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Abstract

Tobit II models are a standard statistical tool for detecting and correcting selec-
tion bias. ML estimation is complicated by the possibility of multiple roots to the
score equations. Most software packages ignore this problem and may fail to con-
verge to the global MLE even when consistent starting values are used. Convergence
to the global MLE can be insured by use of a two-step algorithm which conducts a
grid search over the bounded space of the error correlation, and then uses the con-
ditional ML estimates as starting values for simultaneous estimation. The nature of
the problem is illustrated using Monte Carlo simulation. Major software packages
are then compared and found to suffer from the same algorithmic errors. Finally,
replication of estimates for a sample of published data sets finds that roughly half
of the studies report inaccurate estimates.
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1 The Type II Tobit Model

The models considered in this paper is classified as ”Type 2” Tobit models by

Amemiya (1984). This bivariate model has the following structure:

Y1i = X1iβ1 + σε1i

Y2i = X2iβ2 + ε2i

(1)

where (ε1i,ε2i) is bivariate standard normal with correlation ρ. The regressors

in each equation, X1i and X2i, are observed. Observation of the dependent

variables is incomplete, however. Only qualitative information is available for

the dependent variable in the selection equation, Y2i. This is recorded as a

binary variable, Ji, that takes the value one when Y2i is positive. In addition,

the dependent variable in the regression equation, Y1i, is observed only when

Y2i is positive. 1

The log-likelihood function for this model is

lnL(α, β, σ, ρ) =
∑n

i=1
{Ji[− ln(σ) + lnφ(Zi) + ln Φ(Wi)] + (1− Ji) ln[1− Φ(X2iα)]}(2)

where Zi=(Y1i−X1iβ)/σ, Wi=(X2iα+ρZi)/
√

1− ρ2, and where ρ is restricted

to the open interval (-1,1). This likelihood function is highly non-linear, and a

solution to its score equations must be obtained with numerical methods. Un-

fortunately, the likelihood function is not globally concave. Gradient methods

may converge to a local MLE. One can only be assured of obtaining a global

MLE, if the estimation processes is started in the neighborhood of the global

1 In many economic applications, the regression equation is a pricing or expendi-
ture function, and the selection equation is a decision function that governs the
occurrence of the transaction.
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maximum.

Starting values for numerical solution of the score equations are typically pro-

vided by the two-stage method of Heckman (1976) and Lee (1976). 2 The small

sample performance of this estimator is erratic, often providing estimates of ρ

that exceed one in absolute value. Zuehlke (1991) show that the mean square

error of the sub-sample OLS estimator is often superior to that of the HL es-

timator. 3 There is little reason to believe that the HL estimator will provide

starting values that are in the neighborhood of the global maximum.

There is a solution to this problem, however. Olsen (1982) shows that the like-

lihood function of the Type II Tobit model is globally concave conditional on

ρ. He suggests that a grid search over the bounded parameter ρ, in conjunction

with the conditional MLEs, can be used to trace the profile of the maximized

value of lnL(α, β, σ, ρ) over the space of ρ. The location of any local or global

maxima are easily determined, and a fully simultaneous maximization can be

started in the neighborhood of the global MLE. Unfortunately, this algorithm

has not yet been incorporated into ”canned” software.

The possibility of distinct global and local maxima is not the only problem. As

noted in (Olsen 1982), a global maximum need not exist. Since the parameter

space of ρ is the open interval (-1,1), a maximizing value of will not exist if the

conditional likelihood function is increasing (or decreasing) in ρ right up to the

boundary of the parameter space. The possible outcomes of the maximization

2 Many applications simply report the estimates obtained using the two-stage
method. The performance of the two stage estimator is comparable to maximum
likelihood only for small values of ρ; conditions under which selection bias is mini-
mal. Moreover, Nawata (1994) shows that as the degree of correlation increases, the
maximum likelihood estimator is ”much more efficient than Heckman’s estimator.”
3 Zuehlke (1996) shows that this result is not restricted to models that are ”iden-
tified by non-linearity.”
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process include: no root to the score equations; a unique root that is not a

global MLE; multiple roots to the score equations; a unique root that is a

global MLE. These cases are illustrated in Figures 1 through 4, respectively.

