
Multiple imputation in multiple classification and multiple-membership structures

Recai M. Yucel1, Hong Ding2, Ali Kerem Uludag2 and Donald Tomaskovic-Devey3

Department of Epidemiology and Biostatistics, University at Albany, SUNY1

Division of Biostatistics and Epidemiology, University of Massachusetts, Amherst2

Department of Sociology, University of Massachusetts, Amherst3

Abstract

In data systems with complexities due to nested/non-
nested clustering and multiple-membership, missing val-
ues present an added analytic challenge to the statistical
analyses. We develop model-based multiple imputation
(MI) inference which has been a popular method in the
analyses of missing data. Adaptations of multivariate
generalizations of the mixed-effects models are used as
imputation model. These models are modified to handle
multivariate responses and observational units with possi-
bly overlapping membership of clusters that are not nec-
essarily hierarchical. Markov Chain Monte Carlo tech-
niques are used to simulate and draw imputations from
underlying joint posterior predictive distributions. Brief
discussion on handling mixture of variable types and cali-
bration techniques for post-imputation checks will be pro-
vided. Relevant concepts on both multiple-membership
and non-nested clustering are demonstrated longitudinal
administrative data with panel missingness as well as ar-
bitrary item nonresponse.

KEY WORDS: Multiple imputation, Bayesian inference,
missing data, multiple membership, mixed-effects

1. Introduction

Principled missing-data techniques especially those using
the multiple-imputation (MI) paradigm (Rubin, 1976)
have developed significantly since 1980s. Most of these
techniques rely on relatively straightforward model as-
sumptions such as independent and identically dis-
tributed units or clustered data. These methods are
available to practitioners in software packages such as
SAS PROC MI (SAS Institute 2001) (for cross-sectional
data) and R package pan (Schafer and Yucel 2002), Ml-
wiN mimacro (Carpenter and Kenward 2008) (for mul-
tilevel data). Building on these well-established meth-
ods, we develop model-based MI techniques for analyz-
ing clustered incomplete data with multiple membership
and non-nestedness. Our strategy jointly models vari-
ables subject to missing values in such settings leading to
multivariate extension of a multiple membership and mul-
tiple classification model as first suggested by Browne,
Goldstein, and Rasbash (2001). Below we describe the
example that motivated this research and we believe it is
useful to illustrate multiple membership as well as mul-
tiple classification problem.

1.1 Motivating Example

Since 1966 the U.S. Equal Employment Opportunity
Commission (EEOC) has been collecting yearly work-
place surveys describing outcomes on equal employment
opportunity (EEO) . Private sector firms with more than
50 employees (25 if federal contractors), are required to
submit yearly reports on the race/ethnic and sex com-
position of their work force in each establishment with
25 or more employees, about 696691 across US. These re-
ports contain establishment employment counts of sex by
five race/ethnic groups (White, Black, Hispanic, Asian/
Pacific Islander, American Indian/ Alaskan Native) dis-
tributed across nine occupational categories (officials and
managers, professionals, technicians, sales workers, office
and clerical workers, craft workers, operatives, laborers,
and service workers). These reports also include infor-
mation on the establishments parent company, industry,
and geographic location. Each record states whether or
not the parent company is a federal contractor.

Unit of analysis in the substantive analyses is defined
to be an establishment. Each establishment has repeated
observations over time. At any one point in time estab-
lishments are nested within firms. Firms that are fed-
eral contractors are required to practice affirmative ac-
tion. We observe federal contractor status as a firm char-
acteristic. Establishments are also nested within indus-
tries. Industries provide normative models of appropriate
workplace organization. Industries with more diversity
in group representation may encourage managerial inte-
gration at the workplace level. We observe the propor-
tion of status group representation in total antd man-
agerial industry employment. Establishments are also
nested within spatial contexts. The local labor market
from which labor is drawn influences the ability to hire
from various status groups. For each outcome variable
we observe that groups proportional representation in
the local labor market. A second spatial context is the
state an establishment is found within. States represent
a political context that may influence workplace behav-
ior. Prior research suggests that as the percent minority
in states increase discrimination in various institutions
(education, law, voting, as well as employment) increase
as well. Other research suggests that unions were strong
supporters of civil rights law. We observe percent black,
Hispanic, and unionized at the state level to model their
influence on state as political context. Figure 1 depicts
this complicated structure of nesting.

