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                                                  Abstract 
 
 
Small area estimation has been extensively studied under linear mixed models. In 
particular, empirical best linear unbiased prediction (EBLUP) estimators of small area 
means and associated estimators of mean squared prediction error (MSPE) that are nearly 
unbiased have been developed. However, EBLUP estimators can be sensitive to outliers. 
Sinha and Rao (2009) developed a robust EBLUP method and demonstrated its 
advantages over the EBLUP under a unit level linear mixed model in the presence of 
outliers in the random small area effects and/or unit level errors. A bootstrap method of 
estimating MSPE of the robust EBLUP estimator was also proposed. In this paper, we 
relax the assumption of linear regression for the fixed part of the model and replace it by 
a weaker assumption of a penalized spline regression and develop robust EBLUP 
estimators. Bootstrap estimators of MSPE are also developed. Results of a limited 
simulation study are summarized.  
 
Key words:  Bootstrap, mean squared prediction error, outliers, random effects, small 
area mean, unit level model 
 
 
 
                                                    1. Introduction 
 
Area level and unit level linear mixed models have been extensively used in small area 
estimation. In this paper, we focus on unit level mixed models based on a single, 
continuous auxiliary variable, x , related to the variable of interest, y . A basic unit level 
linear mixed model, called nested error linear regression model (Battese et al 1988), is 
given by 
 

iijiijij Njmievxy ,...,1;,...,1,10 ==+++= ββ                (1) 
 
where m is the number of small areas, iN is the number of population units in area i , 

),0(~ 2
viidi Nv σ denote random small area effects that account for variation not explained 

by the auxiliary variables ijx , and iv is independent of the unit errors ),0(~ 2
eiidij Ne σ . A 

sample of )1(≥in units is drawn from each area i , and sampling is assumed to be 
ignorable in the sense that the population model (1) also holds for the sample. Here our 
interest is in estimating the small area mean iY of the iN population values ijy . If the 
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sampling fraction ii Nn / is negligible, then iii XY 10 ββμ +=≈ where iX is the known 
population mean of the ijx for area i . An empirical best (or empirical Bayes) estimator, 
abbreviated EB, of iμ is obtained as a weighted sum of a “sample regression” estimator 

)(ˆ
1 iii xXy −+ β and a synthetic estimator iX10

ˆˆ ββ + , where ),( ii xy are the sample means 

for area i and )ˆ,ˆ( 10 ′= βββ are consistent estimators of the regression parameters in (1). 
The optimal weights depend on the variance components ),( 22 ′= ev σσθ which are 
replaced by consistent estimators, for example maximum likelihood (ML) or restricted 
ML (REML) estimators. The EB estimator is also an empirical best linear unbiased 
prediction (EBLUP) estimator without assuming normality. Rao (2003, chapter 7) gives a 
detailed account of EB and EBLUP estimation, associated mean squared prediction error 
(MSPE) approximation and a nearly unbiased estimator of MSPE.                                                     
 
The EBLUP estimator can be sensitive to outliers in iv and ije . Sinha and Rao (2009) 
studied robust EBLUP (REBLUP) estimation of iμ , using some general results of 
Fellner(1986) who studied robust estimation of random effects in linear mixed models. 
Fellner obtained robust “mixed model” equations to estimate β  and ),...,( 1 ′= mvvv for 
given θ , using Huber’s −ψ function and proposed a two-step iterative procedure for 
getting a robust estimator of θ  and in turn robust estimators of β  and v . Sinha and Rao 
(2009) used an alternative method of estimating β and θ  by solving robust score 
equations for β and θ  and the resulting robust ML (RML) estimators are then substituted 
in the mixed model equation for v  to get REBLUP of v . Their simulation results 
suggested that the proposed method of estimating θ can be significantly more efficient 
than Fellner’s method, but the efficiency gains were small when estimating the small area 
mean iμ . 
 