Each of these figures was generated by re-sampling the error terms while using

exactly the same set of parameter values and regressors.

In the cases illustrated by Figures 1 and 2, there is no global MLE. A ”near

MLE” can be defined, as in (Rao 1973), but the statistical properties of such

an estimator are unknown. In the cases illustrated by Figures 2 and 3, there

is a local maximum that is not a global maximum. The relative performance

the local MLE and the corresponding ”near MLE” or global MLE are also

unknown. Useful asymptotic theory is available only in the case illustrated by

Figure 4, where the local and global MLE correspond.

When encountered in application, the case illustrated in Figure 1 is often

interpreted as a sign of model mis-specification. As this simulation illustrates,

however, this conclusion may be erroneous. Likewise, ”canned” software that

does not scan the space of ρ may report a local maximum when the global

maximum is either different or does not exist. The focus of this paper is on

the relative frequency of the problems illustrated in Figures 1 through 3.

4
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2 Data Generation

The purpose of the Monte Carlo portion of this study is to examine the rel-

ative frequency of multiple roots to the score equations. In order to focus on

this topic, the structure of the model is kept as simple as possible. 4 Both

the regression equation and the selection equation contain an intercept and a

single regressor. The regressors, X1 and X2, are random draws of a bivariate

standard normal with correlation ρX . The assumption of a zero mean and unit

variance for the regressors involves no loss in generality. In practice, standard-

izing a regressor will simply scale the coefficient estimate without affecting

the precision of the estimate or the fit of the model. The degree of indepen-

dent variation in the regressors of the selection and regression equations is

controlled by the parameter ρX . The regressors will be fixed in repeated sam-

pling, and are statistically independent of the disturbances. The disturbances,

ε1 and ε2, are a statistically independent sequence of bivariate standard nor-

mals with correlation ρε. The degree of selection bias is increasing in absolute

value with increases in the absolute value of ρε.

Given this structure, the unconditional mean of Y2, and consequently, the de-

gree of censoring, is controlled by the intercept of the selection equation, α1.

The explanatory power of the selection equation is determined by the slope

coefficient of the selection equation, α2. This parameter is chosen to give an ex-

pected R2 of 50 percent in the uncensored selection equation. The explanatory

power of the selection equation increases as α2 increases in absolute value.

Nelson (1984) shows that the variance of the coefficient estimates of a Type II

Tobit model are affected proportionally by a change in σ. When comparing the

4 Henceforth, the observational subscript is omitted in order to simplify notation.

6
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relative performance of the estimators, the choice of σ is arbitrary. Changes

in σ affect the absolute, but not the relative scale of the variances. If the

normalization σ =
√

1− β2
2 is adopted, then the fit of the regression equation is

controlled by the single parameter, β2. For this choice of σ, the slope coefficient,

β2, corresponds to the correlation coefficient between Y1 and X1.

A brief summary of the Monte Carlo process is as follows:

(1) The regressors, X1 and X2, are drawn. They are fixed across repetitions.

(2) The disturbances, ε1 and ε2, are drawn. Given values for the regressors

and disturbances, and the parameters α, β, σ, and ρε, the values of J and

Y1 are computed.

(3) The parameters are estimated, and any local or global maximum are

determined.

(4) Steps 2 and 3 are repeated on successive repetitions, and sample moments

are compiled across repetitions.

The data generation process described above was carefully structured in order

to limit intra-experiment random variation. 5 Each estimator is applied to the

same sequence of data sets for any given parameter combination, (α, β, σ, ρε).

This will limit random variation in comparisons across estimators. In addi-

tion, the same sequence of independent standard normal pairs, (ε1,ε2), will

be used to construct the data sequence (J,Y1) required for each distinct pa-

rameter combination. 6 This will limit random variation in comparisons across

parameter values.