Establishments can also shift industries and firms over
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Figure 1: Non-nested depiction of EEO data

time. Note that shift is permanent, making this multiple
membership problem different from the ones seen in ed-
ucational or genetic studies. For example, Good Foods
Establishment in Chicago is under “Good Foods” firm
several years within grocery and retails industry, then it
gets bought out by “Better Foods” which now is under
retail industry. The multiple membership problem is also
depicted in Figure 2.

Firm

Geography
Industry

Focal Establishment

Observations:

1966, 1967,…2007

Figure 2: Depiction of multiple membership

Substantively we explore confidential private sector
workplace panel data collected annually by the U.S.
Equal Employment Opportunity Commission (EEOC)
since 1966. Some of the substantive goals of this
study have been handicapped by incompleteness of the
database, due to either lost records from early years
(1967–1970, 1973 and 1975) of data collection or sim-
ple item nonresponse. This produced two methodological
problem. First problem results from missing panels rep-
resenting the period of most rapid change in sex and race

employment relations, analyses that ignore them would
potentially bias the analyses. In addition, these surveys
produce data on the multiple membership context of re-
sponding establishments (owning firm, industry, state) as
well as the typical panel contexts of time and repeated
observations. These two problems motivated our basic
goal of developing joint imputation models allowing for
multiple membership and multiple classification (3MC)
models.

1.2 Example

Consider a model for organizational change in the sex and
race composition of managerial occupations as a function
of their firm, industrial, and geographic contexts, with an
emphasis both on estimating the variance components
associated with multiple membership and the influence
of observed variables within each membership on shifts
in managerial composition. For the sake of discussion,
let’s focus on a simplified version of this model that only
reflects the structure of the data. A random-intercept-
only model on the response variable yi is given as follows
(Browne, Goldstein, Rasbash, 2002),

yi =

pf
∑

l=1

xilβl + b
(2)
Est(i) + b

(3)
Geog(i) +

∑

c∈Ind(i)

w
(4)
i,c b

(4)
c +

∑

d∈Firm(i)

w
(5)
i,d b

(5)
d + ǫi, (1)

where yi denotes outcome of interest for the observation
level (establishment/year) i; Est(i), Geog(i), Ind(i) and
Firm(i) are ith observation’s establishment (year), geog-
raphy, firm and industry, respectively. β represents ef-
fects common to all establishments and establishment-
specific effects due to nesting/clustering factors are de-
noted by b(2), b(3), b(4), b(5), which are random intercepts
for classification 2 (establishment), classification 3 (ge-
ography), classification 4 (Firm) and classification 5 (In-
dustry). Weights due to multiple membership are con-

tained in w
(4)
i,c , indicating the weight given to Classi-

fication 4 for establishment/year i. Finally, distribu-
tional specifications on error terms and random effects

are: ǫi ∼ Nni
(0, σ2Vi), b

(2)
Est(i) ∼ N(0, ψ(2)), b

(3)
Geog(i) ∼

N(0, ψ(3)), b
(4)
Ind(i) ∼ N(0, ψ(4)), b

(5)
Firm(i) ∼ N(0, ψ(5)).

