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Abstract

Measurement error in predictors is known to cause bias in estimated regression coefficients

and also leads to a loss of power for detecting associations. Methods commonly used to correct

for bias require auxiliary data (e.g., replicates, validation data). We develop a procedure for

investigating the associations between the change in an imprecisely measured outcome and precisely

measured predictors, adjusting for the baseline value of the outcome, when auxiliary data are not

available. The procedure employs sensitivity analysis and large-sample theory to investigate both

the associations between change and the predictors and to assess the impact of the measurement

error. An illustration investigating the associations between three-year change in the intima-media

thickness of the common carotid artery and known cardiovascular disease risk factors is provided.

KEYWORDS: Linear regression; Method of moments; Sensitivity analysis; Errors in variables;

Measurement reliability; Measurement error variance.
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1 Introduction

In this paper we provide a sensitivity analysis-based procedure to investigate the associations

between the change in an imprecisely measured outcome and precisely measured predictors when

auxiliary data (e.g., replicates, validation data, instrumental variables) are not available. Change is

defined to be the difference in some measured outcome variable, ∆ = W2 − W1, where W2 denotes

the outcome at time t2; W1 denotes the outcome at time t1 with t2 > t1. We refer to W1 as the

baseline and W2 as the follow-up values of the outcome. Analyses of change, ∆, are often conducted

in biomedical research. Whether one adjusts for the baseline is critical from a scientific or causal

perspective. This fact is independent of the problems due to measurement error. Including the

baseline value of the outcome in a model for change will yield different causal effect estimates than

a model that omits it [9]. Investigations that do not require adjusting for the baseline will not be

affected by measurement error bias. We focus upon the situation where adjusting for the baseline

is appropriate to obtain the desired causal effect estimates.

The effects of measurement error in regression have been known for more than 130 years [1].

There is an extensive literature for both linear [8] and non-linear measurement error models [2, 3].

Including an imprecisely measured predictor (e.g., the baseline outcome) in a regression model not

only causes a bias in the estimated regression coefficient of the offending predictor, but can also cause

a bias in the estimated regression coefficient of another predictor if those predictors are correlated.

Yanez et al. [14] investigated the problem of modeling change in linear regression. They showed

how failing to correct for measurement error could lead to totally spurious associations. They

employed a method-of-moments approach to correct for measurement error bias in the regression

coefficients and used a bootstrap approach [5] to obtain valid standard error estimates for use in

hypothesis testing.

Other approaches are available to correct for measurement error bias. These include Regression

Calibration (RC) [2], simulation extrapolation (SIMEX) [4], Generalized Linear Covariate Mea-

surement Error Models (CME) [12], Generalized Non-Parametric Corrected Scores [10], Corrected

Estimating Equations [11], and more recently, Moment Reconstruction [6]. Programs for RC,
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SIMEX and CME are available in popular statistical software packages such as Stata (e.g., rcal,

simex, cme) and R (simex). Some approaches are only available in specialized programs written

in high-level languages (e.g., FORTRAN, C++) and would be difficult for the non-technical data

analyst to implement. All these approaches, including the method-of-moments, require auxiliary

data on at least a subset of the data to perform a measurement error correction. Unfortunately,

most studies lack auxiliary data. They may not have been collected for any one of several reasons

(e.g., prohibitive costs, lack of appropriate planning). In those situations, measurement error could

be assessed indirectly using independent data collected from other data sources called external

datasets. Using external datasets has drawbacks. One must assume the data are appropriate to

assess the measurement error or that the model is transportable [2]. If this (untestable) assumption

is false, bias may be introduced as well.

Another alternative to using external datasets involves the specification of parameters associated

with the measurement error. If the variance of the measurement error were known, for example,

measurement error correction may be reduced to a rescaling of the estimated regression coefficients

and estimated standard errors in some models. The eivreg program in Stata employs such a

procedure for measurement error-correction when the measurement reliability of an imprecisely

measured predictor is assumed known and provides a reasonable first step for investigating the

impact of measurement error. It may not be reasonable, however, to assume knowledge of the

measurement reliability precisely. Often times investigators may be able to more reasonably specify

a range of plausible values for the measurement reliability or the variance of the measurement error

for an imprecisely measured variable. The procedure we developed allows for the specification of a

range of values for either the measurement reliability or the measurement error variance to assess the

impact of the measurement error. This assessment may be performed by examination of the fitted

model or tests of associations for model predictors for the specified range of the measurement error

parameter. It may also be assessed graphically using the R program provided. We present a model

for change, a bias-corrected estimator and large-sample variance estimate of the bias-corrected

estimator in Section 2. In Section 3, we provide an illustration for the problem that motivated this
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work. The example analysis examines the impact of measurement error in analyzing the change

in intima-media thickness (IMT) of the common carotid artery and known cardiovascular disease