The plots in Figure 6 summarize the results from the MC simulation. In most

5 See, Hendry (1984).
6 The independent standard normals were obtained with the algorithm of Forsythe
(1977).

7
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instances, a unique root is discovered. The absence of any root is associated

with extremely high values of ρe. Presences of a single root that was not a MLE

is more likely in situations where both ρx and ρe is large. Finally, multiple roots

is most influenced by high values of ρx. These MC simulation results suggest

that the possibility for Tobit II estimation problems is limited to data with

high values of ρe and ρx. The next section addresses how frequently these

situations arise in published data.

9
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3 Application

The Monte Carlo results of the previous section suggest that, in most applica-

tions, a local MLE found with gradient methods is likely to be a global MLE.

While this is of some consolation, it does nothing to diminish the magnitude

of the problem that may occur on a case by case basis. To illustrate this point,

we provide examples from three published data sets using selection models.

The data for this project come from published works in peer review journals

(Mroz 1987; Kenkel and Terza 2001; Martins 2001)1. For each data set, the

results from estimation using a grid search are compared to the estimates from

the commonly used statistical packages SAS, STATA, and R.

3.1 Methods

In order to produce results for the global MLE, the authors wrote R code

provided in Appendix A. The code uses subsample OLS for starting values

with ρ equal to zero. The initial values were then used to estimate the entire

grid by increments of .05. In other words, the maximized values at rho equal

to zero were used as initial guesses for ρ equal to .05, then the maximized

values at .05 were used as beginning values for ρ equal to .10 and so on. Once

the maximum was found on the .05 increment scale, a second grid search was

conducted with .01 increments to get two digits of accuracy for the correlation

parameter.

The statistical programs reviewed are SAS, STATA and R. Other commonly

used packages, such as Minitab and SPSS do not offer Tobit II models di-

rectly, although macros are sometimes available online. Each set of data was

10
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run through the corresponding selection model estimation for each statistical

package. For the first run, no initial values were specified and the package

default determined estimates2. If the initial run failed to return the global

MLE, a second attempt was made with starting values from a model using a

correlation of .05 less than the true value. For example, a true value of ρ=.90

would be given starting values based on .85. This is done in order to check

if specifying accurate initial values improved software performance. The code

for each package is located in Appendix B.

The choice of data sources is not random and was done based on availability.

Principally, the data come from journals with online archives. The three cases

presented here were chosen to represent a variety of likelihood behaviors for

ρ. The Mroz (1987) data is contained in most software as an example, partly

because the likelihood function for rho is a well behaved parabolic curve and

simultaneous estimation without a grids search provides accurate results (Fig-

ure 1a). The Martins (2001) data has both a local and a global maximum,

making it more difficult to identify (Figure 1b). The Kenkel and Terza data

set is large with numerous variables and no global MLE (Figure 1c).

3.2 Results

The condensed results of each analysis are presented below in Table 3.2 along

with a plot of the likelihood for each data set in Figure 1. The global MLE

values for ρ and the log likelihood are given for each model in the column ti-

tled ”Author”. Second, the maximum difference for a non-intercept t-statistic

is given. The t-statistic difference is used because it incorporates both the

parameter estimate and its standard error into a single measurement, which

summarizes the data more efficiently3. Finally, the number of significant vari-

11
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ables at the 95 percent confidence level is counted. The statistical package

results reported below are all based off of the default settings.

Fig. 1. Likelihood Plots Over ρ

(a) Mroz (b) Martins

(c) Kenkel and Terza

Overall, there seems to be very little difference in the estimates produced by

the major statistical softwares. Even in error, the programs generate consis-

tent results. The degree of agreement is even more surprising considering that

nonlinear regression routines have been shown to spawn divergent answers

12
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when comparing results among programs for less complex mathematical sys-

tems (McCullough 1999). The well behaved Mroz data set provided similar

results for each program. The differences that do occur are probably linked

to the correlation only being calculated out to two significant digits for the

answers generated by the author. Additionally, the different methods of esti-

mation could have played a small part, but this is unlikely since other methods

were tried and all provided the same response for this particular problem.