The assumption of linear regression in (1) may be restrictive in practice. To get around 
this difficulty, ijx10 ββ + in (1) is replaced by an unknown smooth function )( ijxf which 
is assumed to be approximated sufficiently well by a penalized spline (P-spline) function 
(Rupert et al 2003, Opsomer et al 2008 and Ugarte et al 2009). Using a mixed model 
representation of the P-spline in (1), an EBLUP estimator of small area mean iμ may be 
obtained. The estimation of MSPE of the EBLUP estimator presents some difficulties 
because the mixed model does not have a block diagonal covariance structure, unlike (1). 
Opsomer et al (2008) studied this problem and also proposed a bootstrap estimator of 
MSPE. Rubin-Bleuer et al (2009) studied P-spline area level models and obtained an 
EBLUP estimator of small area mean and associated bootstrap estimator of MSPE.  
 
The EBLUP estimator under the P-spline mixed model can be sensitive to outliers in 

iv and ije , as in the case of EBLUP under the nested error linear regression model (1). In 
this paper, we propose to obtain REBLUP estimator of small area mean iμ under the P-
spline version of (1) using Fellner’s (1986) general results on robust mixed model 
equations and his two step iterative method; the approach of Sinha and Rao (2009) for 
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robust estimation of β and θ  runs into difficulty in the context of P-spline mixed models.   
We also propose a bootstrap estimator of MSPE of the REBLUP estimator. Results of a 
simulation study are summarized.  
 
   
 
                                            2.  P-spline Mixed Model 
 
 
We assume that the true mean specification )( ijxf is well approximated by a P-spline 
approximation ),( Kxsp ij based on the mixed model formulation. The resulting P-spline 
mixed model for the sample is given by  
 

iijiijij njmievKxspy ,...,1;,...,1,),( ==++=       (2) 
 
where  
 

+=
−++= ∑ )(),(

110 kij
K

k kijij qxuxKxsp ββ           (3) 
 
with the kq denoting the K knots kqq ,...,1 , ),0max()( qxqx −=− + and ),0(~ 2

uiidk Nu σ . 
Regarding the choice of K and kq , we have followed Rupert et al (2003) in our 
simulation study:  (1) One needs “enough” knots to ensure sufficient flexibility to fit the 
data, but after that additional knots do not change the fit much. (2) Place the knots at the 
sample quantiles of the unique −x values which gives equal or nearly equal number of 
−x values between knots. Note that ij ijii vxfN += ∑− )(1μ which is approximated by 

.),(1
ij ijiiP vKxspN += ∑−μ  In the simulation study, we generated ijx XNiid ≡)1,1(~ in 

which case we have  
                                                                                           

ii vXfE += )}({μ               (4)  
 
and    
                                                                           

ik
K

k kiP vqXEuXE +−++= +=∑ }){()(
110 ββμ              (5) 

 
We express the P-spline mixed model (2) in matrix form as  
 

eZvWuXy +++= β                          (6) 
 
where ),0(~),,0(~ 22

mvKu INvINu σσ and ),0(~ 2
ne INe σ with ∑= i inn . Here u is the 

−K vector of the spline effects ku , v  is the −m vector of the small area random effects 

Section on Survey Research Methods – JSM 2009

147



iv and e is the −n vector of the unit errors ije . The matrix form of (1) is given by (6) 
without the termWu .Note that (6) does not have a block diagonal structure, unlike the 
matrix version of (1), because of the additional termWu . 
 