How to best handle missing values in the response or
covariates remains to be a challenging issue for most re-
searchers. As most statistical analyses and estimation
procedures are not designed to handle missing values,
especially at this complexity level, it may be tempting
to choose unprincipled methods such as case deletion or
ad-hoc methods of single imputation. Biased estimates,
understated variances or lower coverage rates are some
of the major problems that are generally associated with
these “unprincipled” methods. Comprehensive discussion
on such adverse effects is given by Rubin (1987), Little
and Rubin (2002) and a review of modern missing-data
techniques is given by Schafer and Graham (2002).
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1.3 Previous research

Extensive literature exists on model-fitting techniques
and inferences for multilevel data sets, some of the sources
include Diggle, Liang, and Zeger (1994), Vonesh and
Chinchilli (1997), Pinheiro and Bates (2000), Verbeke
and Molenberghs (2000), McCulloch and Searle (2001),
Demidenko (2004), and Fitzmaurice, Laird, and Ware
(2004). Together, these provide a clear and compre-
hensive discussion of state-of-the-art methods for esti-
mation, testing, and prediction in the context of lin-
ear, generalized linear, and nonlinear mixed-effects mod-
eling. Browne, Goldstein, and Rasbash (2001) provides
Bayesian model-fitting techniques using MCMC simula-
tion techniques for applications with multiple member-
ship and cross-classification.

Since the landmark paper on MI and EM (Rubin 1978,
Dempster, Laird, and Rubin 1977), literature on missing
data methods have become quite extensive. Applications
of these well-known missing-data techniques in multilevel
settings with arbitrary patterns of missing values, how-
ever, have not been equally well-developed. Several re-
searchers showed that, when the missingness is only on
the response variable, under certain conditions (such as
missing at random as defined below), the inferences un-
der mixed-effects models are valid. Some of the limited
work on MI in multilevel applications include Liu, Taylor,
and Belin 2000, Schafer and Yucel 2002, (Carpenter and
Kenward 2008). This work primarily deals multilevel ap-
plications where the observations may appear in multiple
clustering factors and some of the clustering factors are
not necessarily in a “hiearchical” nature. In a modelling
sense, we modify the model suggested by Browne, Gold-
stein, and Rasbash (2001) to allow multiple responses
and use similar Bayesian arguments within the MCMC
simulation framework.

2. Models

Any missing data method assumes certain structures for
the mechanisms generating either missing-data (missing-
ness mechanism) or data intended to be collected. In
the following parts, we briefly summarize the commonly
assumed structures on missingness mechanism, and our
model used to base multiple imputations.

2.1 Models for missingness mechanism

Explicit or implicit assumptions are made about the
missing-data mechanisms in all missing-data methods.
To set the notation for the discussion of missingness
mechanisms, let R denote the set of missing-value indi-
cators; note that R has the same dimension as Y , and it
is always observed. Each element of R takes the value of
0 or 1 depending on whether the corresponding element
in Y is missing or observed, respectively. Similar to Y ,
R can be seen as a random variable; and the conditional
distribution of R given Y depends on a set of parameters,

say γ.

Most tools available to the practitioners of missing
data methods (e.g. SAS PROC MIXED (Littell, Miliken,
Stroup, and Russell 1996), R packages norm (Schafer
2000) or Splus library missing and pan (Schafer and
Yucel 2002) ) assume missing at random (MAR) as
the missingness mechanism. This assumption implies
that the missingness probability may depend on the ob-
served data but not on the missing data over the con-
ditional distribution of R given Yobs . More formally,
P (R | Yobs , Ymis , γ) = P (R | Yobs , γ). Some misconcep-
tions among practitioners exist due to the name MAR.
The missing values do not occur at random under MAR;
when they do, the mechanism is, in fact, missing com-
pletely at random (MCAR). Under MCAR, the missing-
ness probabilities are independent from both Yobs and
Ymis : P (R | Yobs , Ymis , γ) = P (R | γ). When the
missingness probabilities depend on Ymis , the missing-
ness mechanism is called missing not at random (MNAR).
Under MNAR, one must posit a model for the complete
data as well as forR. These models are usually very sensi-
tive to the model assumptions (see detailed discussion by
Schafer and Graham (2002) for more information). An-
other important concept is the “ignorability” of the miss-
ingness mechanism, and it is often seen as an implied con-
dition once MAR is assumed. Specifically, ignorability oc-
curs when the mechanism is MAR and the parameters γ
and θ are distinct: f(Yobs , R | θ, γ) = f(Yobs | θ)f(R | γ)
(see Little and Rubin (2002) and Schafer (1997) for more
details).