(CVD) risk factors. A discussion is given in Section 4. The Appendix provides derivations for the

asymptotic variances for the measurement error-corrected estimates. We also provide instructions

for implementing our procedure in the R statistical software package. The program and its point-

and-click graphical interface are available upon request from the the first author of this paper.

2 A Model for Change

2.1 The model

Suppose that for i = 1, 2, . . . , n, we write the model for true change, Di, as

Di = Y2i − Y1i = z′iβ + αY1i + εi (1)

where zi = (1, z1i, z2i, . . . , zpi)
′ are precisely measured predictors, β = (β0, β1, . . . , βp)

′ and α are

the model regression coefficients, εi is a mean zero random error with constant variance and Y1i and

Y2i are the true values of the outcome at baseline and at follow-up. The outcomes, Yji (j = 1, 2),

are unobservable. We observe Wji = Yji + Uji, where Uji are the measurement errors of Yji, and

have mean zero and constant variance, σ2
u. We assume the measurement errors are uncorrelated

with the model error, εi, the predictor variables, zi, and the outcomes Yji.

Let ∆i = W2i − W1i denote the observed change in the outcome variable. The model for the

observed change, ∆i, is

∆i = W2i − W1i = z′iβ
o + αoW1i + εi. (2)

Yanez et al. [14] showed that fitting model (2) yields biased estimated regression coefficients relative

to the regression coefficients of model (1). The least squares estimator for the regression coefficients

of model (2), (β̂
o′, α̂o)′, can be written as

(

β̂
o

α̂o

)

=

(

Σ̂zz Σ̂zW1

Σ̂W1z Σ̂W1W1

)−1 (

Σ̂z∆

Σ̂W1∆

)

, (3)
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where

Σ̂zz = n−1

n
∑

i=1

ziz
′
i, Σ̂zW1

= n−1

n
∑

i=1

ziW1i,

Σ̂W1z = n−1

n
∑

i=1

W1iz
′
i, Σ̂W1W1

= n−1

n
∑

i=1

W 2
1i,

Σ̂z∆ = n−1

n
∑

i=1

zi∆i, Σ̂W1∆ = n−1

n
∑

i=1

W1i∆i.

The asymptotic expectation of (β̂
o′, α̂o)′ is

lim
n→∞

(

β̂
o

α̂o

)

=

(

Σzz ΣzY1

ΣY1z ΣY1Y1
+ σ2

u

)−1 (

ΣzD

ΣY1D − σ2
u

)

, (4)

where

Σ̂zY1
= n−1

n
∑

i=1

ziY1i, ΣzY1
= lim

n→∞
Σ̂zY1

,

Σ̂Y1z = n−1

n
∑

i=1

Y1iz
′
i, ΣY1z = lim

n→∞
Σ̂Y1z

Σ̂Y1Y1
= n−1

n
∑

i=1

Y 2
1i, ΣY1Y1

= lim
n→∞

Σ̂Y1Y1
,

Σ̂zD = n−1

n
∑

i=1

ziDi, ΣzD = lim
n→∞

Σ̂zD,

Σ̂Y1D = n−1

n
∑

i=1

Y1iDi, ΣY1D = lim
n→∞

Σ̂Y1D,

Σzz = lim
n→∞

Σ̂zz .

The resulting bias in β̂
o

can be written as

lim
n→∞

β̂
o

= β + (
σ2

u

σ2
Y1|z

+ σ2
u

)(1 + α)γ,

where σ2
Y1|z

is the error variance of regressing Y1 on z, σ2
u is the measurement error variance of

U1, and γ are the regression coefficients in the regression of Y1 on z, i.e., E[Y1 | z] = z′γ. One
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sees the bias in β̂
o

persists even if the baseline regression coefficient, α, is zero. The estimated

coefficient for the observed baseline outcome, α̂o, is also biased for α. Its asymptotic expectation

is limn→∞ α̂o = α(
σ2

Y1|z

σ2

Y1|z
+σ2

u

) − ( σ2
u

σ2

Y1|z
+σ2

u

). In the following section, we propose an estimator that

corrects for measurement error bias.

