on a closed ordering.  Both PPS 

sequential and PPS systematic sampling fit the probability minimum replacement 

definition.  Many of the simplifying assumptions used by practitioners to obtain 

more stable, but biased, estimates of variance appear to be justifiable for PPS 

sequential sampling.  This paper has been limited to the behaviour of the variance 

weights.  More research is needed to examine the behaviour of variance 

estimators. 
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