                                            3. P-spline EBLUP Estimators 
 
We first consider EBLUP estimation of the random effects in the P-spline mixed model 
(6), following Fellner (1986), and then modify the equations to get robust EBLUP 
estimators in the presence of outliers. For fixed ),,( 222 ′= evu σσσθ , the BLUP estimators 

== u~),(~~ θββ )(~ θu and )(~~ θvv = of u,β and v are obtained by solving the following 
“mixed model” equations of Henderson (1963): 
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Now replacing θ  by the REML estimator θ̂  we get the EBLUP estimators 

)ˆ(~ˆ),ˆ(~ˆ θθββ uu == and )ˆ(~ˆ θvv = . Fellner (1986), following Harville (1977), obtained 
REML equations which are solved iteratively in conjunction with (7) to get the REML 
estimator of θ . Fellner’s REML equations for the P-spline mixed model (6) may be 
written as 
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where ikijk kijijij vqxuxye ~)(~~~~

10 −−−−−= +∑ββ , 2
111 /)( uTtrt σ=  and 

2
222 /)( vTtrt σ= with 11T and 22T denoting the diagonal blocks of a partitioned matrix 

T which is the inverse of the partitioned matrix with diagonal blocks given by 
Kue IWW 22 −− +′ σσ and mve IZZ 22 −− +′ σσ and off-diagonals given by ZWe ′−2σ and its 

transpose.  
 
An EBLUP estimator, iPμ̂ , of the P-spline approximation to area i mean iμ is then 

obtained from (5) by replacing ku,, 10 ββ and iv by the estimators kû,ˆ,ˆ
10 ββ and iv̂ : 

 
 

kk
K

k kiP vqXEuXE ˆ)(ˆ)(ˆˆˆ
110 +−++= +=∑ββμ               (9) 
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 The mean squared prediction error (MSPE) of the P-spline EBLUP estimator iPμ̂  is 
given by 2)ˆ()ˆ( iiPiP EMSPE μμμ −= where the expectation is with respect to the true 
underlying model.  
 
 
                                             
                                   4. Robust P-spline EBLUP Estimators 
 
We now obtain robust P-spline EBLUP estimators, using Huber’s (1973) robust M-
estimation approach with −ψ function given by |)|/,1min()( ubuub =ψ , where 0>b  is 
a tuning constant, commonly chosen as 345.1=b . Robust estimators of u,β and v for 
fixed θ , denoted )(~~),(~~ θθββ MMMM uu == and )(~~ θMvv = , are obtained by solving 
robust mixed model equations. The latter equations are obtained from (7) by replacing 

ZvWuXy −−− β by )}({ 1 ZvWuXyee −−−− βσψσ , u by )( 1uuu
−σψσ and v by 

)( 1vvv
−σψσ . 

 
Robust REML equations for estimating the variance components in the P-spline mixed 
model are obtained from Fellner’s REML equations (8) by making the following 
changes: Replace ku~ by )~( 1

kMuu u−σψσ , iv~ by )~( 1
iMvv v−σψσ and ije~ by )~( 1

ijMee e−σψσ , 
where  
 

iMkijk kMijMMijijMijM vqxuxyee ~)(~~~)(~~
10 −−−−−== +∑ββθ     

 
Now solving the modified equations corresponding to (7) and (8) iteratively as desribed 
in Section 3, we get a robust estimator of the variance component vector θ  denoted 
by )ˆ,ˆ,ˆ(ˆ 222 ′= eMvMuMM σσσθ and robust EBLUP estimators of u,β and v as 

)ˆ(~ˆ),ˆ(~ˆ
MMMMMM uu θθββ == and )ˆ(~ˆ MMM vv θ= . Now substituting the robust EBLUP 

estimators for u,β and v  in the P-spline approximation iPμ  given by (5), we get the 
robust EBLUP (REBLUP) estimator of iPμ as 
 

iMk
K

k kMMMiPM vqXEuXE ˆ}){(ˆ)(ˆˆˆ
110 +−++= +=∑ββμ           (10) 

 
 
 
                                      5. Bootstrap Estimation of MSPE 
 
 
It seems difficult to get an analytical formula for an MSPE estimator that is nearly 
unbiased. Therefore, in  this paper we focus on bootstrap estimation of MSPE of the 
robust P-spline EBLUP estimator .ˆ iPMμ  The basic idea is to mimic the MSPE by using 
simulated samples generated from an estimated model, following Sinha and Rao (2009) 
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who considered REBLUP estimation and associated bootstrap MSPE estimation for the 
nested error linear regression model.  
 