2.2 Imputation models

The theory of MI does not require any particular assump-
tion on missingness, it can be performed under any type
of missingness-mechanism. However, the structure from
which multiple imputations are drawn needs to be speci-
fied so that missing values are replaced by draws from the
posterior predictive distribution of missing data (i.e. the
conditional distribution of the missing data, given the ob-
served data and the unknown parameters). This typically
involves positing a parametric model for the data and us-
ing it to derive this conditional distribution. In multilevel
data applications, multivariate extensions of the mixed-
effects models based on normality have often been per-
ceived as a natural assumption because (1) it reflects the
design features; and (2) the conditional distribution of the
missing data given the observed data is easily tractable
(Schafer and Yucel 2002). Several studies demonstrated
that under moderate missingness, most parametric as-
sumptions do not matter on the validity of the inferences
and more important emphasis should be put on the impu-
tation model reflecting the important data features such
as clustering (?). For this reason, our models are specif-
ically designed to consider non-nested classifications and
multiple-meberships of observation unit establishments.
Once the multiple imputations are created under these
model, say m times (in most problems m < 10), an ana-
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lyst’s model is fitted with these imputed data, resulting a
set of m set of coefficients and associated standard errors.
These results are then combined using rules by (Rubin
1987). Other combining rules that operate on other in-
ferential quantities (e.g. p-values) are also available, see
for example Li, Meng, Raghunathan, and Rubin (1991)
and Rubin (1987).

2.3 Multivariate Multiple Membership and
Multiple Classification (4MC) Models

For the sake of clarity, we will use a scalar representa-
tion to easily express multiple membership as well as
multiple classification. Let Yi1, . . . , Yir denote a set of r
incompletely-observed variables for ith establishment and
year combination. Est(i), Geog(i), Ind(i) and Frm(i) re-
fer to the appropriate classifications at the establishment,
geography, industry and firm level. Our modeling strat-
egy regards repeated observations over years as nested
within establishments, i.e. establishment itself is a clas-
sification factor. A random-intercept-only model for all
of the corresponding clustering factors is given by

yij =

pf
∑

l=1

xijlβlj + b
(2)
Est(i),j + b

(3)
Geog(i),j +

∑

c∈Ind(i)

w
(4)
i,c b

(4)
c,j +

∑

d∈Firm(i)

w
(5)
i,d b

(5)
d,j + ǫij , (2)

where xij denotes a set of completely-observed pf co-
variates for the ith establishment/year observation and
jth response variable. βlj is the set of pf coefficients corre-
sponding to covariates in xij . The random intercepts for
classification levels at Est(i), Geog(i), Ind(i) and Frm(i)
are

vec(b
(2)
Est(i)) ∼ N(0,Ψ(2))

vec(b
(3)
Geog(i)) ∼ N(0,Ψ(3))

vec(b
(4)
Ind(i)) ∼ N(0,Ψ(4))

vec(b
(5)
Firm(i)) ∼ N(0,Ψ(5)).

Note that the influence of multiple industries and firms
on an establishment is adjusted to reflect the appro-

priate weights by w
(4)
i,c and w

(5)
i,d . The model specifica-

tion is concluded by the assumption on the error term:
vec(ǫi) ∼ Nr(0,Σ) and Ψ(c) can be assumed as block-
diagonal or unstructured, where c denotes the underlying
classification for establishment, geography, industry or
firm. The multiple membership weights are pre-assigned
and typically a frequency of appearance of the unit is
used.