2.2 A regression estimator

Using the result of equation (4) and a method-of-moments approach, the proposed estimator,

(

β̂

α̂

)

=

(

Σ̂zz Σ̂zW1

Σ̂W1z Σ̂W1W1
− σ2

U

)−1 (

Σ̂z∆

Σ̂W1∆ + σ2
U

)

, (5)

provides unbiased estimates for the regression coefficients in model (1) if the variance of the mea-

surement error, σ2
u, were known. One could also re-parameterize the estimator in equation (5) in

terms of a measure of the reliability, e.g., λ = σ2
Y1

/σ2
W1

, where σ2
W1

= var (W1i) = σ2
Y1

+σ2
u. The two

occurrences of the measurement error variance, σ2
u, in equation (5) would simply be replaced by

(1− λ)σ2
W1

. Specification of either λ or σ2
u in equation (5) allows one to obtain unbiased estimates

for the association between the change in the outcome, D, and the predictors, z, adjusting for the

baseline outcome.

2.3 A variance estimator

It can be shown that the proposed estimator in equation (5), (β̂
′
, α̂), converges in distribution to

a normal random variable,

n1/2

{(

β̂

α̂

)

−

(

β

α

)}

L
−→ N (0, Σβα), (6)

for covariance matrix Σβα. It is not difficult to obtain a consistent estimator for Σβα for known

σ2
u or λ. Details of the formulae and derivations are provided in the Appendix. By having an

unbiased estimator of (β′, α)′ and a consistent estimator of its asymptotic variance, one is in a

position to more fully investigate the association between the true change in the outcome, D,

and the predictors, z, adjusting for the baseline outcome, in the absence of auxiliary data. One
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still must specify either σ2
u or λ. We recommend specifying a range of values for either of the

two parameters to assess the impact of measurement error. An illustration that investigates the

association between three-year change in the intima-media thickness of the common carotid artery

and known cardiovascular disease risk factors is presented in the following section.

3 Illustration

3.1 Change in intima-media thickness of the common carotid artery

We illustrate the approach proposed in this paper using data from the Cardiovascular Health Study

(CHS) [7, 13]. The CHS is a population-based, longitudinal study of coronary heart disease and

stroke in people aged 65 years and older. This research was motivated, in part, by the problems

encountered when analyzing change in the intima-media wall thickness (IMT) of the common

carotid artery (as measured by ultrasonography) in models that included cardiovascular disease

(CVD) risk factors: age, high density lipoproteins (HDL), low density lipoproteins (LDL), systolic

blood pressure (SBP) , diabetes, gender, and current smoking status. These variables were originally

selected for inclusion in our analysis as they were determined to be strong correlates of IMT at

baseline.

3.2 Naive results

Of the 5201 original CHS study participants, 4044 had IMT measured at baseline and three years

later. Naive (uncorrected) analyses were conducted and the results are shown in Table 1 and Table

2. An analysis that adjusted for baseline IMT showed highly significant associations between change

and the CVD risk factors (Table 1). Table 2 shows an analysis without adjustment for the baseline

IMT. There were no significant associations whatsoever. The results for the two analyses seem quite

contradictory. While it is plausible that the inclusion or exclusion of baseline IMT in a model for

change should yield different causal effect estimates, it seemed unlikely that the differences would

be so extreme. These results led us to investigate the issue further. Quality control experiments

conducted at the ultrasound center for CHS made it clear there was considerable measurement

error in the carotid IMT measurements.
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3.3 Bias-corrected results with auxiliary data

Auxiliary data in the form of replicate measures on baseline IMT were available on a subset of 40

CHS participants. These data were used to estimate the measurement error variance, σ̂2
u = 0.0376

and the measurement reliability, λ̂ = 0.697. Bias-corrected estimates were obtained using the

method-of-moments estimator in equation (5). Standard error estimates were obtained using a

bootstrap procedure [5]. The results are shown in Table 3. There were no significant associations

between change and the CVD risk factors. These results appeared similar to the results in Table 2,

possibly suggesting that adjusting for baseline IMT was unnecessary. It is possible that the bias-

corrected results were suspect. Even though the CHS sample dataset was large (n = 4044), the

number of subjects with replicate data was small (m = 40). The sampling distribution of method-

of-moments estimators can often be skewed in small samples. Examination of the bias-corrected

bootstrap estimates supports this notion. Further, the size of the observed p-values were all greater

than 0.68. If none of the predictors were associated with change in IMT, one should expect the

p-values to be uniformly distributed between zero and one. In the third and final analysis of these

data, we used the auxiliary (replicate) data only to pick bounds for the measurement reliability to

assess the impact of measurement error in our fitted models.