For the Martins data set, SAS estimates the standard error for the interaction

term between potential experience and age squared to be 0. The variable

appears to have too much collinearity for SAS, which forces the variance to

zero and the t statistic to negative infinity. The second largest difference in

SAS is 8.32, which is in line with the other programs. None of the other

methods provide an answer for the interaction term either. (There is likely a

singularity tolerance option in the nonlinear optimization commands that I

have been unable to find and adjust to solve this problem.)

Beyond SAS’s individual issues, all of the major packages misestimate the

correlation and consequently the parameter values for the Martins’ data. The

commonplace statistical softwares all find the same local maximum. The same

result is found regardless of method of estimation in SAS and STATA, which

indicates that the solution is not as simple as changing the default options.

All of the software packages do achieve the correct answer when given close

initial values from the author’s grid search. This example simply confirms the

fact that Tobit II models can have multiple roots and that a grid search over

the range of the correlation is the only way to verify a global MLE exists.

The Kenkel and Terza data set has no global root, yet all of the packages

produce a similar answer. Again, this does not appear to be a trouble with

14
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the default options because the answer does not change significantly based on

any adjustments. Just as in the last problem, if starting values are given farther

away from zero with a correlation approaching one, the computer algorithms

are able to correctly identify the model.

15
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4 Conclusions

Tobit II models are frequently used in the social sciences as a check against

selection bias. The problematic nature of ML estimation for Heckman selection

models is displayed using a Monte Carlo simulation. The simulations and the

reviewed data sets clearly show the possibility of multiple roots and a singular

root which is not a MLE. Simultaneous estimation of ρ and the regression

parameters is only accurate when the starting values are in close proximity to

the global MLE. Since the global MLE is rarely known, a two-stage estimator

is proposed here which incorporates a grid search over rho in order to find

accurate starting values.

The Monte Carlo simulations demonstrate that the correct global root will

often be identified under the seemingly reasonable conditions of non-extreme

values of ρe and ρx. The problematic cases of multiple roots or singular local

roots are more frequent when their is high censoring, high correlation between

error terms, and little unique information between regression and selection

equations. These situations frequently occur in the literature and are the main

reasons for using a Tobit II model in the first place, which is why we also

examine actual published data sets.

The use of published data sets in this paper is meant to emphasize two points.

First, that all of the major statistical packages suffer from the same algorithmic

shortcomings. SAS, STATA, and R all rely upon simultaneous estimation of all

parameters, which can lead to incorrect results unless the likelihood is globally

concave over ρ. Second, the three articles demonstrate that improper Tobit II

model estimation is not a statistical artifact that happens rarely in practice.

Inaccurate results from these models are frequently reported in journals, or

16
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possibly worse not reported when researchers find ρ to be insignificant and

revert to a model that ignores selection bias altogether. Fixing the major

statistical packages is serious issue that demands rectification.

The Martins (1987) and Kenkel and Terza (2001) results have an interesting

aspect in that not conditioning on ρ provides unpredictable bias. The Martins

publication would have been helped (based on number of significant variables)

by implementing a more accurate routine. Contrarily, the Kenkel and Terza

data would probably not have been published (at least in its current form)

if the model was estimated correctly. These examples are indicative of the

fact that failure to condition of ρ frequently leads to erroneous estimates with

unpredictable biases.

The next step in this research is to gather more published data sets using Heck-

man selection models and test them using a two-stage estimation technique.

Of the data sets that have been examined thus far, about half of the results

from published articles are inaccurate. In addition to gauging how widespread

the problem is, the authors are also working on R code that will be made freely

available for public use. Hopefully, the implementation of the more accurate

two-stage estimator in R will encourage other statistical platforms to update

their algorithms.