Finally, we assume standard prior distributions on the
variance parameters:

β ∼ uniform on Rpr (improper),

(Ψ(c))−1 ∼ Wishart(ν
(c)
1 ,Λ

(c)
1 ), ν1 ≥ r,

Σ−1 ∼ Wishart(ν2,Λ2), ν2 ≥ r,

where

(ν
(c)
1 )−1(Λ

(c)
1 )−1 : prior guess for Ψ(c), c = 2, 3, 4, 5, and

ν−1
2 Λ−1

2 : prior guess for Σ.

3. Inferential algorithms

Our ultimate interest is to generateM independent draws

of missing data, Y
(1)
mis

, . . . , Y
(M)
mis

from the posterior pre-
dictive distribution for the missing data derived under
the model given by (2):

P (Ymis |Yobs) =

∫

P (Ymis |Yobs , θ)P (θ |Yobs) dθ, (3)

where P (θ | Yobs) is the observed-data posterior density,
which is proportional to the product of the prior densi-
ties given in Section 2.3 and the observed-data likelihood
function

L(θ | Yobs) =

∫

L(θ | Yobs)dYmis .

After imputation, the resulting M versions of the com-
plete data are analyzed separately by complete-data
methods, and the results are combined using simple arith-
metic to obtain inferences that effectively incorporate un-
certainty due to missing data. As shown by Rubin (1987),
quality inferences can often be obtained with a very small
number (e.g., M = 5) of imputations. Methods for com-
bining the results of the complete-data analyses are given
by Rubin (1987, 1996) and reviewed by Schafer (1997,
chap. 4).

Except in trivial special cases, the posterior predic-
tive distribution (3) for our model cannot be simu-
lated directly. We create random draws of Ymis from
P (Ymis | Yobs) by techniques of Markov chain Monte
Carlo (MCMC) called a Gibbs Sample. In Gibbs sam-
pler, one generates a sequence of dependent random vari-
ates whose distribution converges to the desired target
distributions P (Ymis | Yobs) and P (θ | Yobs). Specifically,
it updates the current version of the unknown parame-

ters θ(t) = ((Ψ(c))(t),Σ(t), β(t)) and missing data Y
(t)
mis

are
updated in successive steps. Below we describe in detail
these steps for one classification for multiple membership
and extend it to multiple classification in the following
section.

3.1 Algorithm for one classification with multi-
ple membership

Suppose that observational units are grouped under a
single clustering factor (e.g. establishment/year within
firm) and allowed to appear in more than one cluster. The
following is the proposed model for a set of incompletely
observed variables:

yij =

pf
∑

l=1

xilβlj +
∑

c∈Firm(i)

w
(2)
i,c

p2
∑

l=1

z
(2)
il b

(2)
c,lj + ǫij , (4)
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where vec(b
(2)
i ) ∼ Nrp2(0,Ψ

(2)) and ǫi ∼ N(0,Σ). For

clarity of the algorithmic details, we let bi denote b
(2)
i .

Similarly, let θ(t) = (β(t),Σ(t), (Ψ(2))(t)), missing data

Y
(t)
mis

, B(t) = (b
(t)
1 , b

(t)
2 , . . . , b

(t)
Nfirm

) denote the current
state of unknowns. Conditionals of a Gibbs sampler are
given by

b
(t+1)
i ∼ P (bi | Yobs , Y

(t)
mis

, θ(t)), (5)

θ(t+1) ∼ P (θ | Yobs , Y
(t)
mis

, B(t+1)), (6)

y
(t+1)
i(mis) ∼ P (yi(mis) | Yobs , B

(t+1), θ(t+1)), (7)

where i = 1, . . . , Nfirm. Given θ(0) and Ymis
(0), (1)–

(3) define a cycle of MCMC called Gibbs sampler, and

{θ(t)} →d P (θ | Yobs), and {Y
(t)
mis

} →d P (Ymis | Yobs) as
t→ ∞. The specific forms of the conditionals follow from
straightforward application of Bayes’ theorem and some
algebra. Below these conditionals are provided, details
are available upon request.