The steps in implementing bootstrap estimation are as follows:  
 
1. Generate independently )ˆ,0(~),ˆ,0(~ 2*2*

vMiidiuMiidk NvNu σσ  and )ˆ,0(~ 2*
eMiidij Ne σ . 

Let **
1

*
10

* )()(ˆˆ
ijik

K

k kMMij evqXEuXEy ++−++= +=∑ββ  , minj i ,...,1;,...,1 == and 

,)()(ˆˆ *
1

*
10

*
ik

K

k kMMi vqXEuXE +−++= +=∑ββμ  mi ,...,1= . 
 
2. Calculate robust P-spline EBLUP *ˆ iMPμ from the bootstrap data 

},...,1;,...,1:),{( * minjxy iijij == . 
 
3. Theoretical bootstrap estimator of MSPE of *ˆ iPMμ is then given by  
 

2**
* )ˆ()ˆ( iiPMiPMB Emspe μμμ −=             (11) 

 
where *E denotes bootstrap expectation.  
 
4. In practice, we generate a large number, B , of bootstrap samples ),...,1( Bb = and 
calculate )*(ˆ b

iPMμ  and )*(b
iμ from each sample b . We then approximate (11) by  

 
2)*(

1
)*(1

)( )ˆ()ˆ( b
i

B

b
b

iPMiPMaB Bmspe μμμ −= ∑ =
− .          (12) 

 
In the simulation study (Section 6) we generated a large number of samples 

Rr ,...,1= from the assumed true model with specified parameters and from each sample 
we generated B bootstrap samples and calculated (12). The values of iPMμ̂ and iμ for 

sample r  are denoted by )(ˆ r
iPMμ and )(

1
)(

10
)( }){()( r

ik
K

k
r

k
r

i vqXEuxE +−++= +=∑ββμ  

where )(r
ku and )(r

iv are the values of ku and iv for the simulation run r generated from 
specified distributions, for example contaminated normal distributions, see Section 6. The 
MSPE of iPMμ̂  is approximated by  
 

2)(
1

)(1 )ˆ()ˆ( r
i

R

r
r

iPMiPM RMSPE μμμ −≈ ∑ =
−                  (13) 

 
Similarly, the bootstrap MSPE estimator (12) is calculated for each simulation run r  and 
then averaged over r to get an approximation to the expectation of the bootstrap MSPE 
estimator. The simulated relative bias (RB) of the MSPE estimator is then calculated 
from the latter quantity and the approximation (13) using the formula  
 

)./(})({ )( MSPEMSPEmspeERB aB −=                   (14) 
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                                                6. Simulation Study 
 
In this section we report some simulation results on the performance of the proposed 
robust P-spline EBLUP estimator and the associated bootstrap estimator of MSPE. The 
following functions )(xf  were used in generating the samples:                                   
 
Model 1: xxf += 1)( (linear),                                                                                      
Model 2: 21)( xxxf ++=  (quadratic) and                                                                                 
Model 3: })1(4exp{)1(21)( 2−−+−+= xxxf  (bump function, Breidt et al 2005).           
 
We assumed that )1,1(~ NX so that we have )}({ XfE equal to 2  for model 1, 4 for 
model 2 and 3

11+  for model 3 respectively. We generated }40,...,1;4,...,1:{ == ijxij from 
)1,1(N and held them fixed for generating the sample responses ijy  from the assumed true 

model ijiijij evxfy ++= )( , where the random effects iv and the unit errors ije  are drawn 
either from contaminated normal distributions or from t  distributions with 3  degrees of 
freedom to reflect outliers either in iv or in ije  or in both. For the contaminated 
distributions we assumed that  
 

),0(),0()1(~ 2
11

2
1 vviidi NNv σγσγ +− , ),0(),0()1(~ 2

12
2

2 eeindij NNe σγσγ +−                       
 
where 122 == ev σσ and 252

1
2
1 == ev σσ . Four combinations of distributions for v and e , 

denoted ),0(),0,(),0,0( ev and ),( ev , were studied, where )0,0( indicates no contamination 
( )021 == γγ , )0,(v indicates contamination in v  only )0,1.0( 21 == γγ , ),0( e indicates 
contamination in e only )1.0,0( 21 == γγ and ),( ev indicates contamination in both v  and 
e ( )1.0,1.0 21 == γγ .  
 