3.4 Bias-corrected results without auxiliary data

We investigated the association between the CVD risk factors, z, and true change in carotid IMT,

by specifying a range of plausible values for the measurement reliability, λ = {0.60, 0.70, 0.80}. We

selected this range as the estimated measurement reliability from the replicate data was approx-

imately 0.70. Discussions with radiologists with expertise in ultrasound measurement supported

this choice. Summaries of the fitted models are shown in Table 4. Corresponding graphical plots

of the estimated regression coefficients and confidence bands, as a function of λ, are presented in

Figure 1 through Figure 8.

For reliability λ = 0.60, age, systolic blood pressure, HDL cholesterol and baseline IMT were

significantly associated with IMT change. Age, systolic blood pressure and baseline IMT are
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inversely associated with IMT change while HDL cholesterol was positively associated with IMT

change. Diabetic status, gender, LDL cholesterol and smoking status are not significantly associated

with IMT change. The associations change dramatically for λ = 0.70. Risk factors that were

associated with IMT change for λ = 0.6 are no longer associated with IMT change (i.e., age,

systolic blood pressure, baseline IMT) or had their association reverse direction (HDL cholesterol).

Risk factors that were not associated with IMT change for λ = 0.6 (i.e., diabetic status, gender,

LDL cholesterol and current smoking status) are now significantly and positively associated with

IMT change. For reliability λ = 0.80, all risk factors were significantly associated with IMT change.

The directions of the associations between the CVD risk factors and IMT change are similar to

those observed in the naive model (Table 1), where measurment error was ignored.

Figures 1 through 8 demonstrate more concisely the associations between the CVD risk factors

and IMT change as a function of the measurement reliability, λ. The solid curves show the mag-

nitudes of the estimated regression coefficients and the dashed lines are the 95 percent confidence

intervals for the estimated regression coefficients for varying values of λ. It was interesting to note

that the direction of the associations between IMT change and the CVD risk factors, z almost

appear to “pivot” around the point estimate of the reliability, λ̂ = .0697.

4 Discussion

In this paper, we presented a method to investigate the associations between change in some

imprecisely outcome and precisely measured predictors when (a) adjustment for the baseline value

of the imprecisely measured outcome is appropriate, and (b) there are not auxiliary data to correct

for measurement error. Adjusting for the baseline value of the outcome variable as a covariate

(equation (2)), can cause a measurement error bias. Not correcting for the bias can lead to spurious

findings.

The approach presented here does not take into account sampling variability of the specification

of the measurement reliability or the variance of the measurement error in equation (5) or its

estimated variance or standard error estimate. Hence, the Wald test statistic, β̂k/ŝe(β̂k), used to
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test the association between the k-th predictor variable, zk, and the true change in the outcome,

D, will likely be anti-conservative. The purpose of the approach is not to provide an omnibus test

for these associations, but to provide insight on the behavior of these associations depending upon

the amount of measurement error. In the illustration above, one sees how measurement error, as a

function of reliability, affected the direction and magnitude of the associations between change in

carotid IMT and the CVD risk factors.

Appendix

A.1 Asymptotic variance estimator

Assume the measurement reliability, λ is known and is defined as λ =
σ2

Y1

σ2

W1

=
σ2

Y1

σ2

Y1
+σ2

U1

. The proposed

estimator, (β̂
′
, α̂)′ in equation (5) can be re-written as

(

β̂

α̂

)

=

(

Σ̂zz Σ̂zW1

Σ̂W1z Σ̂W1W1
− (1− λ)σ̂2

W1

)−1 (

Σ̂z∆

Σ̂W1∆ + (1 − λ)σ̂2
W1

)

,

where σ2
W1

= var (W1i) = σ2
Y1

+ σ2
U1

. An asymptotically consistent estimator for σ2
W1

is

σ̂2
W1

= n−1

n
∑

i=1

(W1i − W̄1)
2.