3.1.1 Conditionals of the Gibbs: P (bi | Yobs , Ymis , θ)

The pairs (yi, bi) assumed to be independent for i =
1, 2 . . . , Nfirm, with

vec(yi) | bi, θ ∼ N(µi, Vi)

vec(bi) | θ ∼ N(0,Ψ(2)),

where µi = E(vec(yi) | bi, θ) = vec(Xiβ+
∑C

c=1 wi,cZibi)
and Vi = V (vec(yi) | bi, θ) = Σ ⊗ InF rm(i)

) as the rows of
yi for a given establishment are assumed to be indepen-
dent. Bayes’ theorem implies

vec(bi) | yi, θ ∼ N(vec(b̃i), Ui),

where

vec(b̃i) = Ui(Σ ⊗ ZT
i )vec(yi −Xiβ)

Ui = ((Ψ(2))−1 + (Σ−1 ⊗ ZT
i Zi))

−1

3.1.2 Conditionals of the Gibbs: P (θ | Yobs , Ymis , B)

Simulation of θ in (6) proceeds as follows: First draw
(Ψ(2))(−1) from a Wishart distribution with degrees of

freedom ν+NFirm and scale (Λ(−1)+
∑Nfirm

i bib
T
i ). This

result follows from simple application of Bayes theorem
on the joint density of the random-effects (bi | Ψ(2) ∼
N(0,Ψ(2)), independently for i = 1, 2, . . . , Nfirm ) and
conjugate prior (Ψ(2))(−1) ∼W (ν,Λ). Next calculate the
ordinary least-square coefficients

β̂ =

(

∑

i

XT
i Xi

)(−1)
∑

i

XT
i (yi −

C
∑

c=1

wi,cZibi)

and residuals ǫ̂i = yi − Xiβ̂ −
∑C

c=1wi,cZibi, and draw
Σ(−1):

Σ−1 | Yobs , Ymis , {bi}
Nfirm

i=1 ,Ψ(2), β ∼ W (ν1 − pf +

Nfirm
∑

i

ni,

(Λ−1
1 +

Nfirm
∑

i=1

ǫ̂Ti ǫ̂i)
−1).

Finally, draw β from a multivariate normal distribution
centered at β̂ with covariance matrix V (β̂) where

β̂ =

(

∑

i

XT
i Xi

)(−1)
∑

i

XT
i (yi −

C
∑

c=1

wi,cZibi)

V (β̂) = Σ(−1) ⊗

(

∑

i

XT
i Xi

)(−1)

.

3.1.3 Drawing missing data: P (yi(mis) | Yobs , B, θ)

Our goal in (7) is to draw from the following conditional
using the most recent state of unknowns:

yi(mis) ∼ P (yi(mis) | Yobs , B, θ), i = 1, . . . , Nfirm.

This task can easily be accomplished by noticing that the
rows of ǫi = yi −Xiβ−Zibi are independet and normally
distributed with mean 0 and covariance matrix Σ, or

ǫi | Yobsβ, bi,Σ,Ψ ∼ N(0,Σ ⊗ Ini
).

This implies that, in any row of ǫi, the missing elements
have an intercept-free multivariate normal regression on
the observed elements; the slopes and residual covari-
ances for this regression can be quickly calculated by
inverting the square submatrix of Σ corresponding to
the observed variables. That is ǫi,M(s) ∼ N(E(ǫi,M(s) |
ǫi,M(s)), V (ǫi,M(s) | ǫi,M(s))), where

E(ǫi,M(s) | ǫi,O(s)) = ΣM(s),O(s)Σ
(−1)
O(s),O(s)ǫi,O(s)

V (ǫi,M(s) | ǫi,O(s)) = ΣM(s),O(s)Σ
(−1)
O(s),O(s)ΣO(s),M(s)

M(s), O(s) denote the missing and observed values in
missingness patters s, respectively. Because computa-
tions are performed over distinct missingness patterns,
our algorithm’s computational cost per iteration is rela-
tively low.