In conclusion, the existence of this error in statistical packages is complectly

unnecessary in this case because there is a relatively simple fix to eliminat-

ing this problem. Almost all programs provide a warning that accuracy is

dependent on starting values, but researchers rarely have informative prior in-

formation regarding the size of coefficients and almost never have a estimate

of ρ. Selection bias is a prominent threat to the validity to inquiry in survey

research and properly estimated Tobit II models will never offer a complete

17
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solution to these issues, but proper modeling is a start.

18
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Notes

1We are in the process of collecting more published data sets. So far, seven addi-

tional data sets have been analyzed but only two authors have granted permission to

publish the results. Therefore, we limited the results reported here to freely available

online data.

2Adjusting the default options, i.e. changing from Newton-Raphson to BHHH

optimization, had little impact on the results

3The full set of results is available from the authors

19
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5 Appendix

A R Code for Tobit II Estimation

### This code still has bugs and will be posted online when a correct version is available.

tobit2<- function(y1,c1,x1,x2,theta,rho) {

y<<-cbind(y1) # This makes sure the data is in matrix form

x1<<-cbind(x1)

x2<<-cbind(x2)

c1<<-cbind(c1) #need to change c to c1

nobs<-as.numeric(dim(y)[1])

km1<<-as.numeric(dim(x1)[2])+1

km2<<-as.numeric(dim(x2)[2])+1

df<-nobs-km1-km2

ones<-matrix(1,nobs,1)

colnames(ones)<-’Intercept’

x1<<-cbind(ones,x1)

x2<<-cbind(ones,x2)

logl0<-tobit2_ll(theta,rho) # LogL at starting values.

tol<-0.001 # Convergence tolerance.

maxit<-500 # Iteration Limit.

md<-1

i<-1

while (md >= tol & i<=maxit) { # Start iteration loop.

####################################################################

#tobit2_gr(theta,rho) # Compute BHHH update.

beta1<- theta[1:km1,]

beta2<- theta[(km1+1):(km1+km2),]

ls<- theta[(km1+km2+1),]

sig<- as.numeric(exp(ls))

a1<- 1/(cos(asin(rho)))

a2<- tan(asin(rho))

xb1<- (x1%*%beta1)

xb2<- (x2%*%beta2)

z <- (y-xb2)/sig

w<- (a1*xb1) + (a2*z)

20
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fl0<- dnorm(xb1) # dnorm calls normal PDF (density)

flw<- dnorm(w) # dnorm calls normal PDF (density)

fbw<- pnorm(w) # pnorm calls normal CDF. (distribution)

fbc<- pnorm(xb1, lower.tail = F) # pnorm calls normal CDF. (distribution)

r2<- fl0/fbc

rw<- flw/fbw

q1<- ((c1*rw*a1-(1-c1)*r2) %*% matrix(1,1,km1))*x1

q2<- ((c1*(z-c1*rw*a2)/sig) %*% matrix(1,1,km2))*x2

q3<- c1*z*z-c1*(rw*a2*z)-c1

q<- cbind(q1,q2,q3)

sc<-(apply(q,2,sum)) # Computes gradient (score).

m<-t(q)%*%q

vc<-solve(m) # Estimated covariance matrix.

d<-vc%*%sc # BHHH directional update.

md<-max(abs(d)) # Convergence criterion.

####################################################################

j<-0

deltf<- -1

while (deltf<0 & j<=4) { # Start step reduction loop.

step<- 1 *(0.5)^j # Reduce step by half.

gamma<- theta+(step*d) # Try new parameter vector.

logl<- tobit2_ll(gamma,rho) # Evaluate Probit logL.

deltf<- logl-logl0 # Determine function change.

j<-j+1 # Update step counter.

} # End step reduction loop.

logl0<-logl # Update value of logL.

theta<-gamma # Update beta0.

if (i==1) int<-cbind(i,md, logl, step)

if (i>1) int<-rbind(int,cbind(i,md, logl, step))

colnames(int)<-list(’Iteration’,’Grad:’,’LogL:’,’Size:’)

i<-i+1; # Update iteration counter.

}

stderr <- sqrt(diag(vc)) # Compute standard errors.

t <- theta/stderr # Compute t-statistics.