Let Σab = lim Σ̂ab for any a and b. Also let

Σ̂ =

(

Σ̂zz Σ̂zW1

Σ̂W1z Σ̂W1W1
− (1 − λ)σ̂2

W1

)

, Σ = lim
n→∞

Σ̂ =

(

Σzz ΣzW1

ΣW1z ΣW1W1
− (1 − λ)σ2

W1

)

,

µ̂ =

(

Σ̂z∆

Σ̂W1∆ + (1 − λ)σ̂2
W1

)

, µ = lim
n→∞

µ̂ =

(

Σz∆

ΣW1∆ + (1 − λ)σ2
W1

)

.

Then

n1/2

{(

β̂

α̂

)

−

(

β

α

)}

= n1/2
(

Σ̂
−1

µ̂ − Σ−1µ
)

= n1/2Σ̂
−1

(µ̂ − µ) + n1/2(Σ̂
−1

− Σ−1)µ.
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We can see that

n1/2(µ̂ − µ) = n1/2

(

Σ̂z∆ −Σz∆

Σ̂W1∆ − ΣW1∆ + (1− λ)(σ̂2
W1

− σ2
W1

)

)

= n−1/2

n
∑

i=1

(

zi∆i − Σz∆

W1i∆i − ΣW1∆ + (1− λ)ri

)

,

where

ri = (W1i − W̄1)
2 − σ2

W1
. (7)

We have n1/2Σ̂
−1

(µ̂ − µ) = n−1/2
∑n

i=1 ui + op(1), where

ui = Σ−1

(

zi∆i − Σz∆

W1i∆i − ΣW1∆ + (1− λ)ri

)

.

It is easy to see that

Σ̂
−1

− Σ−1 = Σ̂
−1

ΣΣ−1 − Σ̂
−1

Σ̂Σ−1 = −Σ̂
−1

(Σ̂− Σ)Σ−1.

Since

n1/2(Σ̂ −Σ) = n1/2

(

Σ̂zz −Σzz Σ̂zW1
−ΣzW1

Σ̂W1z −ΣW1z Σ̂W1W1
− ΣW1W1

− (1 − λ)(σ̂2
W1

− σ2
W1

)

)

= n−1/2

n
∑

i=1

(

ziz
′
i −Σzz ziW1i −ΣzW1

W1iz
′
i − ΣW1z W 2

1i − ΣW1W1
− (1 − λ)ri

)

,

where ri is defined in (7), we know that n1/2(Σ̂
−1

− Σ−1)µ = n−1/2
∑n

i=1
vi + op(1), where

vi = −Σ−1

(

ziz
′
i − Σzz ziW1i − ΣzW1

W1iz
′
i − ΣW1z W 2

1i − ΣW1W1
− (1 − λ)ri

)

Σ−1µ.

Hence

n1/2

{(

β̂

α̂

)

−

(

β

α

)}

= n−1/2

n
∑

i=1

(ui + vi) + op(1)
L

−→ N (0, Σβα),

where Σβα = var (ui +vi). To obtain a consistent estimator for Σβα, we first define r̂i by replacing

σ2
W1

by σ̂2
W1

in the definition of ri. We then define ûi and v̂i in the same way as we define ui
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and vi, only with Σ, Σab, ri and µ replaced by Σ̂, Σ̂ab, r̂i and µ̂, respectively. Then we let

Σ̂βα = n−1
∑n

i=1(ûi + v̂i)
⊗2. It is not hard to see that Σ̂βα is consistent for Σβα. The estimated

asymptotic covariance matrix for (β̂
′
, α̂) is then Σ̂βα/n.

One can easily obtain the asymptotic covariance matrix for (β̂
′
, α̂)′ as a function of the mea-

surement error variance by starting with the proposed estimator in (5) and proceeding with the

derivations outlined here.

A.2 Statistical software – (in progress)

A.2.1 Introduction

We provide instructions on how to install and use the measurement error correction approach

presented in this paper. The function, changelm, and its point-and-click interface, changelmGUI.

The changelm function is written in the R statistical language. The point-and-click interface,

changelmGUI, is written using a library in R called TCL/TK. Both programs must be loaded

directly into R to be able to implement our measurement error correction approach.

A.2.2 Installing changelm and changelmGUI

changelm runs on top of the free statistical software program R. Please go to to the website

http://cran.r-project.org/ for specific details on how to install R on your computer. The changelm

program can run on several platforms (e.g., Windows, Linux/UNIX, Macintosh). To run the

point-and-click interface changelmGUI, the TCL/TK library need to be installed on your particular

platform.

http://www.biostat.washington.edu/ yanez/changelm/
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Table 1: Naive results for modeling observed change (with adjustment for baseline IMT).