3.2 Incorporating additional classifications

In EEOC data, observational establishment units are
classified by numerous factors as depicted in Figures 1
and 2. Incorporating these additional classification fac-
tors is a matter of simulating a conditional distribution
of the related parameters in the Gibbs sampler defined by
(6)–(7). Consider, for example, adding an establishment
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level random-effects that will account for correlated mea-
surements per establishment (recall that each establish-
ment has repeated measurements over years). A natural
extension of of model (4) can be written as

yij =

pf
∑

l=1

xilβlj + b
(2)
Est(i),j

+
∑

c∈Firm(i)

w
(3)
i,c

p3
∑

l=1

z
(3)
il b

(3)
c,lj + ǫij (8)

In this new formulation, “establishment” specific

random-effects b
(2)
Est(i),j are among the unknowns along

with θ, B(3) (which was B(2) in Section 3.1) and Ymis .
The new Gibbs sampler now adds the conditional of

b
(2)
Est(i),j . Note that for fixed values of b

(2)
Frm(i), the model

y⋆
ijk =

pf
∑

l=1

xijlβkl +
∑

c∈Firm(i)

w
(3)
i,c

p3
∑

l=1

z
(3)
il b

(3)
c,lj + ǫijk,

is same as the previous model of Section 3.1 with y⋆
ijk =

yijk−b
(2)
Est(i),j . And for fixed values of b

(2)
Est(i),j , the model

(8) reduces to

y⋆
ijk =

pf
∑

l=1

xijlβkl + b
(2)
Est(i),j + ǫijk,

where y⋆
ijk = yijk −

∑

c∈Firm(i) w
(3)
i,c

∑p3

l=1 z
(3)
il b

(3)
c,lj. Note

that both of these implied conditional models are same
as the one given in Section 3.1.

4. A simulation study

Our limited simulation study evaluates the frequentist
characteristics of the 4MC-based MI in a repetitive sam-
pling setting. It consists of data generation (clustered
data with multiple membership), imposing missing val-
ues under MAR, MI inference under a hypothetical an-
alyst’s model, parameter estimation, and evaluation of
this estimation:
Data generation:
A bivariate intercept-only linear mixed-effects model al-
lowing for multiple membership was used to generate
complete data:

yij = β0j +
∑

c∈Firm(i)

w
(2)
i,c b

(2)
c,j + ǫij ,

where j = 1, 2, i = 1, 2, . . . , N = 1000 and firm of
establishment i is one of the 100 firms: Firm(i) ∈
(1, 2, . . . , 100). We assumed 80% of the establishments
belong to only one firm and 20% appear in two firms

with weights 0.5 (w
(2)
i,c = 0.5). The coefficients of the

data model above were set to β0,1 = 0.5, β0,2 = 1,
V ar(ǫ1) = 1.2, V ar(ǫ2) = 0.7, Cov(ǫ1, ǫ2) = −0.2, finally,
V ar(b1) = 0.8, V ar(b2) = 1.5, Cov(b1, b2) = 0.3.

Imposing missing values and analyst’s model
We imposed missing values under the missingness mech-
anism defined by

log
P (rY2 = 1 | Y1)

1 − P (rY2 = 1 | Y1)
= βm

0 + βm
1 y1,

where β0 and β1 are set to values to produce around 30%
missingness.
Evaluating MI under 4MC
Our goal was to mimic the practice of multiple imputa-
tion. To make this as real as possible, we assumed the
model given in (3) underlies the substantive goal of the
analysis, i.e. the analyst’s model. Hence, we performed
MI inference on the estimation parameters of this model.
We then evaluated the performance of MI under 4MC by
comparing its the coverage rates to available-cases only
analyses and MI under a model ignoring multiple mem-
bership (Schafer and Yucel 2002, referred as PAN below).
We define (CR) as the percentage of times that the true
parameter value is covered in the 95% confidence interval.
Here the true parameter value is the average parameter
estimate across the simulations before the missing values
are imposed. If a procedure is working well, the actual
coverage should be close to the nominal rate of 95% in
our study. If the procedure results in CRs that are close
to 100% or below 85%, extra caution should be taken
when using that procedure.