21
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pvt<-(1-pf(t^2,1,df)) # Compute p-values.

if (i>maxit) print(’Iteration Limit Exceeded.’)

ind<-round(cbind(theta,stderr,t,pvt),5)

colnames(ind)<-c(’Coefficient’,’Std. Error’,’t-Stat’,’Prob>|t|’)

ind1<-ind[1:km1,]

ind2<-ind[(km1+1):(km1+km2),]

cat(’Tobit II Estimates for dependent variable:’, colnames(y),’\n’)

cat(’\n’)

v<-dim(int)[1]

if (v<=10) print(round(int,4))

if (v>10) print(round(int[(v-10):v,],4))

cat(’\n\n’)

cat(’Selection Equation Estimates: \n\n’)

print(ind1)

cat(’Regression Equation Estimates: \n\n’)

print(ind2)

ls<- theta[km1+km2+1,]

sig<- exp(ls)

cat(’Sigma ’,sig,’\n’)

cat(’Rho ’,rho,’\n’)

}

GridSearch <- function(theta,rho){

for (k in 1:19){

rho<-(0 - k/20)

# print (rho) }

logl0<-tobit2_ll(theta,rho) # LogL at starting values.

tol<-0.001 # Convergence tolerance.

maxit<-500 # Iteration Limit.

md<-1

i<-1

while (md >= tol & i<=maxit) { # Start iteration loop.

####################################################################

#tobit2_gr(theta,rho) # Compute BHHH update.

beta1<- theta[1:km1,]

beta2<- theta[(km1+1):(km1+km2),]

ls<- theta[(km1+km2+1),]

22
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sig<- as.numeric(exp(ls))

a1<- 1/(cos(asin(rho)))

a2<- tan(asin(rho))

xb1<- (x1%*%beta1)

xb2<- (x2%*%beta2)

z <- (y-xb2)/sig

w<- (a1*xb1) + (a2*z)

fl0<- dnorm(xb1) # dnorm calls normal PDF (density)

flw<- dnorm(w) # dnorm calls normal PDF (density)

fbw<- pnorm(w) # pnorm calls normal CDF. (distribution)

fbc<- pnorm(xb1, lower.tail = F) # pnorm calls normal CDF. (distribution)

r2<- fl0/fbc

rw<- flw/fbw

q1<- ((c1*rw*a1-(1-c1)*r2) %*% matrix(1,1,km1))*x1

q2<- ((c1*(z-c1*rw*a2)/sig) %*% matrix(1,1,km2))*x2

q3<- c1*z*z-c1*(rw*a2*z)-c1

q<- cbind(q1,q2,q3)

sc<-(apply(q,2,sum)) # Computes gradient (score).

m<-t(q)%*%q

vc<-solve(m) # Estimated covariance matrix.

d<-vc%*%sc # BHHH directional update.

md<-max(abs(d)) # Convergence criterion.

####################################################################

j<-0

deltf<- -1

while (deltf<0 & j<=4) { # Start step reduction loop.

step<- 1 *(0.5)^j # Reduce step by half.

gamma<- theta+(step*d) # Try new parameter vector.

logl<- tobit2_ll(gamma,rho) # Evaluate Probit logL.

deltf<- logl-logl0 # Determine function change.

j<-j+1 # Update step counter.

} # End step reduction loop.

logl0<-logl # Update value of logL.

theta<-gamma # Update beta0.

if (i==1) int<-cbind(i,md, logl, step)

if (i>1) int<-rbind(int,cbind(i,md, logl, step))
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colnames(int)<-list(’Iteration’,’Grad:’,’LogL:’,’Size:’)

i<-i+1; # Update iteration counter.