Variable Coefficient Std. Error P-value

Age 2.48 x 10−3 5.30 x 10−4 0.0001
Syst bp 5.65 x 10−4 1.30 x 10−4 0.0001

Diabetes 1.84 x 10−2 6.67 x 10−3 0.0058
Gender 3.55 x 10−2 5.96 x 10−3 0.0001
HDL -5.64 x 10−4 1.86 x 10−4 0.0024

LDL 2.69 x 10−4 7.57 x 10−5 0.0004
Smoker 2.73 x 10−2 8.70 x 10−3 0.0017

baseline -3.65 x 10−1 1.41 x 10−2 <.0001

Table 2: Naive estimates for modeling observed change (without adjustment for baseline IMT).

Variable Coefficient Std. Error P-value

Age -2.18 x 10−4 5.61 x 10−4 0.698
Syst bp -5.10 x 10−5 1.38 x 10−4 0.711
Diabetes 5.20 x 10−3 7.18 x 10−3 0.469

Gender 9.18 x 10−3 6.34 x 10−3 0.148
HDL -8.81 x 10−5 1.99 x 10−4 0.659

LDL 7.31 x 10−5 8.13 x 10−5 0.368
Smoker 6.94 x 10−3 9.35 x 10−3 0.458

Table 3: Bias corrected estimates for modeling observed change (with adjustment for baseline IMT).

Variable Coefficient Std. Error P-value

Age -2.89 x 10−3 2.41 x 10−2 0.9044
Syst bp -5.61 x 10−5 5.60 x 10−4 0.9188

Diabetes 4.72 x 10−3 1.35 x 10−2 0.7273
Gender 8.79 x 10−3 2.38 x 10−2 0.7099

HDL -8.24 x 10−5 4.58 x 10−4 0.8576
LDL 7.31 x 10−5 2.78 x 10−4 0.6829

Smoker 6.35 x 10−3 1.92 x 10−2 0.7417
baseline 4.42 x 10−3 0.44 x 10−1 0.9887
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Table 4: Bias corrected estimates (sensitivity analysis method).

λ = 0.60

Variable Coefficient Std. Error P-value

Age -1.73 x 10−3 3.38 x 10−4 <.0001
Syst bp -3.95 x 10−4 7.73 x 10−5 <.0001

Diabetes -2.16 x 10−3 2.47 x 10−3 0.3815
Gender -5.50 x 10−3 3.28 x 10−3 0.0936
HDL 1.78 x 10−4 7.03 x 10−5 0.0114

LDL -3.64 x 10−5 3.01 x 10−5 0.2269
Smoker -4.45 x 10−3 3.45 x 10−3 0.1967

baseline 2.04 x 10−1 4.44 x 10−2 <.0001

λ = 0.70

Variable Coefficient Std. Error P-value

Age -9.63 x 10−5 1.85 x 10−4 0.6030

Syst bp -2.33 x 10−5 4.34 x 10−5 0.5923
Diabetes 5.79 x 10−3 1.48 x 10−3 0.0001

Gender 1.04 x 10−2 1.90 x 10−3 <.0001
HDL -1.10 x 10−4 4.05 x 10−5 0.0069

LDL 8.20 x 10−5 1.79 x 10−5 <.0001
Smoker 7.86 x 10−3 2.09 x 10−3 0.0002

baseline -1.64 x 10−2 2.27 x 10−2 0.4691

λ = 0.80

Variable Coefficient Std. Error P-value

Age 1.03 x 10−3 1.59 x 10−4 <.0001

Syst bp 2.33 x 10−4 3.79 x 10−5 <.0001
Diabetes 1.13 x 10−2 1.85 x 10−3 <.0001
Gender 2.13 x 10−2 1.78 x 10−3 <.0001

HDL -3.08 x 10−4 4.57 x 10−5 <.0001
LDL 1.53 x 10−4 2.10 x 10−5 <.0001

Smoker 1.64 x 10−2 2.58 x 10−3 <.0001
baseline -1.68 x 10−1 6.44 x 10−3 <.0001
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Figure 1: Age (in years).
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Figure 2: Systolic Blood Pressure (mmHg).
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Figure 3: Diabetes.
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Figure 4: Male gender.
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Figure 5: High Density Lipoproteins (mg/dL).
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Figure 6: Low Density Lipoproteins (mg/dL).
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Figure 7: Current smoker.
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Figure 8: Baseline IMT.
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