Table 1 summarizes the results of our limited sim-
ulation study. Results show that both MI procedure
(4MC and PAN) capture the true unknown parameter
values, however the procedure ignoring multiple member-
ship (PAN) leads to confidence intervals with much lower
coverage rate than a nominal rate of 95%. MI under 4MC
achieve excellent coverage rates. Similar behavior is seen
in capturing the random-effect variance, MI under PAN
underestimates the true value. The performance of the
MI under either model is far more superior than the un-
principled method of simple case-deletion, which leads to
significant biases as well as dismal coverage rates, in some
cases it is as dramatic as less than half of the nominal
rate.

Table 1: Summary of the results under MI under 4MC.
PI stands for parameter of interest

PI Before After MI under MI under
deletion deletion 4MC PAN

β0 1.25 1.15 (0.803) 1.25 (0.945) 1.25 (0.955)
β1 0.47 0.34 (0.691) 0.46 (0.939) 0.48 (0.929)

ψ(2) 1.087 0.849 (0.454) 1.10 (0.959) 1.01 (0.89)

5. Discussion

In this manuscript, we describe an MI-based strategy
to estimate models from data structures complicated by
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non-nested clusterings, multiple membership of units to
these clusters and missing data. This research was moti-
vated by interest in characterizing the change in sex and
race composition of managerial occupations using an ad-
ministrative longitudinal data. The proposed approach,
however, has a broader relevance to many other fields
where such complexities coupled with missing data are
seen. It is common to see such non-nested clusters with
multiple membership in health services research (e.g. pa-
tients treated both in multiple hospitals and/or multiple
doctors) or education (e.g. longitudinal studies on stu-
dents in multiple schools).

In this paper, “multiple membership” weights were as-
sumed fixed and unknown. In problems where the clus-
ter identifiers are not directly observed but rather some
of their determinants are observed (e.g. ambiguous ge-
neotype assignments in genetic association studies), these
weights are often modeled and estimated (Foulkes, Yucel,
and Li In press). Introduction of this additional modeling
step is a meter of adding a Gibbs sampler step. However,
It should be noted that one of the implication of the in-
creased rate of missingness would be somewhat decreased
performance measures due to increased fraction of miss-
ing information (Little and Rubin 2002).

The computational algorithms for simulating MIs un-
der the proposed model could be made to mix faster. This
generally implies reducing or de-conditioning on simu-
lated values of some of the unknowns such as random-
effects. De-conditioning may greatly increase the com-
putational cost per iteration, however, and some limited
experience suggests that the additional effort required to
do so is not worthwhile. With modern computers, iter-
ations of the Gibbs are performed quickly even with the
large datasets provided that sufficient physical memory

is available to store Yobs ,Y
(t)
mis

and covariate matrices.

Our current work includes a comprehensive simula-
tion study (both Monte Carlo and repetitive sampling
from the administrative dataset) to evaluate our method
and applying our methods to EEOC data for substan-
tive results. Our model allows only continuous data,
the future extensions will include models for categorical
or mixtures of continuous and categorical data in sim-
ilar settings. When the number of categorical items is
large, estimation-related computational difficulties can
occur. In such settings we will incorporate conditional
variable-by-variable approach (Raghunathan, Lepkowski,
and VanHoewyk 2001; Yucel and Raghunathan 2006).
Finally, given the comprehensive and rich nature of the
EEOC data, alternative ad-hoc imputation methods (e.g.
predictive mean matching) can be quite successful. These
methods usually make minimal assumptions and may
lead to underestimation of the standard-errors due to
their single-imputation nature. However, with improve-
ments to adjust the standard errors, they can be valu-
able source of missing-data technique in rich data systems
such as EEOC.
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