}

if (i>maxit) print(’Iteration Limit Exceeded.’)

maxlog<-cbind(rho, logl)

if (k==1) test_neg<-maxlog

if (k>1) test_neg<-rbind(test_neg,maxlog)

#plot(test[,1],test[,2])

colnames(theta)<-round(rho,5)

if (k==1) theta_neg<-cbind(theta)

if (k>1) theta_neg<-cbind(theta_neg,theta)

}

##########################################################################

##########################################################################

##########################################################################

theta<-t0

for (k in 1:19){

rho<-(0+k/20)

# print (rho) }

logl0<-tobit2_ll(theta,rho) # LogL at starting values.

tol<-0.001 # Convergence tolerance.

maxit<-500 # Iteration Limit.

md<-1

i<-1

while (md >= tol & i<=maxit) { # Start iteration loop.

####################################################################

#tobit2_gr(theta,rho) # Compute BHHH update.

beta1<- theta[1:km1,]

beta2<- theta[(km1+1):(km1+km2),]

ls<- theta[(km1+km2+1),]

sig<- as.numeric(exp(ls))

a1<- 1/(cos(asin(rho)))

a2<- tan(asin(rho))

xb1<- (x1%*%beta1)

xb2<- (x2%*%beta2)

z <- (y-xb2)/sig

w<- (a1*xb1) + (a2*z)
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fl0<- dnorm(xb1) # dnorm calls normal PDF (density)

flw<- dnorm(w) # dnorm calls normal PDF (density)

fbw<- pnorm(w) # pnorm calls normal CDF. (distribution)

fbc<- pnorm(xb1, lower.tail = F) # pnorm calls normal CDF. (distribution)

r2<- fl0/fbc

rw<- flw/fbw

q1<- ((c1*rw*a1-(1-c1)*r2) %*% matrix(1,1,km1))*x1

q2<- ((c1*(z-c1*rw*a2)/sig) %*% matrix(1,1,km2))*x2

q3<- c1*z*z-c1*(rw*a2*z)-c1

q<- cbind(q1,q2,q3)

sc<-(apply(q,2,sum)) # Computes gradient (score).

m<-t(q)%*%q

vc<-solve(m) # Estimated covariance matrix.

d<-vc%*%sc # BHHH directional update.

md<-max(abs(d)) # Convergence criterion.

####################################################################

j<-0

deltf<- -1

while (deltf<0 & j<=4) { # Start step reduction loop.

step<- 1 *(0.5)^j # Reduce step by half.

gamma<- theta+(step*d) # Try new parameter vector.

logl<- tobit2_ll(gamma,rho) # Evaluate Probit logL.

deltf<- logl-logl0 # Determine function change.

j<-j+1 # Update step counter.

} # End step reduction loop.

logl0<-logl # Update value of logL.

theta<-gamma # Update beta0.

if (i==1) int<-cbind(i,md, logl, step)

if (i>1) int<-rbind(int,cbind(i,md, logl, step))

colnames(int)<-list(’Iteration’,’Grad:’,’LogL:’,’Size:’)

i<-i+1; # Update iteration counter.

}

if (i>maxit) print(’Iteration Limit Exceeded.’)

maxlog<-cbind(rho, logl)

if (k==1) test_pos<-maxlog
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if (k>1) test_pos<-rbind(test_pos,maxlog)

#plot(test[,1],test[,2])

colnames(theta)<-round(rho,5)

if (k==1) theta_pos<-cbind(theta)

if (k>1) theta_pos<-cbind(theta_pos,theta)

}

test_all<-rbind(test_neg,test_pos)

theta_all<-cbind(theta_neg,theta_pos)

#plot(test_all[,1],test_all[,2])

}

B Sample Code for Commercial Statistical Software

B.1 SAS

proc qlim data = martins ; model sel = child ychild hw edu age age2 /discrete;
model wage = edu pexp pexp2 pexpchd pexpchd2 /select(sel=1); run;

B.2 STATA

heckman wage edu pexp pexp2 pexpchd pexpchd2, sel(sel = child ychild hw
edu age age2)

B.3 R

library(sampleSelection) # Adds Heckman model to base package

mod <- selection (sel ~ child+ychild+hw+edu+age+age2 , wage~edu+pexp+pexp2+pexpchd+pexpchd2, method = "ml")

summary(mod)
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