For specified distributions of iv and ije we generated 500=R samples 

}40,...,1;4,...,1:,{ )()( == ijev r
ij

r
i and then the associated responses 

}40,...,1;4,...,1;{ )( == ijy r
ij  from the true model ),...,1( Rr = . Then the P-spline EBLUP 

and robust EBLUP estimators iPμ̂ and iPMμ̂  were computed from each simulated sample 
}40,...,1;4,..,1:),{( )( == ijxy ij

r
ij for specified number of knots ( 30,20,0=q ). The 

simulated MSPE of the estimators were then computed using the generated estimates 
)(ˆ r

iPμ and )(ˆ r
iPMμ , and the small area means )(r

iμ )500,...,1( == Rr , using (13) for iPMμ̂  and a 
similar expression for iPμ̂ . It may be noted that 0=q corresponds to the standard nested 
error linear regression model (1).  
 
We summarize the simulation results based on average MSPE over the areas. Detailed 
results will be reported in a separate paper after implementing further simulations based 
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on a larger number of simulation runs and other scenarios. Some broad results from the 
simulation study are the following: (1) MSPE for the P-spline estimators is not affected 
by the choice of q , when we compared the values for 20=q to the corresponding values 
for 30=q . This result suggests that 20=q is a good choice. (2) In the case of 
contamination in e (model )),0( e  or in both v and e (model )),( ev robust EBLUP leads to 
significant reduction of MSPE relative to EBLUP. For example, for 20=q and quadratic 
true model, average MSPE (%) for robust EBLUP is 0.32  compared to 3.49  for EBLUP 
under ( e,0 ) and 2.38  compared to 1.68 under ),( ev . On the other hand, EBLUP is quite 
robust across the three models under )0,(v . Sinha and Rao (2009) observed a similar 
result for the linear case (model1) and 0=q . (3) In the linear case (model1 ), the 
increase in MSPE of the P-spline EBLUP over the EBLUP is minimal across the four 
contamination combinations. On the other hand, EBLUP (with 0=q ) leads to large 
increase in average MSPE (%) relative to P-spline EBLUP when the true model is 
quadratic (model 2 ). For example, average MSPE (%) of EBLUP is 45.7 compared to 
21.2 for the P-spline EBLUP with 20=q  in the case of ),0,0( and similarly for the robust 
EBLUP versus robust P-spline EBLUP and the three contamination combinations. In the 
case of bump function (model 3), however, the increase in MSPE of the EBLUP 
estimator relative to the P-spline EBLUP estimator is small (similarly for the robust 
EBLUP versus robust P-spline EBLUP). This is perhaps due to the fact that the bump 
function is closer to linearity. We need to confirm this result by further study. (4) Results 
for the t distribution case are similar to the above results for the contaminated 
distributions.  
 
We also computed the bootstrap estimates of MSPE for each simulation run using the 
approximation (12) with  200=B  and then used (14) to obtain an approximation to the 
average absolute relative bias of the bootstrap MSPE estimator for the contamination 
cases. Our results suggest that the bootstrap MSPE estimator performs quite well in terms 
of average absolute relative bias: less than 10% in most cases. But further study is needed 
to confirm these results.  
 
All in all, our limited simulation study indicates that the proposed robust P-spline EBLUP 
estimator with “enough” knots (say )20=q performs well in terms of MSPE when the 
true mean function is not linear. Also, the proposed bootstrap MSPE estimator seems to 
track the MSPE quite well.  
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